GitOrigin-RevId: feb09ebb58
tags/v1.9.0
@@ -10,24 +10,25 @@ import shutil | |||||
from library import * | from library import * | ||||
from gemm_operation import * | from gemm_operation import * | ||||
from conv2d_operation import * | |||||
from conv2d_operation import * | |||||
################################################################################################### | ################################################################################################### | ||||
class EmitOperationKindLibrary: | class EmitOperationKindLibrary: | ||||
def __init__(self, generated_path, kind, args): | |||||
self.generated_path = generated_path | |||||
self.kind = kind | |||||
self.args = args | |||||
def __init__(self, generated_path, kind, args): | |||||
self.generated_path = generated_path | |||||
self.kind = kind | |||||
self.args = args | |||||
self.emitters = { | |||||
OperationKind.Gemm: EmitGemmConfigurationLibrary | |||||
, OperationKind.Conv2d: EmitConv2dConfigurationLibrary | |||||
} | |||||
self.emitters = { | |||||
OperationKind.Gemm: EmitGemmConfigurationLibrary, | |||||
OperationKind.Conv2d: EmitConv2dConfigurationLibrary, | |||||
} | |||||
self.configurations = []; | |||||
self.configurations = [] | |||||
self.header_template =""" | |||||
self.header_template = """ | |||||
/* | /* | ||||
Generated by manifest.py - Do not edit. | Generated by manifest.py - Do not edit. | ||||
*/ | */ | ||||
@@ -42,17 +43,19 @@ namespace library { | |||||
/////////////////////////////////////////////////////////////////////////////////////////////////// | /////////////////////////////////////////////////////////////////////////////////////////////////// | ||||
""" | """ | ||||
self.entry_template = """ | |||||
self.entry_template = """ | |||||
// | // | ||||
// Entry point to construct operations | // Entry point to construct operations | ||||
// | // | ||||
void initialize_all_${operation_name}_operations(Manifest &manifest) { | void initialize_all_${operation_name}_operations(Manifest &manifest) { | ||||
""" | """ | ||||
self.configuration_prototype_template = "void initialize_${configuration_name}(Manifest &manifest);\n" | |||||
self.configuration_template =" initialize_${configuration_name}(manifest);\n" | |||||
self.configuration_prototype_template = ( | |||||
"void initialize_${configuration_name}(Manifest &manifest);\n" | |||||
) | |||||
self.configuration_template = " initialize_${configuration_name}(manifest);\n" | |||||
self.epilogue_template =""" | |||||
self.epilogue_template = """ | |||||
} | } | ||||
@@ -63,91 +66,118 @@ void initialize_all_${operation_name}_operations(Manifest &manifest) { | |||||
""" | """ | ||||
# | |||||
def __enter__(self): | |||||
self.operation_path = os.path.join(self.generated_path, OperationKindNames[self.kind]) | |||||
os.mkdir(self.operation_path) | |||||
# | |||||
def __enter__(self): | |||||
self.operation_path = os.path.join( | |||||
self.generated_path, OperationKindNames[self.kind] | |||||
) | |||||
os.mkdir(self.operation_path) | |||||
self.top_level_path = os.path.join( | |||||
self.operation_path, "all_%s_operations.cu" % OperationKindNames[self.kind] | |||||
) | |||||
self.top_level_file = open(self.top_level_path, "w") | |||||
self.top_level_file.write(self.header_template) | |||||
self.top_level_path = os.path.join(self.operation_path, "all_%s_operations.cu" % OperationKindNames[self.kind]) | |||||
self.source_files = [self.top_level_path] | |||||
self.top_level_file = open(self.top_level_path, "w") | |||||
self.top_level_file.write(self.header_template) | |||||
return self | |||||
self.source_files = [self.top_level_path,] | |||||
# | |||||
def emit(self, configuration_name, operations): | |||||
return self | |||||
with self.emitters[self.kind]( | |||||
self.operation_path, configuration_name | |||||
) as configuration_emitter: | |||||
for operation in operations: | |||||
configuration_emitter.emit(operation) | |||||
# | |||||
def emit(self, configuration_name, operations): | |||||
self.source_files.append(configuration_emitter.configuration_path) | |||||
with self.emitters[self.kind](self.operation_path, configuration_name) as configuration_emitter: | |||||
for operation in operations: | |||||
configuration_emitter.emit(operation) | |||||
self.source_files.append(configuration_emitter.configuration_path) | |||||
self.configurations.append(configuration_name) | |||||
self.top_level_file.write( | |||||
SubstituteTemplate( | |||||
self.configuration_prototype_template, | |||||
{"configuration_name": configuration_name}, | |||||
) | |||||
) | |||||
self.configurations.append(configuration_name) | |||||
self.top_level_file.write(SubstituteTemplate(self.configuration_prototype_template, {'configuration_name': configuration_name} )) | |||||
# | |||||
def __exit__(self, exception_type, exception_value, traceback): | |||||
self.top_level_file.write( | |||||
SubstituteTemplate( | |||||
self.entry_template, {"operation_name": OperationKindNames[self.kind]} | |||||
) | |||||
) | |||||
# | |||||
def __exit__(self, exception_type, exception_value, traceback): | |||||
self.top_level_file.write(SubstituteTemplate(self.entry_template, {'operation_name': OperationKindNames[self.kind]})) | |||||
for configuration_name in self.configurations: | |||||
self.top_level_file.write( | |||||
SubstituteTemplate( | |||||
self.configuration_template, | |||||
{"configuration_name": configuration_name}, | |||||
) | |||||
) | |||||
for configuration_name in self.configurations: | |||||
self.top_level_file.write(SubstituteTemplate(self.configuration_template, {'configuration_name': configuration_name})) | |||||
self.top_level_file.write(self.epilogue_template) | |||||
self.top_level_file.close() | |||||
self.top_level_file.write(self.epilogue_template) | |||||
self.top_level_file.close() | |||||
################################################################################################### | ################################################################################################### | ||||
################################################################################################### | ################################################################################################### | ||||
class Options: | class Options: | ||||
def __init__(self): | |||||
pass | |||||
def __init__(self): | |||||
pass | |||||
################################################################################################### | ################################################################################################### | ||||
# | # | ||||
class Manifest: | class Manifest: | ||||
# | |||||
def __init__(self, args): | |||||
self.operations = {} | |||||
self.args = args | |||||
# | |||||
def __init__(self, args): | |||||
self.operations = {} | |||||
self.args = args | |||||
architectures = ( | |||||
args.architectures.split(";") if len(args.architectures) else ["50"] | |||||
) | |||||
self.compute_capabilities = [int(x) for x in architectures] | |||||
architectures = args.architectures.split(';') if len(args.architectures) else ['50',] | |||||
self.compute_capabilities = [int(x) for x in architectures] | |||||
self.selected_kernels = [] | |||||
if args.operations == 'all': | |||||
self.operations_enabled = [] | |||||
else: | |||||
self.selected_kernels = [] | |||||
operations_list = [ | |||||
OperationKind.Gemm | |||||
, OperationKind.Conv2d | |||||
] | |||||
if args.operations == "all": | |||||
self.operations_enabled = [] | |||||
else: | |||||
self.operations_enabled = [x for x in operations_list if OperationKindNames[x] in args.operations.split(',')] | |||||
operations_list = [OperationKind.Gemm, OperationKind.Conv2d] | |||||
if args.kernels == 'all': | |||||
self.kernel_names = [] | |||||
else: | |||||
self.kernel_names = [x for x in args.kernels.split(',') if x != ''] | |||||
self.operations_enabled = [ | |||||
x | |||||
for x in operations_list | |||||
if OperationKindNames[x] in args.operations.split(",") | |||||
] | |||||
self.ignore_kernel_names = [x for x in args.ignore_kernels.split(',') if x != ''] | |||||
if args.kernels == "all": | |||||
self.kernel_names = [] | |||||
else: | |||||
self.kernel_names = [x for x in args.kernels.split(",") if x != ""] | |||||
if args.kernel_filter_file is None: | |||||
self.kernel_filter_list = [] | |||||
else: | |||||
self.kernel_filter_list = self.get_kernel_filters(args.kernel_filter_file) | |||||
self.ignore_kernel_names = [ | |||||
x for x in args.ignore_kernels.split(",") if x != "" | |||||
] | |||||
if args.kernel_filter_file is None: | |||||
self.kernel_filter_list = [] | |||||
else: | |||||
self.kernel_filter_list = self.get_kernel_filters(args.kernel_filter_file) | |||||
self.operation_count = 0 | |||||
self.operations_by_name = {} | |||||
self.top_level_prologue = ''' | |||||
self.operation_count = 0 | |||||
self.operations_by_name = {} | |||||
self.top_level_prologue = """ | |||||
#include "cutlass/library/library.h" | #include "cutlass/library/library.h" | ||||
#include "cutlass/library/manifest.h" | #include "cutlass/library/manifest.h" | ||||
@@ -159,208 +189,241 @@ ${prototypes} | |||||
void initialize_all(Manifest &manifest) { | void initialize_all(Manifest &manifest) { | ||||
''' | |||||
self.top_level_reserve = ' manifest.reserve(${operation_count});\n\n' | |||||
self.top_level_epilogue = ''' | |||||
""" | |||||
self.top_level_reserve = " manifest.reserve(${operation_count});\n\n" | |||||
self.top_level_epilogue = """ | |||||
} | } | ||||
} // namespace library | } // namespace library | ||||
} // namespace cutlass | } // namespace cutlass | ||||
''' | |||||
def get_kernel_filters (self, kernelListFile): | |||||
if os.path.isfile(kernelListFile): | |||||
with open(kernelListFile, 'r') as fileReader: | |||||
lines = [line.rstrip() for line in fileReader if not line.startswith("#")] | |||||
lines = [re.compile(line) for line in lines if line] | |||||
return lines | |||||
else: | |||||
return [] | |||||
""" | |||||
def get_kernel_filters(self, kernelListFile): | |||||
if os.path.isfile(kernelListFile): | |||||
with open(kernelListFile, "r") as fileReader: | |||||
lines = [ | |||||
line.rstrip() for line in fileReader if not line.startswith("#") | |||||
] | |||||
lines = [re.compile(line) for line in lines if line] | |||||
return lines | |||||
else: | |||||
return [] | |||||
def filter_out_kernels(self, kernel_name, kernel_filter_list): | |||||
def filter_out_kernels(self, kernel_name, kernel_filter_list): | |||||
for kernel_filter_re in kernel_filter_list: | |||||
if kernel_filter_re.search(kernel_name) is not None: | |||||
return True | |||||
return False | |||||
for kernel_filter_re in kernel_filter_list: | |||||
if kernel_filter_re.search(kernel_name) is not None: | |||||
return True | |||||
# | |||||
def _filter_string_matches(self, filter_string, haystack): | |||||
''' Returns true if all substrings appear in the haystack in order''' | |||||
substrings = filter_string.split('*') | |||||
for sub in substrings: | |||||
idx = haystack.find(sub) | |||||
if idx < 0: | |||||
return False | return False | ||||
haystack = haystack[idx + len(sub):] | |||||
return True | |||||
# | |||||
def filter(self, operation): | |||||
''' Filtering operations based on various criteria''' | |||||
# filter based on compute capability | |||||
enabled = False | |||||
for cc in self.compute_capabilities: | |||||
if cc >= operation.tile_description.minimum_compute_capability and \ | |||||
cc <= operation.tile_description.maximum_compute_capability: | |||||
enabled = True | |||||
break | |||||
if not enabled: | |||||
return False | |||||
if len(self.operations_enabled) and not operation.operation_kind in self.operations_enabled: | |||||
return False | |||||
# eliminate duplicates | |||||
if operation.procedural_name() in self.operations_by_name.keys(): | |||||
return False | |||||
# Filter based on list of valid substrings | |||||
if len(self.kernel_names): | |||||
name = operation.procedural_name() | |||||
enabled = False | |||||
# compare against the include list | |||||
for name_substr in self.kernel_names: | |||||
if self._filter_string_matches(name_substr, name): | |||||
enabled = True | |||||
break | |||||
# compare against the exclude list | |||||
for name_substr in self.ignore_kernel_names: | |||||
if self._filter_string_matches(name_substr, name): | |||||
enabled = False | |||||
break | |||||
if len(self.kernel_filter_list) > 0: | |||||
# | |||||
def _filter_string_matches(self, filter_string, haystack): | |||||
""" Returns true if all substrings appear in the haystack in order""" | |||||
substrings = filter_string.split("*") | |||||
for sub in substrings: | |||||
idx = haystack.find(sub) | |||||
if idx < 0: | |||||
return False | |||||
haystack = haystack[idx + len(sub) :] | |||||
return True | |||||
# | |||||
def filter(self, operation): | |||||
""" Filtering operations based on various criteria""" | |||||
# filter based on compute capability | |||||
enabled = False | enabled = False | ||||
if self.filter_out_kernels(operation.procedural_name(), self.kernel_filter_list): | |||||
enabled = True | |||||
for cc in self.compute_capabilities: | |||||
if ( | |||||
cc >= operation.tile_description.minimum_compute_capability | |||||
and cc <= operation.tile_description.maximum_compute_capability | |||||
): | |||||
enabled = True | |||||
break | |||||
if not enabled: | |||||
return False | |||||
if ( | |||||
len(self.operations_enabled) | |||||
and not operation.operation_kind in self.operations_enabled | |||||
): | |||||
return False | |||||
# eliminate duplicates | |||||
if operation.procedural_name() in self.operations_by_name.keys(): | |||||
return False | |||||
# Filter based on list of valid substrings | |||||
if len(self.kernel_names): | |||||
name = operation.procedural_name() | |||||
enabled = False | |||||
# compare against the include list | |||||
for name_substr in self.kernel_names: | |||||
if self._filter_string_matches(name_substr, name): | |||||
enabled = True | |||||
break | |||||
# compare against the exclude list | |||||
for name_substr in self.ignore_kernel_names: | |||||
if self._filter_string_matches(name_substr, name): | |||||
enabled = False | |||||
break | |||||
if len(self.kernel_filter_list) > 0: | |||||
enabled = False | |||||
if self.filter_out_kernels( | |||||
operation.procedural_name(), self.kernel_filter_list | |||||
): | |||||
enabled = True | |||||
# todo: filter based on compute data type | |||||
return enabled | |||||
# | |||||
# | |||||
def append(self, operation): | |||||
""" | |||||
Inserts the operation. | |||||
operation_kind -> configuration_name -> [] | |||||
""" | |||||
# todo: filter based on compute data type | |||||
return enabled | |||||
# | |||||
if self.filter(operation): | |||||
# | |||||
def append(self, operation): | |||||
''' | |||||
Inserts the operation. | |||||
self.selected_kernels.append(operation.procedural_name()) | |||||
operation_kind -> configuration_name -> [] | |||||
''' | |||||
self.operations_by_name[operation.procedural_name()] = operation | |||||
if self.filter(operation): | |||||
self.selected_kernels.append(operation.procedural_name()) | |||||
# add the configuration | |||||
configuration_name = operation.configuration_name() | |||||
self.operations_by_name[operation.procedural_name()] = operation | |||||
if operation.operation_kind not in self.operations.keys(): | |||||
self.operations[operation.operation_kind] = {} | |||||
# add the configuration | |||||
configuration_name = operation.configuration_name() | |||||
if ( | |||||
configuration_name | |||||
not in self.operations[operation.operation_kind].keys() | |||||
): | |||||
self.operations[operation.operation_kind][configuration_name] = [] | |||||
if operation.operation_kind not in self.operations.keys(): | |||||
self.operations[operation.operation_kind] = {} | |||||
self.operations[operation.operation_kind][configuration_name].append( | |||||
operation | |||||
) | |||||
self.operation_count += 1 | |||||
if configuration_name not in self.operations[operation.operation_kind].keys(): | |||||
self.operations[operation.operation_kind][configuration_name] = [] | |||||
# | |||||
self.operations[operation.operation_kind][configuration_name].append(operation) | |||||
self.operation_count += 1 | |||||
# | |||||
# | |||||
def emit(self, target=GeneratorTarget.Library): | |||||
# | |||||
def emit(self, target = GeneratorTarget.Library): | |||||
operation_emitters = {GeneratorTarget.Library: EmitOperationKindLibrary} | |||||
operation_emitters = { | |||||
GeneratorTarget.Library: EmitOperationKindLibrary | |||||
} | |||||
generated_path = os.path.join(self.args.curr_build_dir, "generated") | |||||
generated_path = os.path.join(self.args.curr_build_dir, 'generated') | |||||
# create generated/ | |||||
if os.path.exists(generated_path): | |||||
shutil.rmtree(generated_path) | |||||
# create generated/ | |||||
if os.path.exists(generated_path): | |||||
shutil.rmtree(generated_path) | |||||
os.mkdir(generated_path) | |||||
os.mkdir(generated_path) | |||||
source_files = [] | |||||
source_files = [] | |||||
top_level_path = os.path.join(generated_path, "initialize_all.cpp") | |||||
with open(top_level_path, "w") as top_level_file: | |||||
top_level_path = os.path.join(generated_path, 'initialize_all.cpp') | |||||
with open(top_level_path, 'w') as top_level_file: | |||||
if target == GeneratorTarget.Library: | |||||
source_files.append(top_level_path) | |||||
if target == GeneratorTarget.Library: | |||||
source_files.append(top_level_path) | |||||
prototypes = [] | |||||
for operation_kind, configurations in self.operations.items(): | |||||
prototypes.append( | |||||
SubstituteTemplate( | |||||
"void initialize_all_${operation_kind}_operations(Manifest &manifest);", | |||||
{"operation_kind": OperationKindNames[operation_kind]}, | |||||
) | |||||
) | |||||
prototypes = [] | |||||
for operation_kind, configurations in self.operations.items(): | |||||
prototypes.append(SubstituteTemplate( | |||||
"void initialize_all_${operation_kind}_operations(Manifest &manifest);", | |||||
{'operation_kind': OperationKindNames[operation_kind]})) | |||||
top_level_file.write( | |||||
SubstituteTemplate( | |||||
self.top_level_prologue, {"prototypes": "\n".join(prototypes)} | |||||
) | |||||
) | |||||
top_level_file.write(SubstituteTemplate(self.top_level_prologue, | |||||
{'prototypes': "\n".join(prototypes)})) | |||||
top_level_file.write( | |||||
SubstituteTemplate( | |||||
self.top_level_reserve, | |||||
{"operation_count": str(self.operation_count)}, | |||||
) | |||||
) | |||||
top_level_file.write(SubstituteTemplate( | |||||
self.top_level_reserve, {'operation_count': str(self.operation_count)})) | |||||
# for each operation kind, emit initializer for all configurations | |||||
for operation_kind, configurations in self.operations.items(): | |||||
# for each operation kind, emit initializer for all configurations | |||||
for operation_kind, configurations in self.operations.items(): | |||||
with operation_emitters[target](generated_path, operation_kind, self.args) as operation_kind_emitter: | |||||
for configuration_name, operations in configurations.items(): | |||||
operation_kind_emitter.emit(configuration_name, operations) | |||||
with operation_emitters[target]( | |||||
generated_path, operation_kind, self.args | |||||
) as operation_kind_emitter: | |||||
for configuration_name, operations in configurations.items(): | |||||
operation_kind_emitter.emit(configuration_name, operations) | |||||
source_files += operation_kind_emitter.source_files | |||||
source_files += operation_kind_emitter.source_files | |||||
top_level_file.write(SubstituteTemplate( | |||||
" initialize_all_${operation_kind}_operations(manifest);\n", | |||||
{'operation_kind': OperationKindNames[operation_kind]})) | |||||
top_level_file.write( | |||||
SubstituteTemplate( | |||||
" initialize_all_${operation_kind}_operations(manifest);\n", | |||||
{"operation_kind": OperationKindNames[operation_kind]}, | |||||
) | |||||
) | |||||
top_level_file.write(self.top_level_epilogue) | |||||
top_level_file.write(self.top_level_epilogue) | |||||
# write the manifest.cmake file containing paths from all targets | |||||
manifest_path = os.path.join(generated_path, "manifest.cmake") | |||||
with open(manifest_path, "w") as manifest_file: | |||||
# write the manifest.cmake file containing paths from all targets | |||||
manifest_path = os.path.join(generated_path, "manifest.cmake") | |||||
with open(manifest_path, "w") as manifest_file: | |||||
target_name = 'cutlass_library_objs' | |||||
target_name = "cutlass_library_objs" | |||||
target_text = SubstituteTemplate("""cutlass_target_sources( | |||||
target_text = SubstituteTemplate( | |||||
"""cutlass_target_sources( | |||||
${target_name} | ${target_name} | ||||
BATCH_SOURCES ON | BATCH_SOURCES ON | ||||
PRIVATE | PRIVATE | ||||
""", { 'target_name': target_name}) | |||||
""", | |||||
{"target_name": target_name}, | |||||
) | |||||
manifest_file.write(target_text) | |||||
manifest_file.write(target_text) | |||||
for source_file in source_files: | |||||
manifest_file.write(" %s\n" % str(source_file.replace("\\", "/"))) | |||||
manifest_file.write(")") | |||||
# | |||||
for source_file in source_files: | |||||
manifest_file.write(" %s\n" % str(source_file.replace('\\', '/'))) | |||||
manifest_file.write(")") | |||||
# | |||||
################################################################################################### | ################################################################################################### | ||||
def GenerateManifest(args, operations, output_dir): | def GenerateManifest(args, operations, output_dir): | ||||
assert isinstance(operations, list) | |||||
if len(operations) == 0: | |||||
return | |||||
op = operations[0] | |||||
required_cuda_ver_major = op.required_cuda_ver_major | |||||
required_cuda_ver_minor = op.required_cuda_ver_minor | |||||
manifest_path = os.path.join(output_dir, "all_%s_%s_operations.cu" % (args.operations, args.type)) | |||||
f = open(manifest_path, "w") | |||||
f.write(""" | |||||
assert isinstance(operations, list) | |||||
if len(operations) == 0: | |||||
return | |||||
op = operations[0] | |||||
required_cuda_ver_major = op.required_cuda_ver_major | |||||
required_cuda_ver_minor = op.required_cuda_ver_minor | |||||
manifest_path = os.path.join( | |||||
output_dir, "all_%s_%s_operations.cu" % (args.operations, args.type) | |||||
) | |||||
f = open(manifest_path, "w") | |||||
f.write( | |||||
""" | |||||
/* | /* | ||||
Generated by generator.py - Do not edit. | Generated by generator.py - Do not edit. | ||||
*/ | */ | ||||
@@ -374,24 +437,35 @@ def GenerateManifest(args, operations, output_dir): | |||||
namespace cutlass { | namespace cutlass { | ||||
namespace library { | namespace library { | ||||
""" % (str(required_cuda_ver_major), str(required_cuda_ver_major), str(required_cuda_ver_minor))) | |||||
for op in operations: | |||||
f.write("void initialize_%s(Manifest &manifest);\n" % op.procedural_name()) | |||||
f.write(""" | |||||
""" | |||||
% ( | |||||
str(required_cuda_ver_major), | |||||
str(required_cuda_ver_major), | |||||
str(required_cuda_ver_minor), | |||||
) | |||||
) | |||||
for op in operations: | |||||
f.write("void initialize_%s(Manifest &manifest);\n" % op.procedural_name()) | |||||
f.write( | |||||
""" | |||||
void initialize_all_%s_%s_operations(Manifest &manifest) { | void initialize_all_%s_%s_operations(Manifest &manifest) { | ||||
""" % (args.operations, args.type)) | |||||
""" | |||||
% (args.operations, args.type) | |||||
) | |||||
for op in operations: | |||||
f.write(" initialize_%s(manifest);\n" % op.procedural_name()) | |||||
for op in operations: | |||||
f.write(" initialize_%s(manifest);\n" % op.procedural_name()) | |||||
f.write(""" | |||||
f.write( | |||||
""" | |||||
} | } | ||||
} // namespace library | } // namespace library | ||||
} // namespace cutlass | } // namespace cutlass | ||||
#endif | #endif | ||||
""") | |||||
f.close() | |||||
""" | |||||
) | |||||
f.close() |
@@ -181,6 +181,8 @@ if(MGE_WITH_CUDA) | |||||
gen_cutlass_kimpl(conv2d simt CUTLASS_SOURCES) | gen_cutlass_kimpl(conv2d simt CUTLASS_SOURCES) | ||||
gen_cutlass_kimpl(conv2d tensorop8816 CUTLASS_SOURCES) | gen_cutlass_kimpl(conv2d tensorop8816 CUTLASS_SOURCES) | ||||
gen_cutlass_kimpl(conv2d tensorop8832 CUTLASS_SOURCES) | gen_cutlass_kimpl(conv2d tensorop8832 CUTLASS_SOURCES) | ||||
gen_cutlass_kimpl(dwconv2d_fprop simt CUTLASS_SOURCES) | |||||
gen_cutlass_kimpl(dwconv2d_fprop tensorop884 CUTLASS_SOURCES) | |||||
list(APPEND SOURCES ${CUTLASS_SOURCES}) | list(APPEND SOURCES ${CUTLASS_SOURCES}) | ||||
list(APPEND SOURCES ${CUSOURCES}) | list(APPEND SOURCES ${CUSOURCES}) | ||||
endif() | endif() | ||||
@@ -92,6 +92,7 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||||
for (auto&& algo : int8_nchw4_dotprod) { | for (auto&& algo : int8_nchw4_dotprod) { | ||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
} | } | ||||
fill_dwconv_algos(); | |||||
all_algos.push_back(&int8_chwn4_dotprod); | all_algos.push_back(&int8_chwn4_dotprod); | ||||
all_algos.push_back(&fallback_nchw_qs8); | all_algos.push_back(&fallback_nchw_qs8); | ||||
for (size_t i = all_algo_size; i < all_algos.size(); ++i) { | for (size_t i = all_algo_size; i < all_algos.size(); ++i) { | ||||
@@ -301,6 +302,32 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||||
} | } | ||||
#endif | #endif | ||||
void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | |||||
using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam; | |||||
f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 64, 32, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | |||||
for (auto&& algo : f32_implicit_bmm) { | |||||
all_algos.push_back(&algo); | |||||
} | |||||
#if CUDA_VERSION >= 10020 | |||||
f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||||
f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
for (auto&& algo : f16_implicit_bmm) { | |||||
all_algos.push_back(&algo); | |||||
} | |||||
#endif | |||||
} | |||||
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() { | void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() { | ||||
using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam; | using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam; | ||||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 1, 1, 4, 2}); | int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 1, 1, 4, 2}); | ||||
@@ -84,7 +84,9 @@ public: | |||||
CUDA_IMPLICIT_GEMM_1X1_SASS_NCHW32_IMMA_INT8, | CUDA_IMPLICIT_GEMM_1X1_SASS_NCHW32_IMMA_INT8, | ||||
CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_INT4_INT4, | CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_INT4_INT4, | ||||
CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_UINT4_INT4, | CUDA_IMPLICIT_GEMM_SASS_NCHW64_IMMA_UINT4_INT4, | ||||
CUDA_FALLBACK_NCHW_INT4 | |||||
CUDA_FALLBACK_NCHW_INT4, | |||||
CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||||
CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||||
}; | }; | ||||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | ||||
@@ -503,6 +505,8 @@ public: | |||||
* +----+--- AlgoInt4Int4NHWCIMMAImplicitGemm | * +----+--- AlgoInt4Int4NHWCIMMAImplicitGemm | ||||
* +----+--- AlgoUInt4Int4NHWCIMMAImplicitGemm | * +----+--- AlgoUInt4Int4NHWCIMMAImplicitGemm | ||||
* + | * + | ||||
* +--- AlgoFloat32NCHWImplicitBatchedGemm | |||||
* +--- AlgoFloat16NCHWHMMAImplicitBatchedGemm | |||||
*/ | */ | ||||
/* | /* | ||||
@@ -516,7 +520,13 @@ public: | |||||
// corresponds to cutlass::conv::ConvType. we hope that algo.h does not | // corresponds to cutlass::conv::ConvType. we hope that algo.h does not | ||||
// depend on cutlass headers | // depend on cutlass headers | ||||
enum class ConvType { kConvolution, kBatchConvolution, kLocal, kLocalShare }; | |||||
enum class ConvType { | |||||
kConvolution, | |||||
kBatchConvolution, | |||||
kLocal, | |||||
kLocalShare, | |||||
kDepthwiseConvolution, | |||||
}; | |||||
// common parameters for operation selection | // common parameters for operation selection | ||||
struct AlgoParam { | struct AlgoParam { | ||||
@@ -558,7 +568,8 @@ public: | |||||
size_t wo, size_t ph, size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, | size_t wo, size_t ph, size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, | ||||
const void* alpha, const void* beta, const void* gamma, const void* delta, | const void* alpha, const void* beta, const void* gamma, const void* delta, | ||||
const void* theta, const void* threshold, const void* dst_scale, | const void* theta, const void* threshold, const void* dst_scale, | ||||
cudaStream_t stream, const void* extra_param = nullptr) const; | |||||
cudaStream_t stream, const void* extra_param = nullptr, | |||||
size_t groups = 1) const; | |||||
protected: | protected: | ||||
AlgoParam m_algo_param; | AlgoParam m_algo_param; | ||||
@@ -992,6 +1003,54 @@ private: | |||||
}; | }; | ||||
#endif | #endif | ||||
class ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||||
: public AlgoCutlassConvolutionBase { | |||||
public: | |||||
AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||||
: AlgoCutlassConvolutionBase(algo_param) { | |||||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
ssprintf( | |||||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||||
m_algo_param.to_string().c_str()), | |||||
ConvBias::DirectParam{}); | |||||
} | |||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { | |||||
return 0; | |||||
} | |||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); }; | |||||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32); | |||||
private: | |||||
std::string m_name; | |||||
}; | |||||
class ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||||
: public AlgoCutlassConvolutionBase { | |||||
public: | |||||
AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||||
: AlgoCutlassConvolutionBase(algo_param) { | |||||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
ssprintf( | |||||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||||
m_algo_param.to_string().c_str()), | |||||
ConvBias::DirectParam{}); | |||||
} | |||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& /* args */) const override { | |||||
return 0; | |||||
} | |||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); }; | |||||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16); | |||||
private: | |||||
std::string m_name; | |||||
}; | |||||
class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | class ConvBiasForwardImpl::AlgoBFloat16 final : public AlgoBase { | ||||
public: | public: | ||||
bool is_available(const SizeArgs& args) const override; | bool is_available(const SizeArgs& args) const override; | ||||
@@ -1048,6 +1107,8 @@ public: | |||||
std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma; | std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma; | ||||
std::vector<AlgoUInt4Int4NHWCIMMAImplicitGemm> uint4_int4_nhwc_imma; | std::vector<AlgoUInt4Int4NHWCIMMAImplicitGemm> uint4_int4_nhwc_imma; | ||||
#endif | #endif | ||||
std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> f32_implicit_bmm; | |||||
std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> f16_implicit_bmm; | |||||
AlgoGroupConvGeneral group; | AlgoGroupConvGeneral group; | ||||
AlgoBFloat16 bfloat16; | AlgoBFloat16 bfloat16; | ||||
@@ -1063,6 +1124,7 @@ private: | |||||
#endif | #endif | ||||
void fill_cudnn_algos(); | void fill_cudnn_algos(); | ||||
void fill_dp4a_algos(); | void fill_dp4a_algos(); | ||||
void fill_dwconv_algos(); | |||||
}; | }; | ||||
} // namespace cuda | } // namespace cuda | ||||
@@ -74,13 +74,18 @@ cutlass::conv::ConvType convert_conv_type(Base::ConvType conv_type) { | |||||
return cutlass::conv::ConvType::kLocal; | return cutlass::conv::ConvType::kLocal; | ||||
case Base::ConvType::kLocalShare: | case Base::ConvType::kLocalShare: | ||||
return cutlass::conv::ConvType::kLocalShare; | return cutlass::conv::ConvType::kLocalShare; | ||||
case Base::ConvType::kDepthwiseConvolution: | |||||
return cutlass::conv::ConvType::kDepthwiseConvolution; | |||||
default: | default: | ||||
megdnn_assert(0, "invalid conv type"); | megdnn_assert(0, "invalid conv type"); | ||||
} | } | ||||
} | } | ||||
NumericTypeID convert_dtype(DTypeEnum dtype) { | |||||
switch (dtype) { | |||||
NumericTypeID convert_dtype(DType dtype) { | |||||
// just make convolution with no bias happy | |||||
if (!dtype.valid()) | |||||
return NumericTypeID::kF32; | |||||
switch (dtype.enumv()) { | |||||
case DTypeEnum::Float32: | case DTypeEnum::Float32: | ||||
return NumericTypeID::kF32; | return NumericTypeID::kF32; | ||||
case DTypeEnum::Float16: | case DTypeEnum::Float16: | ||||
@@ -100,6 +105,21 @@ NumericTypeID convert_dtype(DTypeEnum dtype) { | |||||
} | } | ||||
} | } | ||||
NumericTypeID get_accumulator_dtype( | |||||
DType dtype, const param::ConvBias::ComputeMode comp_mode) { | |||||
if (dtype.category() == DTypeCategory::QUANTIZED) { | |||||
return NumericTypeID::kS32; | |||||
} else { | |||||
megdnn_assert(dtype.category() == DTypeCategory::FLOAT); | |||||
if (comp_mode == param::ConvBias::ComputeMode::DEFAULT) { | |||||
return convert_dtype(dtype); | |||||
} else { | |||||
megdnn_assert(comp_mode == param::ConvBias::ComputeMode::FLOAT32); | |||||
return NumericTypeID::kF32; | |||||
} | |||||
} | |||||
} | |||||
struct LayoutPack { | struct LayoutPack { | ||||
LayoutTypeID src; | LayoutTypeID src; | ||||
LayoutTypeID filter; | LayoutTypeID filter; | ||||
@@ -149,6 +169,9 @@ LayoutPack get_layout_pack(const param::ConvBias::Format format, int access_type | |||||
default: | default: | ||||
megdnn_assert(0, "invalid access_type"); | megdnn_assert(0, "invalid access_type"); | ||||
} | } | ||||
case Format::NCHW: | |||||
return {LayoutTypeID::kTensorNCHW, LayoutTypeID::kTensorNCHW, | |||||
LayoutTypeID::kTensorNCHW, LayoutTypeID::kTensorNCHW}; | |||||
default: | default: | ||||
megdnn_assert(0, "invalid format"); | megdnn_assert(0, "invalid format"); | ||||
} | } | ||||
@@ -177,6 +200,93 @@ EpilogueType get_epilogue_type(const param::ConvBias::NonlineMode mode, bool cla | |||||
megdnn_assert(0, "invalid nonlinear mode"); | megdnn_assert(0, "invalid nonlinear mode"); | ||||
} | } | ||||
std::pair<int, int> get_tensor_alignment( | |||||
const param::ConvBias::Format format, const TensorLayout& src, | |||||
const TensorLayout& filter, const Base::AlgoParam& algo_param, | |||||
bool is_chanwise) { | |||||
int alignment_src = 0; | |||||
int alignment_filter = 0; | |||||
using Format = param::ConvBias::Format; | |||||
// get tensor alignment for tensor op operations | |||||
// for tensor op operations, the alignment is determined by the size of a vector | |||||
auto get_tensor_alignment_tensor_op = [&]() { | |||||
switch (format) { | |||||
/// case int8 | |||||
case Format::NCHW32: | |||||
case Format::NCHW32_NCHW4: | |||||
alignment_src = 16; | |||||
alignment_filter = 16; | |||||
break; | |||||
/// case int4 or uint4 | |||||
case Format::NCHW64: | |||||
alignment_src = 32; | |||||
alignment_filter = 32; | |||||
break; | |||||
case Format::NHWC: | |||||
alignment_src = alignment_filter = algo_param.access_size; | |||||
break; | |||||
default: | |||||
megdnn_throw("invalid format"); | |||||
}; | |||||
}; | |||||
// get tensor alignment for dot product operations | |||||
// for integer dot product operations, alignment src is always 4 | |||||
// and the alignment filter is determined by the threadblock shape | |||||
auto get_tensor_alignment_dp4a = [&]() { | |||||
megdnn_assert( | |||||
format == Format::NCHW4 || format == Format::NCHW4_NCHW || | |||||
format == Format::NCHW4_NHWC || format == Format::NCHW4_NCHW32); | |||||
alignment_src = 4; | |||||
// determine alignment filter | |||||
constexpr int warp_size = 32; | |||||
int threads = warp_size * algo_param.threadblock_m * algo_param.threadblock_n * | |||||
algo_param.threadblock_k / | |||||
(algo_param.warp_m * algo_param.warp_n * algo_param.warp_k); | |||||
int threadblock_loads = filter.dtype.size( | |||||
algo_param.threadblock_m * algo_param.threadblock_n * | |||||
algo_param.threadblock_k); | |||||
int load_per_thread = threadblock_loads / threads; | |||||
if (load_per_thread >= 16) | |||||
alignment_filter = 16; | |||||
else if (load_per_thread >= 8) | |||||
alignment_filter = 8; | |||||
else { | |||||
megdnn_assert(load_per_thread >= 4); | |||||
alignment_filter = 4; | |||||
} | |||||
}; | |||||
// get tensor alignment for depthwise convolution | |||||
auto get_tensor_alignment_dwconv2d_nchw = [&]() { | |||||
alignment_filter = 1; | |||||
size_t wi = src.dtype.size(src[3]); // width extent in bytes | |||||
for (size_t candidate : {16, 4, 2}) { | |||||
if (wi % candidate == 0) { | |||||
alignment_src = candidate; | |||||
break; | |||||
} | |||||
} | |||||
alignment_src /= src.dtype.size(1); | |||||
}; | |||||
if (format == Format::NCHW32 || format == Format::NCHW32_NCHW4 || | |||||
format == Format::NCHW64 || format == Format::NCHW64) { | |||||
get_tensor_alignment_tensor_op(); | |||||
} else if ( | |||||
format == Format::NCHW4 || format == Format::NCHW4_NCHW || | |||||
format == Format::NCHW4_NHWC || format == Format::NCHW4_NCHW32) { | |||||
get_tensor_alignment_dp4a(); | |||||
} else { | |||||
/// the following is used for depthwise convolution | |||||
megdnn_assert(format == Format::NCHW && is_chanwise); | |||||
get_tensor_alignment_dwconv2d_nchw(); | |||||
} | |||||
megdnn_assert(alignment_src >= 1 && alignment_filter >= 1); | |||||
return {alignment_src, alignment_filter}; | |||||
} | |||||
} // namespace | } // namespace | ||||
const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | ||||
@@ -185,23 +295,36 @@ const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_co | |||||
auto&& param = args.opr->param(); | auto&& param = args.opr->param(); | ||||
auto layouts = get_layout_pack(param.format, m_algo_param.access_size); | auto layouts = get_layout_pack(param.format, m_algo_param.access_size); | ||||
auto epilogue_type = get_epilogue_type( | auto epilogue_type = get_epilogue_type( | ||||
param.nonlineMode, args.dst_layout->dtype.enumv() != DTypeEnum::Float32); | |||||
param.nonlineMode, | |||||
args.dst_layout->dtype.category() != DTypeCategory::FLOAT); | |||||
cutlass::conv::SpecialOptimizeDesc special_optimization = | cutlass::conv::SpecialOptimizeDesc special_optimization = | ||||
(use_conv_filter_unity_opt) | (use_conv_filter_unity_opt) | ||||
? cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY | ? cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY | ||||
: cutlass::conv::SpecialOptimizeDesc::NONE; | : cutlass::conv::SpecialOptimizeDesc::NONE; | ||||
int alignment_src, alignment_filter; | |||||
auto&& fm = args.filter_meta; | |||||
bool is_chanwise = param.sparse == param::ConvBias::Sparse::GROUP && fm.icpg == 1 && | |||||
fm.ocpg == 1; | |||||
std::tie(alignment_src, alignment_filter) = get_tensor_alignment( | |||||
param.format, *args.src_layout, *args.filter_layout, m_algo_param, | |||||
is_chanwise); | |||||
auto accumulator_dtype = | |||||
get_accumulator_dtype(args.src_layout->dtype, param.compute_mode); | |||||
ConvolutionKey key{ | ConvolutionKey key{ | ||||
convert_conv_op(conv_op), | convert_conv_op(conv_op), | ||||
convert_dtype(args.src_layout->dtype.enumv()), | |||||
convert_dtype(args.src_layout->dtype), | |||||
layouts.src, | layouts.src, | ||||
convert_dtype(args.filter_layout->dtype.enumv()), | |||||
convert_dtype(args.filter_layout->dtype), | |||||
layouts.filter, | layouts.filter, | ||||
convert_dtype(args.dst_layout->dtype.enumv()), | |||||
convert_dtype(args.dst_layout->dtype), | |||||
layouts.dst, | layouts.dst, | ||||
convert_dtype(args.bias_layout->dtype.enumv()), | |||||
convert_dtype(args.bias_layout->dtype), | |||||
layouts.bias, | layouts.bias, | ||||
accumulator_dtype, | |||||
convert_conv_type(conv_type), | convert_conv_type(conv_type), | ||||
m_algo_param.threadblock_m, | m_algo_param.threadblock_m, | ||||
m_algo_param.threadblock_n, | m_algo_param.threadblock_n, | ||||
@@ -215,6 +338,8 @@ const Operation* ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_co | |||||
epilogue_type, | epilogue_type, | ||||
m_algo_param.stage, | m_algo_param.stage, | ||||
special_optimization, | special_optimization, | ||||
alignment_src, | |||||
alignment_filter, | |||||
without_shared_load}; | without_shared_load}; | ||||
return Singleton::get().operation_table.find_op(key); | return Singleton::get().operation_table.find_op(key); | ||||
@@ -227,13 +352,16 @@ void ConvBiasForwardImpl::AlgoCutlassConvolutionBase::execute_cutlass_conv_op( | |||||
size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, const void* alpha, | size_t pw, size_t sh, size_t sw, size_t dh, size_t dw, const void* alpha, | ||||
const void* beta, const void* gamma, const void* delta, const void* theta, | const void* beta, const void* gamma, const void* delta, const void* theta, | ||||
const void* threshold, const void* dst_scale, cudaStream_t stream, | const void* threshold, const void* dst_scale, cudaStream_t stream, | ||||
const void* extra_param) const { | |||||
const void* extra_param, size_t groups) const { | |||||
// gcc prints warnings when size_t values are implicitly narrowed to int | // gcc prints warnings when size_t values are implicitly narrowed to int | ||||
cutlass::conv::Conv2dProblemSize problem_size{ | cutlass::conv::Conv2dProblemSize problem_size{ | ||||
int(n), int(hi), int(wi), int(ci), | |||||
int(co), int(fh), int(fw), int(ho), | |||||
int(wo), int(ph), int(pw), int(sh), | |||||
int(sw), int(dh), int(dw), cutlass::conv::Mode::kCrossCorrelation}; | |||||
int(n), int(hi), int(wi), int(ci), | |||||
int(co), int(fh), int(fw), int(ho), | |||||
int(wo), int(ph), int(pw), int(sh), | |||||
int(sw), int(dh), int(dw), cutlass::conv::Mode::kCrossCorrelation, | |||||
1, // split k slices, always 1 | |||||
int(groups), // groups | |||||
}; | |||||
ConvolutionArguments conv_args{ | ConvolutionArguments conv_args{ | ||||
problem_size, src, filter, bias, z, dst, alpha, | problem_size, src, filter, bias, z, dst, alpha, | ||||
@@ -0,0 +1,95 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/implicit_batched_gemm_float16_nchw_hmma.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "src/common/conv_bias.h" | |||||
#include "src/cuda/conv_bias/algo.h" | |||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
bool ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
#define RETURN_IF_FALSE(stmt_) \ | |||||
if (!(stmt_)) \ | |||||
return false; | |||||
RETURN_IF_FALSE( | |||||
args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
RETURN_IF_FALSE( | |||||
param.format == Format::NCHW && | |||||
args.src_layout->dtype.enumv() == DTypeEnum::Float16 && | |||||
args.filter_layout->dtype.enumv() == DTypeEnum::Float16 && | |||||
args.dst_layout->dtype.enumv() == DTypeEnum::Float16); | |||||
RETURN_IF_FALSE( | |||||
args.bias_layout->ndim <= 0 || | |||||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float16 && | |||||
check_bias_share_in_channel(*args.bias_layout, param.format))); | |||||
RETURN_IF_FALSE( | |||||
args.z_layout->ndim <= 0 || | |||||
args.z_layout->dtype.enumv() == DTypeEnum::Float16); | |||||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||||
// check if channelwise convolution | |||||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||||
RETURN_IF_FALSE(op != nullptr); | |||||
return true; | |||||
#undef RETURN_IF_FALSE | |||||
} | |||||
void ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t ho = args.dst_layout->operator[](2), wo = args.dst_layout->operator[](3); | |||||
size_t co = fm.group; | |||||
size_t ci = co; | |||||
// check if channelwise convolution | |||||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
float alpha = 1.f; | |||||
float beta = args.bias_layout->ndim > 0 ? 1.f : 0.f; | |||||
void* bias_ptr = args.bias_layout->ndim > 0 ? args.bias_tensor->raw_ptr() : nullptr; | |||||
float gamma = args.z_layout->ndim > 0 ? 1.f : 0.f; | |||||
void* z_ptr = args.z_layout->ndim > 0 ? args.z_tensor->raw_ptr() : nullptr; | |||||
// dummy parameters, used for quantization cases | |||||
float theta = 0.f; | |||||
float delta = 0.f; | |||||
float threshold = 0.f; | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
execute_cutlass_conv_op( | |||||
op, args.src_tensor->raw_ptr(), args.filter_tensor->raw_ptr(), bias_ptr, | |||||
z_ptr, args.dst_tensor->raw_ptr(), nullptr, n, hi, wi, ci, co, fh, fw, ho, | |||||
wo, ph, pw, sh, sw, dh, dw, &alpha, &beta, &gamma, &delta, &theta, | |||||
&threshold, nullptr, stream, nullptr, fm.group); | |||||
after_kernel_launch(); | |||||
} | |||||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,95 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/implicit_batched_gemm_float32_nchw_fma.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "src/common/conv_bias.h" | |||||
#include "src/cuda/conv_bias/algo.h" | |||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
bool ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
#define RETURN_IF_FALSE(stmt_) \ | |||||
if (!(stmt_)) \ | |||||
return false; | |||||
RETURN_IF_FALSE( | |||||
args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
RETURN_IF_FALSE( | |||||
param.format == Format::NCHW && | |||||
args.src_layout->dtype.enumv() == DTypeEnum::Float32 && | |||||
args.filter_layout->dtype.enumv() == DTypeEnum::Float32 && | |||||
args.dst_layout->dtype.enumv() == DTypeEnum::Float32); | |||||
RETURN_IF_FALSE( | |||||
args.bias_layout->ndim <= 0 || | |||||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float32 && | |||||
check_bias_share_in_channel(*args.bias_layout, param.format))); | |||||
RETURN_IF_FALSE( | |||||
args.z_layout->ndim <= 0 || | |||||
args.z_layout->dtype.enumv() == DTypeEnum::Float32); | |||||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||||
// check if channelwise convolution | |||||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||||
RETURN_IF_FALSE(op != nullptr); | |||||
return true; | |||||
#undef RETURN_IF_FALSE | |||||
} | |||||
void ConvBiasForwardImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), hi = args.src_layout->operator[](2), | |||||
wi = args.src_layout->operator[](3); | |||||
size_t ho = args.dst_layout->operator[](2), wo = args.dst_layout->operator[](3); | |||||
size_t co = fm.group; | |||||
size_t ci = co; | |||||
// check if channelwise convolution | |||||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
float alpha = 1.f; | |||||
float beta = args.bias_layout->ndim > 0 ? 1.f : 0.f; | |||||
void* bias_ptr = args.bias_layout->ndim > 0 ? args.bias_tensor->raw_ptr() : nullptr; | |||||
float gamma = args.z_layout->ndim > 0 ? 1.f : 0.f; | |||||
void* z_ptr = args.z_layout->ndim > 0 ? args.z_tensor->raw_ptr() : nullptr; | |||||
// dummy parameters, used for quantization cases | |||||
float theta = 0.f; | |||||
float delta = 0.f; | |||||
float threshold = 0.f; | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kDepthwiseConvolution, false, false); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
execute_cutlass_conv_op( | |||||
op, args.src_tensor->raw_ptr(), args.filter_tensor->raw_ptr(), bias_ptr, | |||||
z_ptr, args.dst_tensor->raw_ptr(), nullptr, n, hi, wi, ci, co, fh, fw, ho, | |||||
wo, ph, pw, sh, sw, dh, dw, &alpha, &beta, &gamma, &delta, &theta, | |||||
&threshold, nullptr, stream, nullptr, fm.group); | |||||
after_kernel_launch(); | |||||
} | |||||
// vim: syntax=cpp.doxygen |
@@ -71,6 +71,9 @@ public: | |||||
class AlgoInt4Int4NHWCIMMAImplicitGemm; | class AlgoInt4Int4NHWCIMMAImplicitGemm; | ||||
class AlgoUInt4Int4NHWCIMMAImplicitGemm; | class AlgoUInt4Int4NHWCIMMAImplicitGemm; | ||||
class AlgoBFloat16; | class AlgoBFloat16; | ||||
// The following algorithms are suitable for channel wise convolution | |||||
class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||||
class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||||
class AlgoPack; | class AlgoPack; | ||||
@@ -39,6 +39,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||||
LayoutTypeID::kTensorNC4HW4, | LayoutTypeID::kTensorNC4HW4, | ||||
NumericTypeID::kS32, | NumericTypeID::kS32, | ||||
LayoutTypeID::kTensorNC4HW4, | LayoutTypeID::kTensorNC4HW4, | ||||
NumericTypeID::kS32, | |||||
cutlass::conv::ConvType::kConvolution, | cutlass::conv::ConvType::kConvolution, | ||||
m_algo_param.threadblock_m, | m_algo_param.threadblock_m, | ||||
m_algo_param.threadblock_n, | m_algo_param.threadblock_n, | ||||
@@ -52,6 +53,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | ||||
m_algo_param.stage, | m_algo_param.stage, | ||||
special_optimization, | special_optimization, | ||||
4, | |||||
16, | |||||
false}; | false}; | ||||
return (void*)Singleton::get().operation_table.find_op(key); | return (void*)Singleton::get().operation_table.find_op(key); | ||||
} | } | ||||
@@ -39,6 +39,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||||
LayoutTypeID::kTensorNC4HW4, | LayoutTypeID::kTensorNC4HW4, | ||||
NumericTypeID::kS32, | NumericTypeID::kS32, | ||||
LayoutTypeID::kTensorNC4HW4, | LayoutTypeID::kTensorNC4HW4, | ||||
NumericTypeID::kS32, | |||||
cutlass::conv::ConvType::kConvolution, | cutlass::conv::ConvType::kConvolution, | ||||
16, | 16, | ||||
64, | 64, | ||||
@@ -52,6 +53,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm:: | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | ||||
2, | 2, | ||||
special_optimization, | special_optimization, | ||||
4, | |||||
4, | |||||
false}; | false}; | ||||
return (void*)Singleton::get().operation_table.find_op(key); | return (void*)Singleton::get().operation_table.find_op(key); | ||||
} | } | ||||
@@ -50,6 +50,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NHWCIMMAImplicitGemm::get_avail | |||||
LayoutTypeID::kTensorNHWC, | LayoutTypeID::kTensorNHWC, | ||||
NumericTypeID::kS32, | NumericTypeID::kS32, | ||||
LayoutTypeID::kTensorNHWC, | LayoutTypeID::kTensorNHWC, | ||||
NumericTypeID::kS32, | |||||
cutlass::conv::ConvType::kConvolution, | cutlass::conv::ConvType::kConvolution, | ||||
m_algo_param.threadblock_m, | m_algo_param.threadblock_m, | ||||
m_algo_param.threadblock_n, | m_algo_param.threadblock_n, | ||||
@@ -63,6 +64,8 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NHWCIMMAImplicitGemm::get_avail | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | ||||
m_algo_param.stage, | m_algo_param.stage, | ||||
special_optimization, | special_optimization, | ||||
m_algo_param.access_size, | |||||
m_algo_param.access_size, | |||||
false}; | false}; | ||||
return (void*)Singleton::get().operation_table.find_op(key); | return (void*)Singleton::get().operation_table.find_op(key); | ||||
} | } | ||||
@@ -54,24 +54,28 @@ namespace library { | |||||
void initialize_all_gemm_simt_operations(Manifest& manifest); | void initialize_all_gemm_simt_operations(Manifest& manifest); | ||||
void initialize_all_conv2d_simt_operations(Manifest& manifest); | void initialize_all_conv2d_simt_operations(Manifest& manifest); | ||||
void initialize_all_deconv_simt_operations(Manifest& manifest); | void initialize_all_deconv_simt_operations(Manifest& manifest); | ||||
void initialize_all_dwconv2d_fprop_simt_operations(Manifest& manifest); | |||||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | ||||
void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | ||||
void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | ||||
void initialize_all_conv2d_tensorop8816_operations(Manifest& manifest); | void initialize_all_conv2d_tensorop8816_operations(Manifest& manifest); | ||||
void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | ||||
void initialize_all_deconv_tensorop8816_operations(Manifest& manifest); | void initialize_all_deconv_tensorop8816_operations(Manifest& manifest); | ||||
void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | |||||
#endif | #endif | ||||
void initialize_all(Manifest& manifest) { | void initialize_all(Manifest& manifest) { | ||||
initialize_all_gemm_simt_operations(manifest); | initialize_all_gemm_simt_operations(manifest); | ||||
initialize_all_conv2d_simt_operations(manifest); | initialize_all_conv2d_simt_operations(manifest); | ||||
initialize_all_deconv_simt_operations(manifest); | initialize_all_deconv_simt_operations(manifest); | ||||
initialize_all_dwconv2d_fprop_simt_operations(manifest); | |||||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | ||||
initialize_all_gemm_tensorop884_operations(manifest); | initialize_all_gemm_tensorop884_operations(manifest); | ||||
initialize_all_gemm_tensorop1688_operations(manifest); | initialize_all_gemm_tensorop1688_operations(manifest); | ||||
initialize_all_conv2d_tensorop8816_operations(manifest); | initialize_all_conv2d_tensorop8816_operations(manifest); | ||||
initialize_all_conv2d_tensorop8832_operations(manifest); | initialize_all_conv2d_tensorop8832_operations(manifest); | ||||
initialize_all_deconv_tensorop8816_operations(manifest); | initialize_all_deconv_tensorop8816_operations(manifest); | ||||
initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | |||||
#endif | #endif | ||||
} | } | ||||
@@ -223,6 +223,9 @@ enum class ThreadblockSwizzleID { | |||||
kConvolutionFpropTrans, | kConvolutionFpropTrans, | ||||
kConvolutionDgradNCxHWx, | kConvolutionDgradNCxHWx, | ||||
kConvolutionDgradTrans, | kConvolutionDgradTrans, | ||||
kDepthwiseConvolutionFprop, | |||||
kDepthwiseConvolutionDgrad, | |||||
kDepthwiseConvolutionWgrad, | |||||
kInvalid | kInvalid | ||||
}; | }; | ||||
@@ -570,6 +570,27 @@ struct ThreadblockSwizzleMap< | |||||
ThreadblockSwizzleID::kConvolutionDgradTrans; | ThreadblockSwizzleID::kConvolutionDgradTrans; | ||||
}; | }; | ||||
template <> | |||||
struct ThreadblockSwizzleMap< | |||||
conv::threadblock::DepthwiseConvolutionFpropThreadblockSwizzle> { | |||||
static ThreadblockSwizzleID const kId = | |||||
ThreadblockSwizzleID::kDepthwiseConvolutionFprop; | |||||
}; | |||||
template <> | |||||
struct ThreadblockSwizzleMap< | |||||
conv::threadblock::DepthwiseConvolutionDgradThreadblockSwizzle> { | |||||
static ThreadblockSwizzleID const kId = | |||||
ThreadblockSwizzleID::kDepthwiseConvolutionDgrad; | |||||
}; | |||||
template <> | |||||
struct ThreadblockSwizzleMap< | |||||
conv::threadblock::DepthwiseConvolutionWgradThreadblockSwizzle> { | |||||
static ThreadblockSwizzleID const kId = | |||||
ThreadblockSwizzleID::kDepthwiseConvolutionWgrad; | |||||
}; | |||||
///////////////////////////////////////////////////////////////////////////////////////////////// | ///////////////////////////////////////////////////////////////////////////////////////////////// | ||||
template <typename Element, typename Layout> | template <typename Element, typename Layout> | ||||
@@ -99,6 +99,8 @@ ConvolutionKey get_convolution_key_from_desc(const ConvolutionDescription& desc) | |||||
key.layout_dst = desc.dst.layout; | key.layout_dst = desc.dst.layout; | ||||
key.element_bias = desc.bias.element; | key.element_bias = desc.bias.element; | ||||
key.layout_bias = desc.bias.layout; | key.layout_bias = desc.bias.layout; | ||||
key.element_accumulator = | |||||
desc.tile_description.math_instruction.element_accumulator; | |||||
key.convolution_type = desc.convolution_type; | key.convolution_type = desc.convolution_type; | ||||
@@ -124,6 +126,8 @@ ConvolutionKey get_convolution_key_from_desc(const ConvolutionDescription& desc) | |||||
key.stages = desc.tile_description.threadblock_stages; | key.stages = desc.tile_description.threadblock_stages; | ||||
key.special_optimization = desc.special_optimization; | key.special_optimization = desc.special_optimization; | ||||
key.alignment_src = desc.src.alignment; | |||||
key.alignment_filter = desc.filter.alignment; | |||||
key.without_shared_load = desc.without_shared_load; | key.without_shared_load = desc.without_shared_load; | ||||
return key; | return key; | ||||
@@ -188,6 +188,7 @@ struct ConvolutionKey { | |||||
library::LayoutTypeID layout_dst; | library::LayoutTypeID layout_dst; | ||||
library::NumericTypeID element_bias; | library::NumericTypeID element_bias; | ||||
library::LayoutTypeID layout_bias; | library::LayoutTypeID layout_bias; | ||||
NumericTypeID element_accumulator; | |||||
conv::ConvType convolution_type; | conv::ConvType convolution_type; | ||||
@@ -206,6 +207,10 @@ struct ConvolutionKey { | |||||
epilogue::EpilogueType epilogue_type; | epilogue::EpilogueType epilogue_type; | ||||
int stages; | int stages; | ||||
conv::SpecialOptimizeDesc special_optimization; | conv::SpecialOptimizeDesc special_optimization; | ||||
int alignment_src; | |||||
int alignment_filter; | |||||
bool without_shared_load; | bool without_shared_load; | ||||
inline bool operator==(ConvolutionKey const& rhs) const { | inline bool operator==(ConvolutionKey const& rhs) const { | ||||
@@ -215,6 +220,7 @@ struct ConvolutionKey { | |||||
(layout_filter == rhs.layout_filter) && | (layout_filter == rhs.layout_filter) && | ||||
(element_dst == rhs.element_dst) && (layout_dst == rhs.layout_dst) && | (element_dst == rhs.element_dst) && (layout_dst == rhs.layout_dst) && | ||||
(element_bias == rhs.element_bias) && (layout_bias == rhs.layout_bias) && | (element_bias == rhs.element_bias) && (layout_bias == rhs.layout_bias) && | ||||
(element_accumulator == rhs.element_accumulator) && | |||||
(convolution_type == rhs.convolution_type) && | (convolution_type == rhs.convolution_type) && | ||||
(threadblock_shape_m == rhs.threadblock_shape_m) && | (threadblock_shape_m == rhs.threadblock_shape_m) && | ||||
(threadblock_shape_n == rhs.threadblock_shape_n) && | (threadblock_shape_n == rhs.threadblock_shape_n) && | ||||
@@ -227,6 +233,8 @@ struct ConvolutionKey { | |||||
(instruction_shape_k == rhs.instruction_shape_k) && | (instruction_shape_k == rhs.instruction_shape_k) && | ||||
(epilogue_type == rhs.epilogue_type) && (stages == rhs.stages) && | (epilogue_type == rhs.epilogue_type) && (stages == rhs.stages) && | ||||
(special_optimization == rhs.special_optimization) && | (special_optimization == rhs.special_optimization) && | ||||
(alignment_src == rhs.alignment_src) && | |||||
(alignment_filter == rhs.alignment_filter) && | |||||
(without_shared_load == rhs.without_shared_load); | (without_shared_load == rhs.without_shared_load); | ||||
} | } | ||||
@@ -254,6 +262,7 @@ struct ConvolutionKey { | |||||
"\n layout_dst: " + to_string(layout_dst) + | "\n layout_dst: " + to_string(layout_dst) + | ||||
"\n element_bias: " + to_string(element_bias) + | "\n element_bias: " + to_string(element_bias) + | ||||
"\n layout_bias: " + to_string(layout_bias) + | "\n layout_bias: " + to_string(layout_bias) + | ||||
"\n element_accumulator: " + to_string(element_accumulator) + | |||||
"\n convolution_type: " + to_string(convolution_type) + | "\n convolution_type: " + to_string(convolution_type) + | ||||
"\n threadblock_shape: " + threadblock_shape_str + | "\n threadblock_shape: " + threadblock_shape_str + | ||||
"\n warp_shape: " + warp_shape_str + | "\n warp_shape: " + warp_shape_str + | ||||
@@ -261,6 +270,8 @@ struct ConvolutionKey { | |||||
"\n epilogue_type: " + to_string(epilogue_type) + | "\n epilogue_type: " + to_string(epilogue_type) + | ||||
"\n stages: " + std::to_string(stages) + | "\n stages: " + std::to_string(stages) + | ||||
"\n special_optimization: " + to_string(special_optimization) + | "\n special_optimization: " + to_string(special_optimization) + | ||||
"\n alignment_src: " + std::to_string(alignment_src) + | |||||
"\n alignment_filter: " + std::to_string(alignment_filter) + | |||||
"\n without_shared_load: " + to_string(without_shared_load) + "\n}"; | "\n without_shared_load: " + to_string(without_shared_load) + "\n}"; | ||||
} | } | ||||
}; | }; | ||||
@@ -278,6 +289,7 @@ struct ConvolutionKeyHasher { | |||||
.update(&key.layout_dst, sizeof(key.layout_dst)) | .update(&key.layout_dst, sizeof(key.layout_dst)) | ||||
.update(&key.element_bias, sizeof(key.element_bias)) | .update(&key.element_bias, sizeof(key.element_bias)) | ||||
.update(&key.layout_bias, sizeof(key.layout_bias)) | .update(&key.layout_bias, sizeof(key.layout_bias)) | ||||
.update(&key.element_accumulator, sizeof(key.element_accumulator)) | |||||
.update(&key.convolution_type, sizeof(key.convolution_type)) | .update(&key.convolution_type, sizeof(key.convolution_type)) | ||||
.update(&key.threadblock_shape_m, sizeof(key.threadblock_shape_m)) | .update(&key.threadblock_shape_m, sizeof(key.threadblock_shape_m)) | ||||
.update(&key.threadblock_shape_n, sizeof(key.threadblock_shape_n)) | .update(&key.threadblock_shape_n, sizeof(key.threadblock_shape_n)) | ||||
@@ -291,6 +303,8 @@ struct ConvolutionKeyHasher { | |||||
.update(&key.epilogue_type, sizeof(key.epilogue_type)) | .update(&key.epilogue_type, sizeof(key.epilogue_type)) | ||||
.update(&key.stages, sizeof(key.stages)) | .update(&key.stages, sizeof(key.stages)) | ||||
.update(&key.special_optimization, sizeof(key.special_optimization)) | .update(&key.special_optimization, sizeof(key.special_optimization)) | ||||
.update(&key.alignment_src, sizeof(key.alignment_src)) | |||||
.update(&key.alignment_filter, sizeof(key.alignment_filter)) | |||||
.update(&key.without_shared_load, sizeof(key.without_shared_load)) | .update(&key.without_shared_load, sizeof(key.without_shared_load)) | ||||
.digest(); | .digest(); | ||||
} | } | ||||
@@ -38,8 +38,10 @@ bool check_need_full_bench() { | |||||
} | } | ||||
#endif | #endif | ||||
Convolution::Param gconv_param(Convolution::Param p) { | |||||
Convolution::Param gconv_param(Convolution::Param p, bool io16xc32 = false) { | |||||
p.sparse = Convolution::Param::Sparse::GROUP; | p.sparse = Convolution::Param::Sparse::GROUP; | ||||
if (io16xc32) | |||||
p.compute_mode = Convolution::Param::ComputeMode::FLOAT32; | |||||
return p; | return p; | ||||
} | } | ||||
@@ -421,6 +423,129 @@ TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_FILTER) { | |||||
} | } | ||||
} | } | ||||
namespace { | |||||
template <typename Op> | |||||
struct AlgoCheckerMaker { | |||||
static auto make(const char* name, bool* require_algo) { | |||||
return AlgoChecker<Op>(name, require_algo); | |||||
} | |||||
}; | |||||
template <> | |||||
struct AlgoCheckerMaker<ConvolutionForward> { | |||||
static auto make(const char* name, bool* require_algo) { | |||||
return AlgoChecker<ConvolutionForward>( | |||||
ExecutionPolicyAlgoName{ | |||||
"DEFAULT", | |||||
{{ConvBiasForward::algo_name<ConvBiasForward::DirectParam>( | |||||
name, {}) | |||||
.c_str(), | |||||
{}}}}, | |||||
require_algo); | |||||
} | |||||
}; | |||||
template <typename Op> | |||||
void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* name) { | |||||
Checker<Op> checker(handle); | |||||
bool require_algo = false; | |||||
checker.set_before_exec_callback(AlgoCheckerMaker<Op>::make(name, &require_algo)); | |||||
checker.set_dtype(0, io_type).set_dtype(1, io_type).set_dtype(2, io_type); | |||||
bool io16xc32 = false; | |||||
if (io_type == dtype::Float16()) { | |||||
if (comp_type == dtype::Float16()) { | |||||
checker.set_epsilon(1e-1); | |||||
} else { | |||||
io16xc32 = true; | |||||
} | |||||
} | |||||
// dispatch testcase by operation | |||||
if (std::is_same<Op, ConvolutionForward>::value) { | |||||
// align 8 | |||||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||||
// align 1 | |||||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||||
.execs({{8, 2, 15, 15}, {2, 1, 1, 15, 15}, {}}); | |||||
// align 2 | |||||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||||
.execs({{8, 2, 14, 14}, {2, 1, 1, 15, 15}, {}}); | |||||
// custom padding | |||||
checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||||
// custom stride | |||||
checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||||
.execs({{8, 2, 16, 16}, {2, 1, 1, 15, 15}, {}}); | |||||
} else if (std::is_same<Op, ConvolutionBackwardData>::value) { | |||||
// align 8 | |||||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||||
.execs({{2, 1, 1, 15, 15}, {8, 2, 16, 16}, {8, 2, 16, 16}}); | |||||
// align 1 | |||||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||||
.execs({{2, 1, 1, 15, 15}, {8, 2, 15, 15}, {8, 2, 15, 15}}); | |||||
// align 2 | |||||
checker.set_param(gconv_param({M, 7, 7, 1, 1}, io16xc32)) | |||||
.execs({{2, 1, 1, 15, 15}, {8, 2, 14, 14}, {8, 2, 14, 14}}); | |||||
// custom padding | |||||
checker.set_param(gconv_param({M, 3, 3, 1, 1}, io16xc32)) | |||||
.execs({{2, 1, 1, 15, 15}, {8, 2, 8, 8}, {8, 2, 16, 16}}); | |||||
// custom stride | |||||
checker.set_param(gconv_param({M, 7, 7, 2, 2}, io16xc32)) | |||||
.execs({{2, 1, 1, 15, 15}, {8, 2, 7, 7}, {8, 2, 14, 14}}); | |||||
} else if (std::is_same<Op, ConvolutionBackwardFilter>::value) { | |||||
} | |||||
} | |||||
} // namespace | |||||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) \ | |||||
cb(1, 128, 128, 8, 32, 64, 8); \ | |||||
cb(2, 128, 64, 8, 64, 32, 8); \ | |||||
cb(3, 128, 32, 8, 64, 32, 8); \ | |||||
cb(4, 64, 128, 8, 64, 32, 8); \ | |||||
cb(5, 32, 128, 8, 32, 64, 8); \ | |||||
cb(6, 64, 64, 8, 64, 32, 8); \ | |||||
cb(7, 32, 64, 8, 32, 64, 8); \ | |||||
cb(8, 32, 32, 8, 32, 32, 8); \ | |||||
cb(9, 64, 32, 8, 64, 32, 8); | |||||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_FMA_##tag) { \ | |||||
check_chanwise<ConvolutionForward>( \ | |||||
dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||||
} | |||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) | |||||
#undef cb | |||||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL | |||||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) \ | |||||
cb(1, 128, 128, 32, 32, 32, 32); \ | |||||
cb(2, 128, 256, 32, 64, 64, 32); \ | |||||
cb(3, 128, 64, 32, 32, 32, 32); \ | |||||
cb(4, 64, 128, 32, 32, 32, 32); \ | |||||
cb(5, 64, 64, 32, 32, 32, 32); | |||||
// check both ioc16 and io16xc32 | |||||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_CUTLASS_HMMA_##tag) { \ | |||||
check_chanwise<ConvolutionForward>( \ | |||||
dtype::Float16(), dtype::Float16(), handle_cuda(), \ | |||||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||||
check_chanwise<ConvolutionForward>( \ | |||||
dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||||
} | |||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) | |||||
#undef cb | |||||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL | |||||
#if MEGDNN_WITH_BENCHMARK | #if MEGDNN_WITH_BENCHMARK | ||||
TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_BENCH_CHECK) { | TEST_F(CUDA, CHANWISE_CONVOLUTION_FORWARD_BENCH_CHECK) { | ||||
auto handle = handle_cuda(); | auto handle = handle_cuda(); | ||||
@@ -1123,6 +1248,82 @@ TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BWD_FILTER) { | |||||
// clang-format on | // clang-format on | ||||
} | } | ||||
TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_LARGE_KERNEL) { | |||||
CUBenchmarker<ConvolutionForward> bencher(handle_cuda()); | |||||
size_t RUNS = 100; | |||||
bencher.set_display(false).set_times(RUNS); | |||||
std::unique_ptr<OprProxy<ConvolutionForward>> proxy{ | |||||
new OprProxy<ConvolutionForward>{true}}; | |||||
bencher.set_proxy(proxy); | |||||
Convolution::Param param; | |||||
param.format = ConvBias::Param::Format::NCHW; | |||||
param.sparse = Convolution::Param::Sparse::GROUP; | |||||
NormalRNG rng; | |||||
auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||||
param.pad_h = f / 2; | |||||
param.pad_w = f / 2; | |||||
param.stride_h = s; | |||||
param.stride_w = s; | |||||
param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||||
TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||||
TensorLayout dst_layout; | |||||
auto opr = handle_cuda()->create_operator<Convolution>(); | |||||
opr->param() = param; | |||||
opr->deduce_layout( | |||||
{src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||||
float bandwith = static_cast<float>( | |||||
src.total_nr_elems() + filter.total_nr_elems() + | |||||
dst_layout.total_nr_elems()) / | |||||
(1024 * 1024 * 1024) * 1e3; | |||||
bencher.set_param(param) | |||||
.set_dtype(0, dtype::Float32()) | |||||
.set_dtype(1, dtype::Float32()) | |||||
.set_dtype(2, dtype::Float32()) | |||||
.set_rng(0, &rng) | |||||
.set_rng(1, &rng); | |||||
bencher.proxy()->target_execution_policy = {}; | |||||
auto time_in_ms_fp32 = bencher.execs({src, filter, {}}) / RUNS; | |||||
bencher.set_param(param) | |||||
.set_dtype(0, dtype::Float16()) | |||||
.set_dtype(1, dtype::Float16()) | |||||
.set_dtype(2, dtype::Float16()) | |||||
.set_rng(0, &rng) | |||||
.set_rng(1, &rng); | |||||
bencher.proxy()->target_execution_policy = {}; | |||||
auto time_in_ms_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||||
bencher.proxy()->target_execution_policy.algo.reset(); | |||||
param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||||
bencher.set_param(param); | |||||
auto time_in_ms_pseudo_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||||
printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||||
"float16: %.2fms %.2fGB/s " | |||||
"pseudo float16: %.2fms %.2fGB/s " | |||||
"speedup: " | |||||
"%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n", | |||||
s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||||
bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16, | |||||
bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16, | |||||
bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16, | |||||
time_in_ms_pseudo_fp16 / time_in_ms_fp16); | |||||
}; | |||||
// clang-format off | |||||
for (size_t b : {32, 64}) | |||||
for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||||
run(b, 384, 32, 32, f, 1); | |||||
run(b, 384, 64, 64, f, 1); | |||||
} | |||||
// clang-format on | |||||
} | |||||
#endif | #endif | ||||
// vim: syntax=cpp.doxygen | // vim: syntax=cpp.doxygen |