You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

observer.py 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430
  1. # MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
  2. #
  3. # Copyright (c) 2014-2020 Megvii Inc. All rights reserved.
  4. #
  5. # Unless required by applicable law or agreed to in writing,
  6. # software distributed under the License is distributed on an
  7. # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  8. import math
  9. from abc import abstractmethod
  10. from enum import Enum
  11. import numpy as np
  12. from .. import functional as F
  13. from .._internal.dtype import _metadata_dict, get_quantized_dtype
  14. from ..core import Buffer, Function, tensor
  15. from ..jit import sideeffect
  16. from ..module import Module
  17. class Round(Function):
  18. def forward(self, x):
  19. return x.round()
  20. def backward(self, output_grads):
  21. return output_grads
  22. class Observer(Module):
  23. r"""
  24. A base class for Observer Module.
  25. :param dtype: a string indicating to collect scale and zero_point of which dtype
  26. """
  27. def __init__(self, dtype="qint8"):
  28. super().__init__()
  29. if dtype not in _metadata_dict.keys():
  30. raise ValueError(
  31. "unknown dtype: {}, only support {}".format(
  32. dtype, _metadata_dict.keys()
  33. )
  34. )
  35. self.dtype = dtype
  36. self.qmin = _metadata_dict[dtype].qmin
  37. self.qmax = _metadata_dict[dtype].qmax
  38. self.enabled = True
  39. def get_dtype(self):
  40. q_dict = self.get_qparams()
  41. numpy_scale = None if "scale" not in q_dict else q_dict["scale"].numpy()[0]
  42. numpy_zero_point = (
  43. None if "zero_point" not in q_dict else q_dict["zero_point"].numpy()[0]
  44. )
  45. return get_quantized_dtype(self.dtype, numpy_scale, numpy_zero_point)
  46. def enable(self):
  47. self.enabled = True
  48. def disable(self):
  49. self.enabled = False
  50. def train(self, mode: bool = True, recursive: bool = True) -> None:
  51. super().train(mode, recursive)
  52. if mode:
  53. self.enable()
  54. else:
  55. self.disable()
  56. @abstractmethod
  57. def forward(self, x):
  58. pass
  59. @abstractmethod
  60. def get_qparams(self, **kwargs):
  61. pass
  62. class ObserverMode(Enum):
  63. SYMMERTIC = 1
  64. ASYMMERTIC = 2
  65. def create_observer_dict(mode):
  66. if mode == ObserverMode.SYMMERTIC:
  67. return {
  68. "mode": ObserverMode.SYMMERTIC,
  69. "scale": None,
  70. }
  71. else:
  72. return {
  73. "mode": ObserverMode.ASYMMERTIC,
  74. "scale": None,
  75. "zero_point": None,
  76. }
  77. class MinMaxObserver(Observer):
  78. def __init__(self, mode=ObserverMode.SYMMERTIC, eps=0.00001, dtype="qint8"):
  79. super().__init__(dtype)
  80. self.mode = mode
  81. self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32)
  82. self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32)
  83. self.scale_limit = eps
  84. def _calculate_qparams(self, inp_min_val, inp_max_val):
  85. min_val = F.minimum(0.0, inp_min_val)
  86. max_val = F.maximum(0.0, inp_max_val)
  87. q_dict = create_observer_dict(self.mode)
  88. q_dict["min_val"] = inp_min_val
  89. q_dict["max_val"] = inp_max_val
  90. if self.mode == ObserverMode.SYMMERTIC:
  91. symmetric_max_vals = F.maximum(-min_val, max_val)
  92. # use maximun to avoid scale too small at the begin
  93. q_dict["scale"] = F.maximum(
  94. symmetric_max_vals / ((self.qmax - self.qmin) / 2), self.scale_limit
  95. )
  96. # zero_point = self.zero_point
  97. else:
  98. # use maximun to avoid scale too small at the begin
  99. q_dict["scale"] = F.maximum(
  100. (max_val - min_val) / (self.qmax - self.qmin), self.scale_limit,
  101. )
  102. # caculate zero_point
  103. q_dict["zero_point"] = self.qmin - Round()((min_val / q_dict["scale"]))
  104. return q_dict
  105. def get_qparams(self):
  106. return self._calculate_qparams(self.min_val, self.max_val)
  107. def forward(self, x_orig):
  108. if self.enabled:
  109. # stop gradient
  110. x = F.zero_grad(x_orig)
  111. # find max and min
  112. F.add_update(
  113. self.min_val,
  114. F.minimum(self.min_val, x.min()),
  115. alpha=0.0,
  116. beta=1.0,
  117. bias=0.0,
  118. )
  119. F.add_update(
  120. self.max_val,
  121. F.maximum(self.max_val, x.max()),
  122. alpha=0.0,
  123. beta=1.0,
  124. bias=0.0,
  125. )
  126. return x_orig
  127. class ExponentialMovingAverageObserver(MinMaxObserver):
  128. def __init__(
  129. self, momentum=0.9, mode=ObserverMode.SYMMERTIC, eps=0.00001, dtype="qint8"
  130. ):
  131. super().__init__(mode, eps, dtype)
  132. self.momentum = Buffer(momentum)
  133. self.runtime_momentum = Buffer(0.0)
  134. def set_momentum(self, momentum):
  135. self.momentum.set_value(momentum)
  136. def forward(self, x_orig):
  137. if self.enabled:
  138. # stop gradient
  139. x = F.zero_grad(x_orig)
  140. # Exponential Moving Average
  141. tmp_min = (
  142. self.min_val * self.runtime_momentum
  143. + (1 - self.runtime_momentum) * x.min()
  144. )
  145. tmp_max = (
  146. self.max_val * self.runtime_momentum
  147. + (1 - self.runtime_momentum) * x.max()
  148. )
  149. F.add_update(self.min_val, tmp_min, alpha=0.0, beta=1.0, bias=0.0)
  150. F.add_update(self.max_val, tmp_max, alpha=0.0, beta=1.0, bias=0.0)
  151. F.add_update(
  152. self.runtime_momentum, self.momentum, alpha=0.0, beta=1.0, bias=0.0
  153. )
  154. return x_orig
  155. class HistogramObserver(MinMaxObserver):
  156. def __init__(
  157. self,
  158. bins=2048,
  159. upsample_rate=128,
  160. dtype="qint8",
  161. mode=ObserverMode.SYMMERTIC,
  162. eps=0.00001,
  163. ):
  164. super().__init__(mode, eps, dtype)
  165. self.bins = bins
  166. self.upsample_rate = upsample_rate
  167. self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1
  168. self.histogram = Buffer([-1] + [0.0] * (bins - 1))
  169. def _non_linear_param_search(self):
  170. r"""Non-linear parameter search.
  171. An approximation for L2 error minimization for selecting min/max.
  172. By selecting new min/max, we filter out outliers in input distribution.
  173. """
  174. np_min_val = self.min_val.numpy()[0]
  175. np_max_val = self.max_val.numpy()[0]
  176. np_histogram = self.histogram.numpy()
  177. assert len(np_histogram) == self.bins, "bins mistmatch"
  178. bin_width = (np_max_val - np_min_val) / self.bins
  179. def _get_norm(delta_begin, delta_end, density, norm_type):
  180. r"""
  181. Compute the norm of the values uniformaly distributed between
  182. delta_begin and delta_end.
  183. norm = density * (integral_{begin, end} x^2)
  184. = density * (end^3 - begin^3) / 3
  185. """
  186. assert norm_type == "L2", "Only L2 norms are currently supported"
  187. norm = 0.0
  188. if norm_type == "L2":
  189. norm = (
  190. delta_end * delta_end * delta_end
  191. - delta_begin * delta_begin * delta_begin
  192. ) / 3
  193. return density * norm
  194. def _compute_quantization_error(next_start_bin, next_end_bin, norm_type):
  195. r"""
  196. Compute the quantization error if we use start_bin to end_bin as the
  197. min and max to do the quantization.
  198. """
  199. norm = 0.0
  200. dst_bin_width = (
  201. bin_width * (next_end_bin - next_start_bin + 1) / self.dst_nbins
  202. )
  203. if dst_bin_width == 0.0:
  204. return 0.0
  205. for src_bin in range(self.bins):
  206. # distances from the beginning of first dst_bin to the beginning and
  207. # end of src_bin
  208. src_bin_begin = (src_bin - next_start_bin) * bin_width
  209. src_bin_end = src_bin_begin + bin_width
  210. # which dst_bins the beginning and end of src_bin belong to?
  211. dst_bin_of_begin = min(
  212. self.dst_nbins - 1,
  213. max(0.0, math.floor(src_bin_begin / dst_bin_width)),
  214. )
  215. dst_bin_of_end = min(
  216. self.dst_nbins - 1,
  217. max(0.0, math.floor(src_bin_end / dst_bin_width)),
  218. )
  219. dst_bin_of_begin_center = (
  220. dst_bin_of_begin * dst_bin_width + dst_bin_width / 2
  221. )
  222. density = np_histogram[src_bin] / bin_width
  223. if dst_bin_of_begin == dst_bin_of_end:
  224. # if src_bin is entirely within 1 dst_bin
  225. delta_begin = src_bin_begin - dst_bin_of_begin_center
  226. delta_end = src_bin_end - dst_bin_of_begin_center
  227. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  228. else:
  229. delta_begin = src_bin_begin - dst_bin_of_begin_center
  230. delta_end = dst_bin_width / 2
  231. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  232. norm = norm + (dst_bin_of_end - dst_bin_of_begin - 1) * _get_norm(
  233. -dst_bin_width / 2, dst_bin_width / 2, density, norm_type
  234. )
  235. dst_bin_of_end_center = (
  236. dst_bin_of_end * dst_bin_width + dst_bin_width / 2
  237. )
  238. delta_begin = -dst_bin_width / 2
  239. delta_end = src_bin_end - dst_bin_of_end_center
  240. norm = norm + _get_norm(delta_begin, delta_end, density, norm_type)
  241. return norm
  242. # cumulative sum
  243. total = sum(np_histogram)
  244. cSum = np.cumsum(np_histogram, axis=0)
  245. stepsize = 1e-5 # granularity
  246. alpha = 0.0 # lower bound
  247. beta = 1.0 # upper bound
  248. start_bin = 0
  249. end_bin = self.bins - 1
  250. norm_min = float("inf")
  251. while alpha < beta:
  252. # Find the next step
  253. next_alpha = alpha + stepsize
  254. next_beta = beta - stepsize
  255. # find the left and right bins between the quantile bounds
  256. l = start_bin
  257. r = end_bin
  258. while l < end_bin and cSum[l] < next_alpha * total:
  259. l = l + 1
  260. while r > start_bin and cSum[r] > next_beta * total:
  261. r = r - 1
  262. # decide the next move
  263. next_start_bin = start_bin
  264. next_end_bin = end_bin
  265. if (l - start_bin) > (end_bin - r):
  266. # move the start bin
  267. next_start_bin = l
  268. alpha = next_alpha
  269. else:
  270. # move the end bin
  271. next_end_bin = r
  272. beta = next_beta
  273. if next_start_bin == start_bin and next_end_bin == end_bin:
  274. continue
  275. # calculate the quantization error using next_start_bin and next_end_bin
  276. norm = _compute_quantization_error(next_start_bin, next_end_bin, "L2")
  277. if norm > norm_min:
  278. break
  279. norm_min = norm
  280. start_bin = next_start_bin
  281. end_bin = next_end_bin
  282. new_min = self.min_val + bin_width * start_bin
  283. new_max = self.min_val + bin_width * (end_bin + 1)
  284. return new_min, new_max
  285. def get_qparams(self):
  286. new_min, new_max = self._non_linear_param_search()
  287. return self._calculate_qparams(new_min, new_max)
  288. def _combine_histograms(
  289. self, orig_hist, new_hist, upsample_rate, downsample_rate, start_idx, Nbins
  290. ):
  291. # First up-sample the histogram with new data by a factor of L
  292. # This creates an approximate probability density thats piecwise constant
  293. upsampled_histogram = new_hist.repeat(upsample_rate)
  294. # Now insert the upsampled histogram into the output
  295. # histogram, which is initialized with zeros.
  296. # The offset at which the histogram is introduced is determined
  297. # by the start index as the output histogram can cover a wider range
  298. histogram_with_output_range = np.zeros((Nbins * downsample_rate))
  299. histogram_with_output_range[
  300. start_idx : Nbins * upsample_rate + start_idx
  301. ] = upsampled_histogram
  302. # Compute integral histogram, double precision is needed to ensure
  303. # that there are no overflows
  304. integral_histogram = np.cumsum(histogram_with_output_range, 0)[
  305. downsample_rate - 1 :: downsample_rate
  306. ]
  307. # Finally perform interpolation
  308. shifted_integral_histogram = np.zeros((Nbins))
  309. shifted_integral_histogram[1:Nbins] = integral_histogram[0:-1]
  310. interpolated_histogram = (
  311. integral_histogram - shifted_integral_histogram
  312. ) / upsample_rate
  313. orig_hist = orig_hist + interpolated_histogram
  314. return orig_hist
  315. def _adjust_min_max(self, combined_min, combined_max, upsample_rate):
  316. # We ensure that:
  317. # (combined_max - combined_min)/(downsample_rate*Nbins) = (max - min)/(upsample_rate*Nbins)
  318. # This allows us to have a common grid of resolution s, where we can align
  319. # the input histogram
  320. # start_idx maps min_val to the histogram bin index.
  321. np_min_val = self.min_val.numpy()[0]
  322. np_max_val = self.max_val.numpy()[0]
  323. hist_bin_width = (np_max_val - np_min_val) / (self.bins * upsample_rate)
  324. downsample_rate = int(
  325. np.ceil((combined_max - combined_min) / (self.bins * hist_bin_width))
  326. )
  327. e = downsample_rate * (self.bins * hist_bin_width) - (
  328. combined_max - combined_min
  329. )
  330. combined_max = combined_max + e / 2
  331. combined_min = combined_min - e / 2
  332. start_idx = int(np.round((np_min_val - combined_min) / hist_bin_width))
  333. return combined_min, combined_max, downsample_rate, start_idx
  334. @sideeffect
  335. def sideeffect_forward(self, x_orig):
  336. x = x_orig.numpy()
  337. min_val = self.min_val.numpy()[0]
  338. max_val = self.max_val.numpy()[0]
  339. histogram = self.histogram.numpy()
  340. new_min = x.min()
  341. new_max = x.max()
  342. if histogram[0] == -1:
  343. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  344. else:
  345. new_min = min(new_min, min_val)
  346. new_max = max(new_max, max_val)
  347. # combine the existing histogram and new histogram into 1 histogram
  348. # We do this by first upsampling the histogram to a dense grid
  349. # and then downsampling the histogram efficiently
  350. (new_min, new_max, downsample_rate, start_idx,) = self._adjust_min_max(
  351. new_min, new_max, self.upsample_rate
  352. )
  353. new_histogram, _ = np.histogram(x, self.bins, (new_min, new_max))
  354. new_histogram = new_histogram.astype(np.float64)
  355. if new_min == min_val and new_max == max_val:
  356. new_histogram += histogram
  357. else:
  358. new_histogram = self._combine_histograms(
  359. new_histogram,
  360. histogram,
  361. self.upsample_rate,
  362. downsample_rate,
  363. start_idx,
  364. self.bins,
  365. )
  366. self.histogram.set_value(new_histogram)
  367. self.min_val.set_value(new_min)
  368. self.max_val.set_value(new_max)
  369. def forward(self, x_orig):
  370. self.sideeffect_forward(x_orig)
  371. return x_orig

MegEngine 安装包中集成了使用 GPU 运行代码所需的 CUDA 环境,不用区分 CPU 和 GPU 版。 如果想要运行 GPU 程序,请确保机器本身配有 GPU 硬件设备并安装好驱动。 如果你想体验在云端 GPU 算力平台进行深度学习开发的感觉,欢迎访问 MegStudio 平台