GitOrigin-RevId: 562103186f
release-1.4
@@ -220,7 +220,7 @@ pdef('Axis').add_fields('int32', 'axis', 0) | |||
(pdef('Images2Neibs'). | |||
add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1, | |||
'window_h', 3, 'window_w', 3)) | |||
'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3)) | |||
(pdef('Pooling', version=0, is_legacy=True). | |||
add_enum( | |||
@@ -23,6 +23,8 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout &src, | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w) + ", " + | |||
"dilate_h=" + std::to_string(param().dilate_h) + ", " + | |||
"dilate_w=" + std::to_string(param().dilate_w) + ", " + | |||
"window_h=" + std::to_string(param().window_h) + ", " + | |||
"window_w=" + std::to_string(param().window_w); | |||
}; | |||
@@ -34,11 +36,13 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout &src, | |||
size_t pw = this->param().pad_w; | |||
size_t sh = this->param().stride_h; | |||
size_t sw = this->param().stride_w; | |||
size_t dh = this->param().dilate_h; | |||
size_t dw = this->param().dilate_w; | |||
size_t wh = this->param().window_h; | |||
size_t ww = this->param().window_w; | |||
size_t oh, ow; | |||
infer_conv_shape2d(ih, iw, wh, ww, sh, sw, ph, pw, oh, ow); | |||
infer_conv_shape2d(ih, iw, wh+(wh-1)*(dh-1), ww+(ww-1)*(dw-1), sh, sw, ph, pw, oh, ow); | |||
dst = TensorLayout(TensorShape({n, ic, oh, ow, wh, ww}), src.dtype); | |||
} | |||
@@ -24,7 +24,7 @@ namespace images2neibs { | |||
template <typename T> | |||
__global__ void forward_kernel(const T *src, T *dst, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int WH, int WW) | |||
int ph, int pw, int sh, int sw, int dh, int dw, int WH, int WW) | |||
{ | |||
int NC = N * C; | |||
int WP = WH*WW; | |||
@@ -37,8 +37,8 @@ __global__ void forward_kernel(const T *src, T *dst, | |||
if (op < OH * OW) { | |||
int oh = op / OW; | |||
int ow = op % OW; | |||
int ih = -ph + sh * oh + wh; | |||
int iw = -pw + sw * ow + ww; | |||
int ih = -ph + sh * oh + wh* dh; | |||
int iw = -pw + sw * ow + ww* dw; | |||
int dst_pos = nc * OH * OW * WH * WW + op * WH * WW + wp; | |||
int src_pos = nc * IH * IW + ih * IW + iw; | |||
dst[dst_pos] = (ih >= 0 && ih < IH && iw >= 0 && iw < IW) | |||
@@ -52,7 +52,7 @@ __global__ void forward_kernel(const T *src, T *dst, | |||
template <typename T> | |||
void forward(const T* src, T* dst, int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int wh, int ww, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream) { | |||
int spatial_size = OH * OW; | |||
int kernel_size = wh * ww; | |||
@@ -63,7 +63,7 @@ void forward(const T* src, T* dst, int N, int C, int IH, int IW, int OH, int OW, | |||
int by = N * C; | |||
forward_kernel<<<dim3(bx, std::min(grid_y_max, by)), dim3(tx, ty), 0, | |||
stream>>>(src, dst, N, C, IH, IW, OH, OW, ph, pw, sh, sw, | |||
stream>>>(src, dst, N, C, IH, IW, OH, OW, ph, pw, sh, sw, dh, dw, | |||
wh, ww); | |||
after_kernel_launch(); | |||
} | |||
@@ -73,7 +73,7 @@ void forward(const T* src, T* dst, int N, int C, int IH, int IW, int OH, int OW, | |||
template <typename T> | |||
__global__ void backward_kernel(const T *diff, T *grad, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int WH, int WW) | |||
int ph, int pw, int sh, int sw, int dh, int dw, int WH, int WW) | |||
{ | |||
int id = threadIdx.x + blockIdx.x * blockDim.x; | |||
if (id < N*C*IH*IW) { | |||
@@ -82,17 +82,20 @@ __global__ void backward_kernel(const T *diff, T *grad, | |||
int iw = id % (IH*IW) % IW; | |||
grad[nc*IH*IW + ih*IW + iw] = 0.0f; | |||
int oh_max = min((ih+ph) / sh, OH-1); | |||
int oh_min = max((ih+ph-(WH-1)+sh-1) / sh, 0); | |||
int oh_min = max((ih+ph-(WH-1)*dh+sh-1) / sh, 0); | |||
int ow_max = min((iw+pw) / sw, OW-1); | |||
int ow_min = max((iw+pw-(WW-1)+sw-1) / sw, 0); | |||
int ow_min = max((iw+pw-(WW-1)*dw+sw-1) / sw, 0); | |||
for (int oh = oh_min; oh <= oh_max; ++oh) | |||
for (int ow = ow_min; ow <= ow_max; ++ow) | |||
{ | |||
int wh = ih+ph - sh*oh; | |||
int ww = iw+pw - sw*ow; | |||
grad[nc*IH*IW + ih*IW + iw] += | |||
diff[nc*OH*OW*WH*WW + oh*OW*WH*WW + ow*WH*WW + | |||
wh*WW + ww]; | |||
if ((ih+ph - sh*oh)%dh==0 && (iw+pw - sw*ow)%dw==0){ | |||
int wh = ih+ph - sh*oh - (ih+ph - sh*oh)/dh * (dh-1); | |||
int ww = iw+pw - sw*ow - (iw+pw - sw*ow)/dw * (dw-1); | |||
grad[nc*IH*IW + ih*IW + iw] += | |||
diff[nc*OH*OW*WH*WW + oh*OW*WH*WW + ow*WH*WW + | |||
wh*WW + ww]; | |||
} | |||
} | |||
} | |||
} | |||
@@ -100,23 +103,23 @@ __global__ void backward_kernel(const T *diff, T *grad, | |||
template <typename T> | |||
void backward(const T *diff, T *grad, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int wh, int ww, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream) | |||
{ | |||
int threads = NR_THREADS; | |||
int blocks = DIVUP(N*C*IH*IW, threads); | |||
backward_kernel<<<blocks, threads, 0, stream>>>(diff, grad, | |||
N, C, IH, IW, OH, OW, | |||
ph, pw, sh, sw, wh, ww); | |||
ph, pw, sh, sw, dh, dw, wh, ww); | |||
after_kernel_launch(); | |||
} | |||
#define INST(T) \ | |||
template void forward<T>(const T *, T *, int, int, int, int, int, int, \ | |||
int, int, int, int, int, int, \ | |||
int, int, int, int, int, int, int, int, \ | |||
cudaStream_t); \ | |||
template void backward<T>(const T *, T *, int, int, int, int, int, int, \ | |||
int, int, int, int, int, int, \ | |||
int, int, int, int, int, int, int, int, \ | |||
cudaStream_t); | |||
#define cb(DType) \ | |||
INST(DTypeTrait<DType>::ctype) | |||
@@ -18,13 +18,13 @@ namespace images2neibs { | |||
template <typename T> | |||
void forward(const T *src, T *dst, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int wh, int ww, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream); | |||
template <typename T> | |||
void backward(const T *diff, T *grad, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int wh, int ww, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream); | |||
} // namespace images2neibs | |||
@@ -27,13 +27,14 @@ void Images2NeibsForwardImpl::exec(_megdnn_tensor_in src, | |||
int OH = dst.layout[2], OW = dst.layout[3]; | |||
int ph = param().pad_h, pw = param().pad_w; | |||
int sh = param().stride_h, sw = param().stride_w; | |||
int dh = param().dilate_h, dw = param().dilate_w; | |||
int wh = param().window_h, ww = param().window_w; | |||
#define cb(DType) \ | |||
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \ | |||
using T = DTypeTrait<DType>::ctype; \ | |||
images2neibs::forward(src.ptr<T>(), dst.ptr<T>(), \ | |||
N, C, IH, IW, OH, OW, \ | |||
ph, pw, sh, sw, wh, ww, \ | |||
ph, pw, sh, sw, dh, dw, wh, ww, \ | |||
stream); \ | |||
return; \ | |||
} | |||
@@ -53,13 +54,14 @@ void Images2NeibsBackwardImpl::exec(_megdnn_tensor_in diff, | |||
int OH = diff.layout[2], OW = diff.layout[3]; | |||
int ph = param().pad_h, pw = param().pad_w; | |||
int sh = param().stride_h, sw = param().stride_w; | |||
int dh = param().dilate_h, dw = param().dilate_w; | |||
int wh = param().window_h, ww = param().window_w; | |||
#define cb(DType) \ | |||
if (diff.layout.dtype == DType()) { \ | |||
using T = DTypeTrait<DType>::ctype; \ | |||
images2neibs::backward(diff.ptr<T>(), grad.ptr<T>(), \ | |||
N, C, IH, IW, OH, OW, \ | |||
ph, pw, sh, sw, wh, ww, \ | |||
ph, pw, sh, sw, dh, dw, wh, ww, \ | |||
stream); \ | |||
return; \ | |||
} | |||
@@ -33,20 +33,25 @@ void Images2NeibsForwardImpl::exec_internal(_megdnn_tensor_in src, | |||
int pad_w = static_cast<int>(param().pad_w); | |||
int stride_h = static_cast<int>(param().stride_h); | |||
int stride_w = static_cast<int>(param().stride_w); | |||
int dilate_h = static_cast<int>(param().dilate_h); | |||
int dilate_w = static_cast<int>(param().dilate_w); | |||
int equ_window_h = dilate_h * (window_h-1) + 1; | |||
int equ_window_w = dilate_w * (window_w-1) + 1; | |||
for (int n = 0; n < N; ++n) | |||
for (int c = 0; c < C; ++c) | |||
{ | |||
int ih = -pad_h; | |||
for (; ih+window_h <= IH+pad_h; ih += stride_h) { | |||
for (; ih+equ_window_h <= IH+pad_h; ih += stride_h) { | |||
int iw = -pad_w; | |||
for (; iw+window_w <= IW+pad_w; iw += stride_w) { | |||
for (; iw+equ_window_w <= IW+pad_w; iw += stride_w) { | |||
for (int kh = 0; kh < window_h; ++kh) | |||
for (int kw = 0; kw < window_w; ++kw) | |||
{ | |||
int ih2 = ih+dilate_h*kh, iw2 = iw+dilate_w*kw; | |||
dptr[idx*window_h*window_w + kh*window_w + kw] = | |||
(ih+kh) >= 0 && (ih+kh) < IH && | |||
(iw+kw) >= 0 && (iw+kw) < IW ? | |||
sptr[n*C*IH*IW + c*IH*IW + (ih+kh)*IW + (iw+kw)] : 0.0f; | |||
ih2 >= 0 && ih2 < IH && | |||
iw2 >= 0 && iw2 < IW ? | |||
sptr[n*C*IH*IW + c*IH*IW + ih2*IW + iw2] : 0.0f; | |||
} | |||
++idx; | |||
} | |||
@@ -86,18 +91,22 @@ void Images2NeibsBackwardImpl::exec_internal(_megdnn_tensor_in diff, | |||
int pad_w = static_cast<int>(param().pad_w); | |||
int stride_h = static_cast<int>(param().stride_h); | |||
int stride_w = static_cast<int>(param().stride_w); | |||
int dilate_h = static_cast<int>(param().dilate_h); | |||
int dilate_w = static_cast<int>(param().dilate_w); | |||
int equ_window_h = dilate_h * (window_h-1) + 1; | |||
int equ_window_w = dilate_w * (window_w-1) + 1; | |||
memset(sptr, 0, sizeof(T) * N*C*IH*IW); | |||
for (int n = 0; n < N; ++n) | |||
for (int c = 0; c < C; ++c) | |||
{ | |||
int ih = -pad_h; | |||
for (; ih+window_h <= IH+pad_h; ih += stride_h) { | |||
for (; ih+equ_window_h <= IH+pad_h; ih += stride_h) { | |||
int iw = -pad_w; | |||
for (; iw+window_w <= IW+pad_w; iw += stride_w) { | |||
for (; iw+equ_window_w <= IW+pad_w; iw += stride_w) { | |||
for (int kh = 0; kh < window_h; ++kh) | |||
for (int kw = 0; kw < window_w; ++kw) | |||
{ | |||
int ih2 = ih+kh, iw2 = iw+kw; | |||
int ih2 = ih+dilate_h*kh, iw2 = iw+dilate_w*kw; | |||
if (ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW) { | |||
sptr[n*C*IH*IW + c*IH*IW + ih2*IW + iw2] += | |||
dptr[idx*window_h*window_w + kh*window_w + kw]; | |||
@@ -31,17 +31,19 @@ inline std::vector<TestArg> get_args() { | |||
for (uint32_t pw : {0, 1}) | |||
for (uint32_t sh : {1, 2}) | |||
for (uint32_t sw : {1, 2}) | |||
for (uint32_t dh : {1, 2, 3}) | |||
for (uint32_t dw : {1, 2, 3}) | |||
for (uint32_t wh : {3, 4}) | |||
for (uint32_t ww : {3, 4}) { | |||
args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, wh, ww}, | |||
TensorShape{2, 3, 5, 6}); | |||
args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww}, | |||
TensorShape{2, 3, 19, 20}); | |||
} | |||
// clang-format on | |||
// large window case | |||
args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 32, 64}, | |||
args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1, 32, 64}, | |||
TensorShape{2, 3, 96, 128}); | |||
// large size | |||
args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1}, | |||
args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, | |||
TensorShape{128, 128, 28, 24}); | |||
return args; | |||
@@ -54,17 +56,19 @@ inline std::vector<TestArg> get_benchmark_args() { | |||
for (uint32_t pw : {0, 1}) | |||
for (uint32_t sh : {1, 2}) | |||
for (uint32_t sw : {1, 2}) | |||
for (uint32_t dh : {1, 2}) | |||
for (uint32_t dw : {1, 2}) | |||
for (uint32_t wh : {3, 4}) | |||
for (uint32_t ww : {3, 4}) | |||
for (uint32_t b : {1, 64}) | |||
for (uint32_t c : {64, 128}) | |||
for (uint32_t hw : {64, 128}) { | |||
args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, wh, ww}, | |||
args.emplace_back(param::Images2Neibs{ph, pw, sh, sw, dh, dw, wh, ww}, | |||
TensorShape{b, c, hw, hw}); | |||
} | |||
// clang-format on | |||
// large size | |||
args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1}, | |||
args.emplace_back(param::Images2Neibs{0, 0, 1, 1, 1, 1, 1, 1}, | |||
TensorShape{1024, 128, 28, 24}); | |||
return args; | |||
@@ -0,0 +1,59 @@ | |||
/** | |||
* \file dnn/test/naive/images2neibs.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "test/naive/fixture.h" | |||
#include "megdnn/oprs/nn.h" | |||
#include "test/common/checker.h" | |||
using namespace megdnn; | |||
using namespace test; | |||
TEST_F(NAIVE, IMAGES2NEIBS_FORWARD) { | |||
Checker<Images2Neibs> checker(handle(), /* check_dispatch */false); | |||
Images2Neibs::Param param(0,0,1,1,1,1,2,2); | |||
checker.set_param(param).exect( | |||
Testcase{TensorValue({1, 1, 3, 3}, dtype::Uint8(), | |||
{0,1,2, | |||
3,4,5, | |||
6,7,8}), {}}, | |||
Testcase{{}, | |||
TensorValue({1, 1, 2, 2, 2, 2}, dtype::Uint8(), | |||
{0,1,3,4, | |||
1,2,4,5, | |||
3,4,6,7, | |||
4,5,7,8})}); | |||
param.pad_h = 1; | |||
param.pad_w = 1; | |||
param.stride_h = 2; | |||
param.stride_w = 2; | |||
param.dilate_h = 2; | |||
param.dilate_w = 2; | |||
param.window_h = 3; | |||
param.window_w = 3; | |||
checker.set_param(param).exect( | |||
Testcase{TensorValue({1, 1, 6, 7}, dtype::Uint8(), | |||
{0,1,2,3,4,5,6, | |||
7,8,9,10,11,12,13, | |||
14,15,16,17,18,19,20, | |||
21,22,23,24,25,26,27, | |||
28,29,30,31,32,33,34, | |||
35,36,37,38,39,40,41}), {}}, | |||
Testcase{{}, | |||
TensorValue({1, 1, 2, 3, 3, 3}, dtype::Uint8(), | |||
{0,0,0,0,8,10,0,22,24, | |||
0,0,0,8,10,12,22,24,26, | |||
0,0,0,10,12,0,24,26,0, | |||
0,8,10,0,22,24,0,36,38, | |||
8,10,12,22,24,26,36,38,40, | |||
10,12,0,24,26,0,38,40,0})}); | |||
} |
@@ -70,6 +70,7 @@ __all__ = [ | |||
"remap", | |||
"resize", | |||
"sigmoid", | |||
"sliding_window", | |||
"softmax", | |||
"softplus", | |||
"sync_batch_norm", | |||
@@ -1353,6 +1354,44 @@ def indexing_one_hot( | |||
return result | |||
def sliding_window( | |||
inp: Tensor, | |||
kernel_size: Union[int, Tuple[int, int]], | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
stride: Union[int, Tuple[int, int]] = 1, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
) -> Tensor: | |||
""" | |||
Extracts sliding local blocks from a batched input tensor. | |||
Refer to :class:`~.SlidingWindow` for more information. | |||
:param inp: input tensor. | |||
:param kernel_size: size of the window. | |||
:param padding: implicit zero padding added on both sides of input. Default: 0 | |||
:param stride: stride of the window. Default: 1 | |||
:param dilation: dilation of the window. Default: 1 | |||
:return: output tensor. | |||
""" | |||
padding_h, padding_w = _pair(padding) | |||
stride_h, stride_w = _pair_nonzero(stride) | |||
dilation_h, dilation_w = _pair_nonzero(dilation) | |||
window_h, window_w = _pair_nonzero(kernel_size) | |||
op = builtin.Images2Neibs( | |||
pad_h=padding_h, | |||
pad_w=padding_w, | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
dilate_h=dilation_h, | |||
dilate_w=dilation_w, | |||
window_h=window_h, | |||
window_w=window_w, | |||
) | |||
(output,) = apply(op, inp) | |||
return output | |||
interpolate = deprecated_func("1.3", "megengine.functional.vision", "interpolate", True) | |||
roi_pooling = deprecated_func("1.3", "megengine.functional.vision", "roi_pooling", True) | |||
roi_align = deprecated_func("1.3", "megengine.functional.vision", "roi_align", True) | |||
@@ -34,3 +34,4 @@ from .normalization import GroupNorm, InstanceNorm, LayerNorm | |||
from .pooling import AvgPool2d, MaxPool2d | |||
from .quant_dequant import DequantStub, QuantStub | |||
from .sequential import Sequential | |||
from .sliding_window import SlidingWindow |
@@ -0,0 +1,88 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from typing import Tuple, Union | |||
from ..functional import sliding_window | |||
from .module import Module | |||
class SlidingWindow(Module): | |||
r""" | |||
Apply a sliding window to input tensor and copy content in the window to | |||
corresponding output location. Assume input shape is :math:`(N, C, IH, IW)`, | |||
then output shape would be :math:`(N, C, OH, OW, window_h, window_w)` where | |||
:math:`(OH, OW)` would be computed from padding, stride, window and | |||
:math:`(IH, IW)`, as in convolution. For each output location, we have; | |||
.. math:: | |||
out_{n, c, oh, ow, wh, ww} &= src_{n, c, ih+wh, iw+ww} \\ | |||
\text{where } & ih=-pad_h+oh \times stride_h + (wh-1) \times (dilation_h-1) \\ | |||
& iw=-pad_w+ow \times stride_w + (ww-1) \times (dilation_w-1) | |||
:param kernel_size: the size of the window to take a max over. | |||
:param padding: implicit zero padding to be added on both sides. Default: 0 | |||
:param stride: the stride of the window. Default: 1 | |||
:param dilation: the dilation of the window. Default: 1 | |||
Example: | |||
.. testcode:: | |||
from megengine import tensor | |||
import megengine.module as M | |||
import numpy as np | |||
inp = tensor(np.arange(30).reshape(1,1,5,6)) | |||
op = M.SlidingWindow(kernel_size=3, padding=1, stride=2, dilation=2) | |||
out = op(inp) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[[[ 0 0 0] | |||
[ 0 7 9] | |||
[ 0 19 21]] | |||
[[ 0 0 0] | |||
[ 7 9 11] | |||
[19 21 23]]] | |||
[[[ 0 7 9] | |||
[ 0 19 21] | |||
[ 0 0 0]] | |||
[[ 7 9 11] | |||
[19 21 23] | |||
[ 0 0 0]]]]]] | |||
""" | |||
def __init__( | |||
self, | |||
kernel_size: Union[int, Tuple[int, int]], | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
stride: Union[int, Tuple[int, int]] = 1, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
**kwargs | |||
): | |||
super(SlidingWindow, self).__init__(**kwargs) | |||
self.kernel_size = kernel_size | |||
self.padding = padding | |||
self.stride = stride | |||
self.dilation = dilation | |||
def forward(self, inp): | |||
return sliding_window( | |||
inp, self.kernel_size, self.padding, self.stride, self.dilation | |||
) |
@@ -927,3 +927,28 @@ def test_neg_axis(): | |||
y = F.argmin(x, axis=(-1, -2)) | |||
yy = F.argmin(x, axis=(0, 1)) | |||
np.testing.assert_equal(y.numpy(), yy.numpy()) | |||
def test_sliding_window(): | |||
N, C, H, W = 2, 3, 7, 8 | |||
inp = np.random.normal(size=(N, C, H, W)) | |||
ph, pw = 1, 2 | |||
sh, sw = 2, 1 | |||
wh, ww = 3, 2 | |||
dh, dw = 1, 3 | |||
s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1 | |||
inp_pad = np.zeros((N, C, H + ph * 2, W + pw * 2)) | |||
inp_pad[:, :, ph : H + ph, pw : W + pw] = inp | |||
gt_out = np.empty( | |||
(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww), dtype=np.float32 | |||
) | |||
for n, c, oh, ow in itertools.product(*map(range, gt_out.shape[:4])): | |||
ih, iw = oh * sh, ow * sw | |||
gt_out[n, c, oh, ow, :] = inp_pad[ | |||
n, c, ih : ih + (wh - 1) * dh + 1 : dh, iw : iw + (ww - 1) * dw + 1 : dw | |||
] | |||
out = F.sliding_window( | |||
tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw) | |||
) | |||
np.testing.assert_equal(gt_out, out.numpy()) |
@@ -32,6 +32,7 @@ | |||
#include "megbrain/opr/tensor_gen.h" | |||
#include "megbrain/opr/tensor_manip.h" | |||
#include "megbrain/opr/utility.h" | |||
#include "megbrain/opr/dnn/images2neibs.h" | |||
#include "../op_trait.h" | |||
@@ -652,4 +653,17 @@ OP_TRAIT_REG(SVD, SVD) | |||
.fallback(); | |||
}} // svd | |||
namespace { namespace images2neibs { | |||
auto apply_on_var_node( | |||
const OpDef& def, | |||
const VarNodeArray& inputs) { | |||
auto&& op = static_cast<const Images2Neibs&>(def); | |||
OperatorNodeConfig config{op.make_name()}; | |||
return opr::Images2Neibs::make(inputs[0], op.param(), config); | |||
} | |||
OP_TRAIT_REG(Images2Neibs, Images2Neibs) | |||
.apply_on_var_node(apply_on_var_node) | |||
.fallback(); | |||
}} // images2neibs | |||
} // namespace mgb::imperative |
@@ -79,6 +79,8 @@ def BatchConvBias : MgbHashableOp<"BatchConvBias", [BatchConvBiasParam, Executio | |||
); | |||
} | |||
def Images2Neibs : MgbHashableOp<"Images2Neibs", [Images2NeibsParam]>; | |||
def BatchNorm : MgbHashableOp<"BatchNorm", [BNParam]>; | |||
def ROIAlign: MgbHashableOp<"ROIAlign", [ROIAlignParam]>; | |||