@@ -13,7 +13,7 @@ from typing import Union | |||||
import numpy as np | import numpy as np | ||||
from .._imperative_rt.common import CompNode | from .._imperative_rt.common import CompNode | ||||
from .._imperative_rt.core2 import SymbolVar, Tensor, apply | |||||
from .._imperative_rt.core2 import SymbolVar, Tensor, apply, dtype_promotion | |||||
from ..ops import builtin | from ..ops import builtin | ||||
from . import amp | from . import amp | ||||
from .indexing import getitem, setitem | from .indexing import getitem, setitem | ||||
@@ -81,7 +81,11 @@ def _matmul(inp1, inp2): | |||||
inp1, inp2 = cast_tensors(inp1, inp2) | inp1, inp2 = cast_tensors(inp1, inp2) | ||||
else: | else: | ||||
compute_mode = "default" | compute_mode = "default" | ||||
inp1, inp2 = convert_inputs(inp1, inp2) | |||||
dtype = dtype_promotion(inp1, inp2) | |||||
if inp1.dtype != dtype: | |||||
inp1 = inp1.astype(dtype) | |||||
if inp2.dtype != dtype: | |||||
inp2 = inp2.astype(dtype) | |||||
op = builtin.MatrixMul( | op = builtin.MatrixMul( | ||||
transposeA=False, transposeB=False, compute_mode=compute_mode, format="default" | transposeA=False, transposeB=False, compute_mode=compute_mode, format="default" | ||||
) | ) | ||||
@@ -91,7 +95,6 @@ def _matmul(inp1, inp2): | |||||
def _transpose(data, axes): | def _transpose(data, axes): | ||||
op = builtin.Dimshuffle(axes) | op = builtin.Dimshuffle(axes) | ||||
(data,) = convert_inputs(data) | |||||
(result,) = apply(op, data) | (result,) = apply(op, data) | ||||
return result | return result | ||||
@@ -201,7 +204,6 @@ def _remove_axis(inp: Tensor, axis) -> Tensor: | |||||
def _reduce(mode): | def _reduce(mode): | ||||
def f(self, axis=None, keepdims: bool = False): | def f(self, axis=None, keepdims: bool = False): | ||||
data = self | data = self | ||||
(data,) = convert_inputs(data) | |||||
if mode == "mean": | if mode == "mean": | ||||
data = data.astype("float32") | data = data.astype("float32") | ||||
elif self.dtype == np.bool_: | elif self.dtype == np.bool_: | ||||
@@ -13,7 +13,7 @@ from ..core._imperative_rt.core2 import SymbolVar, apply | |||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.ops.builtin import Elemwise | from ..core.ops.builtin import Elemwise | ||||
from ..core.tensor.array_method import _elwise | from ..core.tensor.array_method import _elwise | ||||
from ..core.tensor.utils import astype, convert_inputs | |||||
from ..core.tensor.utils import convert_inputs | |||||
from ..tensor import Tensor | from ..tensor import Tensor | ||||
from ..utils.deprecation import deprecated_func | from ..utils.deprecation import deprecated_func | ||||
@@ -10,16 +10,16 @@ import collections | |||||
import math | import math | ||||
from typing import Optional, Sequence, Tuple, Union | from typing import Optional, Sequence, Tuple, Union | ||||
from ..core._imperative_rt.core2 import apply | |||||
from ..core._imperative_rt.core2 import apply, dtype_promotion | |||||
from ..core._trace_option import use_symbolic_shape | from ..core._trace_option import use_symbolic_shape | ||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.ops.special import Const | from ..core.ops.special import Const | ||||
from ..core.tensor import amp | from ..core.tensor import amp | ||||
from ..core.tensor.utils import _normalize_axis, cast_tensors, convert_inputs, setscalar | |||||
from ..core.tensor.utils import _normalize_axis, cast_tensors, setscalar | |||||
from ..tensor import Tensor | from ..tensor import Tensor | ||||
from .debug_param import get_execution_strategy | from .debug_param import get_execution_strategy | ||||
from .elemwise import clip, exp, log, log1p | |||||
from .tensor import broadcast_to, concat, expand_dims, reshape, squeeze | |||||
from .elemwise import clip | |||||
from .tensor import broadcast_to, concat, expand_dims, squeeze | |||||
__all__ = [ | __all__ = [ | ||||
"argmax", | "argmax", | ||||
@@ -816,10 +816,13 @@ def matmul( | |||||
compute_mode = "float32" | compute_mode = "float32" | ||||
inp1, inp2 = cast_tensors(inp1, inp2) | inp1, inp2 = cast_tensors(inp1, inp2) | ||||
else: | else: | ||||
inp1, inp2 = convert_inputs(inp1, inp2) | |||||
dtype = dtype_promotion(inp1, inp2) | |||||
if inp1.dtype != dtype: | |||||
inp1 = inp1.astype(dtype) | |||||
if inp2.dtype != dtype: | |||||
inp2 = inp2.astype(dtype) | |||||
remove_row, remove_col = False, False | remove_row, remove_col = False, False | ||||
dim1, dim2 = inp1.ndim, inp2.ndim | dim1, dim2 = inp1.ndim, inp2.ndim | ||||
# handle dim=1 cases, dot and matrix-vector multiplication | # handle dim=1 cases, dot and matrix-vector multiplication | ||||
if dim1 == 1 and dim2 == 1: | if dim1 == 1 and dim2 == 1: | ||||
@@ -931,7 +934,6 @@ def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||||
""" | """ | ||||
op = builtin.Dot() | op = builtin.Dot() | ||||
inp1, inp2 = convert_inputs(inp1, inp2) | |||||
assert ( | assert ( | ||||
inp1.ndim <= 1 and inp2.ndim <= 1 | inp1.ndim <= 1 and inp2.ndim <= 1 | ||||
), "Input tensors for dot must be 1-dimensional or scalar" | ), "Input tensors for dot must be 1-dimensional or scalar" | ||||
@@ -10,8 +10,6 @@ | |||||
from typing import Optional, Sequence, Tuple, Union | from typing import Optional, Sequence, Tuple, Union | ||||
from ..core._imperative_rt.core2 import apply | from ..core._imperative_rt.core2 import apply | ||||
from ..core._imperative_rt.graph import VarNode | |||||
from ..core._trace_option import use_symbolic_shape | |||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.ops.builtin import BatchNorm, Elemwise | from ..core.ops.builtin import BatchNorm, Elemwise | ||||
from ..core.ops.special import Const | from ..core.ops.special import Const | ||||
@@ -21,7 +19,6 @@ from ..core.tensor.utils import ( | |||||
astensor1d, | astensor1d, | ||||
astype, | astype, | ||||
cast_tensors, | cast_tensors, | ||||
convert_inputs, | |||||
convert_single_value, | convert_single_value, | ||||
setscalar, | setscalar, | ||||
) | ) | ||||
@@ -33,18 +30,9 @@ from ..utils.deprecation import deprecated_func | |||||
from ..utils.tuple_function import _pair, _pair_nonzero, _triple, _triple_nonzero | from ..utils.tuple_function import _pair, _pair_nonzero, _triple, _triple_nonzero | ||||
from .debug_param import get_execution_strategy | from .debug_param import get_execution_strategy | ||||
from .distributed import all_reduce_sum | from .distributed import all_reduce_sum | ||||
from .elemwise import _elwise, exp, floor, log, log1p, maximum, minimum | |||||
from .math import argsort, matmul, max, prod, sum | |||||
from .tensor import ( | |||||
broadcast_to, | |||||
concat, | |||||
expand_dims, | |||||
full, | |||||
ones, | |||||
reshape, | |||||
squeeze, | |||||
zeros, | |||||
) | |||||
from .elemwise import _elwise, exp, log, log1p, maximum, minimum | |||||
from .math import matmul, max, sum | |||||
from .tensor import broadcast_to, concat, expand_dims, ones, squeeze, zeros | |||||
__all__ = [ | __all__ = [ | ||||
"adaptive_avg_pool2d", | "adaptive_avg_pool2d", | ||||
@@ -167,8 +155,6 @@ def conv1d( | |||||
if amp._enabled: | if amp._enabled: | ||||
compute_mode = "float32" | compute_mode = "float32" | ||||
inp, weight, bias = cast_tensors(inp, weight, bias) | inp, weight, bias = cast_tensors(inp, weight, bias) | ||||
else: | |||||
inp, weight = convert_inputs(inp, weight) | |||||
inp = expand_dims(inp, 3) | inp = expand_dims(inp, 3) | ||||
weight = expand_dims(weight, 3) | weight = expand_dims(weight, 3) | ||||
@@ -246,8 +232,6 @@ def conv2d( | |||||
if amp._enabled: | if amp._enabled: | ||||
compute_mode = "float32" | compute_mode = "float32" | ||||
inp, weight, bias = cast_tensors(inp, weight, bias) | inp, weight, bias = cast_tensors(inp, weight, bias) | ||||
else: | |||||
inp, weight = convert_inputs(inp, weight) | |||||
stride_h, stride_w = expand_hw(stride) | stride_h, stride_w = expand_hw(stride) | ||||
pad_h, pad_w = expand_hw(padding) | pad_h, pad_w = expand_hw(padding) | ||||
@@ -304,7 +288,6 @@ def conv3d( | |||||
:return: output tensor. | :return: output tensor. | ||||
""" | """ | ||||
assert conv_mode.lower() == "cross_correlation" | assert conv_mode.lower() == "cross_correlation" | ||||
inp, weight = convert_inputs(inp, weight) | |||||
D, H, W = 0, 1, 2 | D, H, W = 0, 1, 2 | ||||
@@ -379,8 +362,6 @@ def conv_transpose2d( | |||||
if amp._enabled: | if amp._enabled: | ||||
compute_mode = "float32" | compute_mode = "float32" | ||||
inp, weight, bias = cast_tensors(inp, weight, bias) | inp, weight, bias = cast_tensors(inp, weight, bias) | ||||
else: | |||||
inp, weight = convert_inputs(inp, weight) | |||||
if groups != 1: | if groups != 1: | ||||
raise NotImplementedError("group transposed conv2d is not supported yet.") | raise NotImplementedError("group transposed conv2d is not supported yet.") | ||||
@@ -454,7 +435,8 @@ def deformable_conv2d( | |||||
compute_mode = "float32" | compute_mode = "float32" | ||||
inp, weight, offset, mask, bias = cast_tensors(inp, weight, offset, mask, bias) | inp, weight, offset, mask, bias = cast_tensors(inp, weight, offset, mask, bias) | ||||
else: | else: | ||||
inp, weight, offset, mask = convert_inputs(inp, weight, offset, mask) | |||||
offset = offset.astype("float32") | |||||
mask = mask.astype("float32") | |||||
stride_h, stride_w = expand_hw(stride) | stride_h, stride_w = expand_hw(stride) | ||||
pad_h, pad_w = expand_hw(padding) | pad_h, pad_w = expand_hw(padding) | ||||
@@ -493,7 +475,6 @@ def local_conv2d( | |||||
conv_mode.lower() == "cross_correlation" | conv_mode.lower() == "cross_correlation" | ||||
or conv_mode.name == "CROSS_CORRELATION" | or conv_mode.name == "CROSS_CORRELATION" | ||||
) | ) | ||||
inp, weight = convert_inputs(inp, weight) | |||||
stride_h, stride_w = expand_hw(stride) | stride_h, stride_w = expand_hw(stride) | ||||
pad_h, pad_w = expand_hw(padding) | pad_h, pad_w = expand_hw(padding) | ||||
@@ -539,8 +520,6 @@ def conv_transpose3d( | |||||
:param dilation: dilation of the 3D convolution operation. Default: 1 | :param dilation: dilation of the 3D convolution operation. Default: 1 | ||||
:return: output tensor. | :return: output tensor. | ||||
""" | """ | ||||
inp, weight = convert_inputs(inp, weight) | |||||
D, H, W = 0, 1, 2 | D, H, W = 0, 1, 2 | ||||
pad = _triple(padding) | pad = _triple(padding) | ||||
stride = _triple_nonzero(stride) | stride = _triple_nonzero(stride) | ||||
@@ -1078,10 +1057,6 @@ def batch_norm( | |||||
weight, bias, running_mean, running_var = cast_tensors( | weight, bias, running_mean, running_var = cast_tensors( | ||||
weight, bias, running_mean, running_var, promote=True | weight, bias, running_mean, running_var, promote=True | ||||
) | ) | ||||
elif compute_mode != "float32": | |||||
inp, weight, bias, running_mean, running_var = convert_inputs( | |||||
inp, weight, bias, running_mean, running_var | |||||
) | |||||
weight = make_full_if_none(weight, 1) | weight = make_full_if_none(weight, 1) | ||||
bias = make_full_if_none(bias, 0) | bias = make_full_if_none(bias, 0) | ||||
@@ -6,25 +6,18 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
import math | |||||
from typing import Iterable, Optional, Sequence, Union | from typing import Iterable, Optional, Sequence, Union | ||||
import numpy as np | import numpy as np | ||||
from ..core._imperative_rt import CompNode | from ..core._imperative_rt import CompNode | ||||
from ..core._imperative_rt.core2 import SymbolVar, apply | |||||
from ..core._imperative_rt.core2 import SymbolVar, apply, dtype_promotion | |||||
from ..core._wrap import as_device | from ..core._wrap import as_device | ||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.ops.builtin import Copy, Identity | from ..core.ops.builtin import Copy, Identity | ||||
from ..core.ops.special import Const | from ..core.ops.special import Const | ||||
from ..core.tensor.array_method import _broadcast, _remove_axis | from ..core.tensor.array_method import _broadcast, _remove_axis | ||||
from ..core.tensor.utils import ( | |||||
astensor1d, | |||||
convert_inputs, | |||||
convert_single_value, | |||||
dtype_promotion, | |||||
get_device, | |||||
) | |||||
from ..core.tensor.utils import astensor1d, convert_inputs, get_device | |||||
from ..device import get_default_device | from ..device import get_default_device | ||||
from ..tensor import Tensor | from ..tensor import Tensor | ||||
from .elemwise import ceil, floor_div | from .elemwise import ceil, floor_div | ||||
@@ -288,6 +281,7 @@ def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: | |||||
if len(inps) == 1: | if len(inps) == 1: | ||||
return inps[0] | return inps[0] | ||||
# FIXME: remove this convert_inputs | |||||
inps = convert_inputs(*inps, device=device) | inps = convert_inputs(*inps, device=device) | ||||
if device is None: | if device is None: | ||||
device = get_device(inps) | device = get_device(inps) | ||||
@@ -640,6 +634,7 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||||
.. testcode:: | .. testcode:: | ||||
import numpy as np | |||||
from megengine import tensor | from megengine import tensor | ||||
import megengine.functional as F | import megengine.functional as F | ||||
mask = tensor(np.array([[True, False], [False, True]], dtype=np.bool)) | mask = tensor(np.array([[True, False], [False, True]], dtype=np.bool)) | ||||
@@ -657,7 +652,6 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||||
[7. 4.]] | [7. 4.]] | ||||
""" | """ | ||||
x, y = convert_inputs(x, y) | |||||
if not isinstance(x, Tensor): | if not isinstance(x, Tensor): | ||||
raise TypeError("input x must be a tensor") | raise TypeError("input x must be a tensor") | ||||
if not isinstance(y, Tensor): | if not isinstance(y, Tensor): | ||||
@@ -669,6 +663,12 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||||
if x.device != mask.device: | if x.device != mask.device: | ||||
raise ValueError("ambiguous device: {} vs {}".format(x.device, mask.device)) | raise ValueError("ambiguous device: {} vs {}".format(x.device, mask.device)) | ||||
dtype = dtype_promotion(x, y) | |||||
if x.dtype != dtype: | |||||
x = x.astype(dtype) | |||||
if y.dtype != dtype: | |||||
y = y.astype(dtype) | |||||
v0, index0 = cond_take(mask, x) | v0, index0 = cond_take(mask, x) | ||||
v1, index1 = cond_take(~mask, y) | v1, index1 = cond_take(~mask, y) | ||||
@@ -1021,12 +1021,10 @@ def arange( | |||||
if stop is None: | if stop is None: | ||||
start, stop = 0, start | start, stop = 0, start | ||||
if isinstance(start, Tensor): | |||||
start = start.astype("float32") | |||||
if isinstance(stop, Tensor): | |||||
stop = stop.astype("float32") | |||||
if isinstance(step, Tensor): | |||||
step = step.astype("float32") | |||||
start = Tensor(start, dtype="float32") | |||||
stop = Tensor(stop, dtype="float32") | |||||
step = Tensor(step, dtype="float32") | |||||
num = ceil((stop - start) / step) | num = ceil((stop - start) / step) | ||||
stop = start + step * (num - 1) | stop = start + step * (num - 1) | ||||
result = linspace(start, stop, num, device=device) | result = linspace(start, stop, num, device=device) | ||||
@@ -8,6 +8,8 @@ | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from typing import Iterable, Optional, Tuple, Union | from typing import Iterable, Optional, Tuple, Union | ||||
import numpy as np | |||||
from ..core._imperative_rt.core2 import apply | from ..core._imperative_rt.core2 import apply | ||||
from ..core.ops import builtin | from ..core.ops import builtin | ||||
from ..core.tensor import megbrain_graph, utils | from ..core.tensor import megbrain_graph, utils | ||||
@@ -98,7 +100,6 @@ def roi_pooling( | |||||
output_shape = (output_shape, output_shape) | output_shape = (output_shape, output_shape) | ||||
op = builtin.ROIPooling(mode=mode, scale=scale) | op = builtin.ROIPooling(mode=mode, scale=scale) | ||||
inp, rois = utils.convert_inputs(inp, rois) | |||||
result, _ = apply( | result, _ = apply( | ||||
op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device) | op, inp, rois, Tensor(output_shape, dtype="int32", device=inp.device) | ||||
) | ) | ||||
@@ -187,6 +188,8 @@ def roi_align( | |||||
[0.1359 0.1359]]] | [0.1359 0.1359]]] | ||||
""" | """ | ||||
if inp.dtype != np.float32: | |||||
inp = inp.astype(np.float32) | |||||
mode = mode.lower() | mode = mode.lower() | ||||
assert mode in ["max", "average"], "only max/average mode is supported" | assert mode in ["max", "average"], "only max/average mode is supported" | ||||
if isinstance(output_shape, int): | if isinstance(output_shape, int): | ||||
@@ -207,7 +210,6 @@ def roi_align( | |||||
sample_height=sample_height, | sample_height=sample_height, | ||||
sample_width=sample_width, | sample_width=sample_width, | ||||
) | ) | ||||
inp, rois = utils.convert_inputs(inp, rois) | |||||
result, *_ = apply(op, inp, rois) | result, *_ = apply(op, inp, rois) | ||||
return result | return result | ||||
@@ -270,7 +272,7 @@ def nms( | |||||
max_output = boxes.shape[0] | max_output = boxes.shape[0] | ||||
op = builtin.NMSKeep(iou_thresh, max_output) | op = builtin.NMSKeep(iou_thresh, max_output) | ||||
inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||||
inp = (boxes.reshape(1, -1, 4),) | |||||
indices, count = apply(op, *inp) | indices, count = apply(op, *inp) | ||||
indices = indices[0][: count[0]] | indices = indices[0][: count[0]] | ||||
keep_inds = sorted_idx[indices] | keep_inds = sorted_idx[indices] | ||||
@@ -442,10 +444,13 @@ def warp_perspective( | |||||
[ 9. 10.]]]] | [ 9. 10.]]]] | ||||
""" | """ | ||||
if inp.dtype == np.float32: | |||||
mat = mat.astype("float32") | |||||
if inp.dtype == np.float16: | |||||
inp = inp.astype("float32") | |||||
op = builtin.WarpPerspective( | op = builtin.WarpPerspective( | ||||
imode=interp_mode, bmode=border_mode, format=format, border_val=border_val | imode=interp_mode, bmode=border_mode, format=format, border_val=border_val | ||||
) | ) | ||||
inp, mat = utils.convert_inputs(inp, mat) | |||||
out_shape = astensor1d(out_shape, inp, dtype="int32", device=inp.device) | out_shape = astensor1d(out_shape, inp, dtype="int32", device=inp.device) | ||||
if mat_idx is not None: | if mat_idx is not None: | ||||
mat_idx = astensor1d(mat_idx, inp, dtype="int32", device=inp.device) | mat_idx = astensor1d(mat_idx, inp, dtype="int32", device=inp.device) | ||||
@@ -14,8 +14,7 @@ import megengine.autodiff as ad | |||||
import megengine.distributed as dist | import megengine.distributed as dist | ||||
import megengine.functional as F | import megengine.functional as F | ||||
import megengine.optimizer as optimizer | import megengine.optimizer as optimizer | ||||
from megengine import Parameter, tensor | |||||
from megengine.distributed.helper import get_device_count_by_fork | |||||
from megengine import tensor | |||||
from megengine.jit import trace | from megengine.jit import trace | ||||
from megengine.module import BatchNorm2d, Conv2d, Module, Sequential, SyncBatchNorm | from megengine.module import BatchNorm2d, Conv2d, Module, Sequential, SyncBatchNorm | ||||
@@ -88,7 +87,7 @@ def test_bn_no_track_stat(): | |||||
optim = optimizer.SGD(m.parameters(), lr=1.0) | optim = optimizer.SGD(m.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
data = np.random.random((6, nchannel, 2, 2)).astype("float32") | |||||
data = tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||||
with gm: | with gm: | ||||
loss = m(data).sum() | loss = m(data).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -110,7 +109,7 @@ def test_bn_no_track_stat2(): | |||||
optim = optimizer.SGD(m.parameters(), lr=1.0) | optim = optimizer.SGD(m.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
data = np.random.random((6, nchannel, 2, 2)).astype("float32") | |||||
data = tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||||
with gm: | with gm: | ||||
loss = m(data).sum() | loss = m(data).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -146,7 +145,7 @@ def test_trace_bn_forward_twice(): | |||||
pred = net(inp) | pred = net(inp) | ||||
return pred | return pred | ||||
x = np.ones((1, 1, 32, 32), dtype=np.float32) | |||||
x = tensor(np.ones((1, 1, 32, 32), dtype=np.float32)) | |||||
y = train_bn(x, net=Simple()) | y = train_bn(x, net=Simple()) | ||||
np.testing.assert_equal(y.numpy(), 0) | np.testing.assert_equal(y.numpy(), 0) | ||||
@@ -194,5 +193,5 @@ def test_trace_several_syncbn(trace_mode): | |||||
def test_frozen_bn_no_affine(): | def test_frozen_bn_no_affine(): | ||||
nchannel = 3 | nchannel = 3 | ||||
m = BatchNorm2d(nchannel, freeze=True, affine=False) | m = BatchNorm2d(nchannel, freeze=True, affine=False) | ||||
data = megengine.Tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||||
data = tensor(np.random.random((6, nchannel, 2, 2)).astype("float32")) | |||||
m(data).numpy() | m(data).numpy() |
@@ -9,7 +9,6 @@ | |||||
import itertools | import itertools | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
import megengine as mge | import megengine as mge | ||||
import megengine.autodiff as ad | import megengine.autodiff as ad | ||||
@@ -105,10 +104,10 @@ def test_training_converge(): | |||||
xx, yy = np.meshgrid(x, x) | xx, yy = np.meshgrid(x, x) | ||||
xx = xx.reshape((ngrid * ngrid, 1)) | xx = xx.reshape((ngrid * ngrid, 1)) | ||||
yy = yy.reshape((ngrid * ngrid, 1)) | yy = yy.reshape((ngrid * ngrid, 1)) | ||||
data = np.concatenate((xx, yy), axis=1).astype(np.float32) | |||||
data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) | |||||
pred = infer(data).numpy() | pred = infer(data).numpy() | ||||
precision = calculate_precision(data, pred) | |||||
precision = calculate_precision(data.numpy(), pred) | |||||
assert precision == 1.0, "Test precision must be high enough, get {}".format( | assert precision == 1.0, "Test precision must be high enough, get {}".format( | ||||
precision | precision | ||||
) | ) |
@@ -9,7 +9,6 @@ | |||||
import itertools | import itertools | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
import megengine as mge | import megengine as mge | ||||
import megengine.autodiff as ad | import megengine.autodiff as ad | ||||
@@ -110,10 +109,10 @@ def test_training_converge(): | |||||
xx, yy = np.meshgrid(x, x) | xx, yy = np.meshgrid(x, x) | ||||
xx = xx.reshape((ngrid * ngrid, 1)) | xx = xx.reshape((ngrid * ngrid, 1)) | ||||
yy = yy.reshape((ngrid * ngrid, 1)) | yy = yy.reshape((ngrid * ngrid, 1)) | ||||
data = np.concatenate((xx, yy), axis=1).astype(np.float32) | |||||
data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) | |||||
pred = infer(data).numpy() | pred = infer(data).numpy() | ||||
precision = calculate_precision(data, pred) | |||||
precision = calculate_precision(data.numpy(), pred) | |||||
print("precision=", precision) | print("precision=", precision) | ||||
assert precision == 1.0, "Test precision must be high enough, get {}".format( | assert precision == 1.0, "Test precision must be high enough, get {}".format( | ||||
precision | precision | ||||
@@ -9,7 +9,6 @@ | |||||
import itertools | import itertools | ||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
import megengine as mge | import megengine as mge | ||||
import megengine.autodiff as ad | import megengine.autodiff as ad | ||||
@@ -118,10 +117,10 @@ def test_training_converge_with_swap_and_drop(): | |||||
xx, yy = np.meshgrid(x, x) | xx, yy = np.meshgrid(x, x) | ||||
xx = xx.reshape((ngrid * ngrid, 1)) | xx = xx.reshape((ngrid * ngrid, 1)) | ||||
yy = yy.reshape((ngrid * ngrid, 1)) | yy = yy.reshape((ngrid * ngrid, 1)) | ||||
data = np.concatenate((xx, yy), axis=1).astype(np.float32) | |||||
data = mge.tensor(np.concatenate((xx, yy), axis=1).astype(np.float32)) | |||||
pred = infer(Tensor(data)).numpy() | pred = infer(Tensor(data)).numpy() | ||||
precision = calculate_precision(data, pred) | |||||
precision = calculate_precision(data.numpy(), pred) | |||||
assert precision == 1.0, "Test precision must be high enough, get {}".format( | assert precision == 1.0, "Test precision must be high enough, get {}".format( | ||||
precision | precision | ||||
) | ) | ||||
@@ -36,7 +36,7 @@ def test_level1_infer_value(): | |||||
def test_level1_infer_shape_with_unknown(): | def test_level1_infer_shape_with_unknown(): | ||||
config_async_level(2) | config_async_level(2) | ||||
a = mge.tensor([[1, 2, 2, 3]], dtype="float32") | a = mge.tensor([[1, 2, 2, 3]], dtype="float32") | ||||
b = mge.tensor([1, 1]) | |||||
b = mge.tensor([1, 1], dtype="float32") | |||||
multi2 = mge.tensor(np.array([[2, 0], [0, 2]]), dtype="float32") | multi2 = mge.tensor(np.array([[2, 0], [0, 2]]), dtype="float32") | ||||
c = F.matmul(b, multi2) | c = F.matmul(b, multi2) | ||||
# make DepType::SHAPE unknown | # make DepType::SHAPE unknown | ||||
@@ -13,7 +13,7 @@ import megengine.functional as F | |||||
import megengine.functional.elemwise as elemwise | import megengine.functional.elemwise as elemwise | ||||
from megengine import tensor | from megengine import tensor | ||||
from megengine.core.tensor import dtype | from megengine.core.tensor import dtype | ||||
from megengine.functional.elemwise import Elemwise, _elwise | |||||
from megengine.functional.elemwise import Elemwise | |||||
from megengine.jit import trace | from megengine.jit import trace | ||||
@@ -57,6 +57,17 @@ def test_multiply(): | |||||
) | ) | ||||
def test_div(): | |||||
np.testing.assert_allclose( | |||||
F.div(tensor([3, 4]), 2).numpy(), | |||||
np.divide(np.array([3, 4], dtype=np.float32), 2), | |||||
) | |||||
np.testing.assert_allclose( | |||||
(tensor([3, 4]) / 2).numpy(), np.divide(np.array([3, 4], dtype=np.float32), 2), | |||||
) | |||||
def test_clamp(): | def test_clamp(): | ||||
"""Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and | """Fix an issue when `lower` or `upper` is 0, it will be recognized as `False` and | ||||
`F.clip` will fall into wrong conditions unexpectedly. | `F.clip` will fall into wrong conditions unexpectedly. | ||||
@@ -456,9 +456,10 @@ def test_interpolate_fastpath(): | |||||
np.testing.assert_equal(out.item(), np_x.mean()) | np.testing.assert_equal(out.item(), np_x.mean()) | ||||
def test_warp_perspective(): | |||||
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) | |||||
def test_warp_perspective(dt): | |||||
inp_shape = (1, 1, 4, 4) | inp_shape = (1, 1, 4, 4) | ||||
x = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||||
x = tensor(np.arange(16, dtype=dt).reshape(inp_shape)) | |||||
M_shape = (1, 3, 3) | M_shape = (1, 3, 3) | ||||
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | ||||
M = tensor( | M = tensor( | ||||
@@ -467,14 +468,13 @@ def test_warp_perspective(): | |||||
).reshape(M_shape) | ).reshape(M_shape) | ||||
) | ) | ||||
outp = F.vision.warp_perspective(x, M, (2, 2)) | outp = F.vision.warp_perspective(x, M, (2, 2)) | ||||
np.testing.assert_equal( | |||||
outp.numpy(), np.array([[[[5.0, 6.0], [9.0, 10.0]]]], dtype=np.float32) | |||||
) | |||||
np.testing.assert_equal(outp.numpy(), np.array([[[[5, 6], [9, 10]]]], dtype=dt)) | |||||
def test_warp_perspective_mat_idx(): | |||||
@pytest.mark.parametrize("dt", [np.float32, np.int8, np.uint8, np.float16]) | |||||
def test_warp_perspective_mat_idx(dt): | |||||
inp_shape = (2, 1, 4, 4) | inp_shape = (2, 1, 4, 4) | ||||
x = tensor(np.arange(32, dtype=np.float32).reshape(inp_shape)) | |||||
x = tensor(np.arange(32, dtype=dt).reshape(inp_shape)) | |||||
M_shape = (1, 3, 3) | M_shape = (1, 3, 3) | ||||
# M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | # M defines a translation: dst(1, 1, h, w) = rst(1, 1, h+1, w+1) | ||||
M = tensor( | M = tensor( | ||||
@@ -488,12 +488,12 @@ def test_warp_perspective_mat_idx(): | |||||
outp.numpy(), | outp.numpy(), | ||||
np.array( | np.array( | ||||
[ | [ | ||||
[[[5.0, 6.0], [9.0, 10.0]]], | |||||
[[[21.0, 22.0], [25.0, 26.0]]], | |||||
[[[21.0, 22.0], [25.0, 26.0]]], | |||||
[[[5.0, 6.0], [9.0, 10.0]]], | |||||
[[[5, 6], [9, 10]]], | |||||
[[[21, 22], [25, 26]]], | |||||
[[[21, 22], [25, 26]]], | |||||
[[[5, 6], [9, 10]]], | |||||
], | ], | ||||
dtype=np.float32, | |||||
dtype=dt, | |||||
), | ), | ||||
) | ) | ||||
@@ -5,11 +5,8 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
import platform | |||||
import weakref | |||||
import numpy as np | import numpy as np | ||||
import pytest | |||||
import megengine as mge | import megengine as mge | ||||
import megengine.autodiff as ad | import megengine.autodiff as ad | ||||
@@ -65,7 +62,7 @@ def test_clip_grad_value(): | |||||
gm = ad.GradManager().attach(net.parameters()) | gm = ad.GradManager().attach(net.parameters()) | ||||
opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) | opt = optim.SGD(net.parameters(), 1e-3, momentum=0.9) | ||||
with gm: | with gm: | ||||
y = net(x) | |||||
y = net(mge.tensor(x)) | |||||
y = y.mean() | y = y.mean() | ||||
gm.backward(y) | gm.backward(y) | ||||
save_grad_value(net) | save_grad_value(net) | ||||