@@ -53,9 +53,11 @@ option(MGE_WITH_DISTRIBUTED "Build with distributed support" ON) | |||
option(MGE_BUILD_IMPERATIVE_RT "Build _imperative_rt Python Module " ON) | |||
option(MGE_BUILD_SDK "Build load_and_run" ON) | |||
option(MGE_INFERENCE_ONLY "Build inference only library." OFF) | |||
option(MGE_WITH_PYTHON_MODULE "Build MegEngine legacy Python Module." OFF) | |||
option(MGE_WITH_MKLDNN "Enable Intel MKL_DNN support," ON) | |||
option(MGE_WITH_ROCM "Enable ROCM support" OFF) | |||
if(NOT ${MGE_BIN_REDUCE} STREQUAL "") | |||
message("build with BIN REDUCE") | |||
if(MGE_WITH_MINIMUM_SIZE) | |||
@@ -152,6 +154,14 @@ if(${MGE_ARCH} STREQUAL "x86_64" OR ${MGE_ARCH} STREQUAL "i386" OR ${MGE_ARCH} S | |||
endif() | |||
if(MSVC OR WIN32) | |||
# for cmake after 3.15.2 | |||
cmake_policy(SET CMP0091 NEW) | |||
if(${CMAKE_BUILD_TYPE} STREQUAL "Debug") | |||
set(CMAKE_MSVC_RUNTIME_LIBRARY "MultiThreadedDebug") | |||
else() | |||
set(CMAKE_MSVC_RUNTIME_LIBRARY "MultiThreaded") | |||
endif() | |||
add_compile_definitions(NOMINMAX=1 _USE_MATH_DEFINES=1 WIN32=1) | |||
message("-- into windows build...") | |||
message("-- CMAKE_C_COMPILER_ID: ${CMAKE_C_COMPILER_ID}") | |||
@@ -285,7 +295,6 @@ if(MGE_WITH_TEST) | |||
endif() | |||
if(MGE_BUILD_IMPERATIVE_RT) | |||
add_compile_definitions(MGB_ENABLE_IMPERATIVE_RUNTIME) | |||
set(CMAKE_CXX_STANDARD 17) | |||
endif() | |||
@@ -701,7 +710,8 @@ endif() | |||
set (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${MARCH}") | |||
set(MGB_ENABLE_IMPERATIVE ${MGE_BUILD_IMPERATIVE_RT}) | |||
set(MGE_VERSION_SCRIPT ${PROJECT_SOURCE_DIR}/src/version.ld CACHE INTERNAL "Path to linker version script") | |||
# Write out megbrain_build_config.h | |||
# It defines macros needed by both megbrain and dnn | |||
configure_file(src/megbrain_build_config.h.in ${CMAKE_CURRENT_BINARY_DIR}/genfiles/megbrain_build_config.h) | |||
@@ -831,3 +841,8 @@ if(MSVC OR WIN32) | |||
endif() | |||
endforeach() | |||
endif() | |||
if(MGE_WITH_JIT_MLIR) | |||
add_subdirectory(tools/mlir/mgb-opt) | |||
add_subdirectory(tools/mlir/mgb-file-check) | |||
endif() |
@@ -683,6 +683,53 @@ protected: | |||
}; | |||
/** | |||
* \brief base class for AdaptivePooling | |||
*/ | |||
class AdaptivePoolingBase : public OperatorBase { | |||
DEF_OPR_IMPL_CTOR(AdaptivePoolingBase, OperatorBase); | |||
DEF_OPR_PARAM(AdaptivePooling); | |||
protected: | |||
param::Pooling deduce_pooling_param(const TensorLayout& src, | |||
const TensorLayout& dst); | |||
}; | |||
class AdaptivePoolingForward : public AdaptivePoolingBase { | |||
DEF_OPR_IMPL(AdaptivePoolingForward, AdaptivePoolingBase, 1, 1); | |||
public: | |||
/** | |||
* \param[in] src input tensor | |||
* \param[out] dst output tensor | |||
*/ | |||
virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) = 0; | |||
virtual size_t get_workspace_in_bytes(const TensorLayout& src, | |||
const TensorLayout& dst) = 0; | |||
}; | |||
using AdaptivePooling = AdaptivePoolingForward; | |||
class AdaptivePoolingBackward : public AdaptivePoolingBase { | |||
DEF_OPR_IMPL(AdaptivePoolingBackward, AdaptivePoolingBase, 3, 1); | |||
public: | |||
/** | |||
* \param[in] src the `src' parameter in AdaptivePoolingForward::exec | |||
* \param[in] dst the `dst' parameter in AdaptivePoolingForward::exec | |||
* \param[in] diff the backpropagated gradient wrt. dst | |||
* \param[out] grad the backpropagated gradient wrt. src | |||
*/ | |||
virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) = 0; | |||
virtual size_t get_workspace_in_bytes(const TensorLayout& src, | |||
const TensorLayout& dst, | |||
const TensorLayout& diff, | |||
const TensorLayout& grad) = 0; | |||
}; | |||
/** | |||
* \brief base class for Local | |||
*/ | |||
class LocalBase : public OperatorBase { | |||
@@ -179,6 +179,11 @@ pdef('Axis').add_fields('int32', 'axis', 0) | |||
add_enum_alias('Format', 'ConvolutionV0') | |||
) | |||
(pdef('AdaptivePooling'). | |||
add_enum_alias('Mode', 'Pooling'). | |||
add_enum_alias('Format', 'ConvolutionV0') | |||
) | |||
(pdef('LRN', | |||
'see ImageNet Classification with Deep Convolutional Neural Networks for' | |||
' meaning of the fields'). | |||
@@ -55,8 +55,12 @@ void AtlasComputingContext::memcpy(void* dst, const void* src, | |||
default: | |||
megdnn_throw("bad atlas memcpy kind"); | |||
} | |||
#if MGB_USE_ATLAS_ASYNC_API | |||
acl_check(aclrtMemcpyAsync(dst, size_in_bytes, src, size_in_bytes, | |||
atlas_kind, m_ctx.stream)); | |||
#else | |||
acl_check(aclrtMemcpy(dst, size_in_bytes, src, size_in_bytes, atlas_kind)); | |||
#endif | |||
} | |||
void AtlasComputingContext::memset(void* dst, int value, size_t size_in_bytes) { | |||
@@ -65,7 +69,11 @@ void AtlasComputingContext::memset(void* dst, int value, size_t size_in_bytes) { | |||
} | |||
void AtlasComputingContext::synchronize() { | |||
#if MGB_USE_ATLAS_ASYNC_API | |||
acl_check(aclrtSynchronizeStream(m_ctx.stream)); | |||
#else | |||
return; | |||
#endif | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,37 @@ | |||
/** | |||
* \file dnn/src/common/adaptive_pooling.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megdnn/opr_param_defs.h" | |||
#include "megdnn/oprs.h" | |||
#include "src/common/utils.h" | |||
namespace megdnn { | |||
param::Pooling AdaptivePoolingBase::deduce_pooling_param( | |||
const TensorLayout& src, const TensorLayout& dst) { | |||
megdnn_assert(param().format == param::AdaptivePooling::Format::NCHW); | |||
size_t IH = src.shape[2], IW = src.shape[3], OH = dst.shape[2], | |||
OW = dst.shape[3]; | |||
param::Pooling ret; | |||
ret.mode = param().mode; | |||
ret.format = param().format; | |||
ret.pad_h = ret.pad_w = 0; | |||
ret.stride_h = floor(IH / OH); | |||
ret.stride_w = floor(IW / OW); | |||
ret.window_h = IH - (OH - 1) * ret.stride_h; | |||
ret.window_w = IW - (OW - 1) * ret.stride_w; | |||
return ret; | |||
} | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -392,8 +392,6 @@ TensorLayout TensorLayout::broadcast(const TensorShape& tshape) const { | |||
TensorLayout result{dtype, format}; | |||
result.ndim = tshape.ndim; | |||
for (size_t i = 0; i < tshape.ndim; i++) { | |||
megdnn_throw_if(!tshape.shape[i], tensor_reshape_error, | |||
megdnn_mangle("target shape is 0")); | |||
result.shape[i] = tshape.shape[i]; | |||
result.stride[i] = (tshape.shape[i] == 1); | |||
} | |||
@@ -409,8 +407,6 @@ TensorLayout TensorLayout::broadcast(const TensorShape& tshape) const { | |||
for (size_t i = 0; i < tshape.ndim; ++i) { | |||
int target_idx = tshape.ndim - i - 1; | |||
int cur_idx = ndim - i - 1; | |||
megdnn_throw_if(!tshape.shape[target_idx], tensor_reshape_error, | |||
megdnn_mangle("target shape is 0")); | |||
size_t cur_shape = (cur_idx >= 0 ? shape[cur_idx] : 1), | |||
cur_stride = (cur_idx >= 0 ? stride[cur_idx] : 0); | |||
if (tshape.shape[target_idx] != cur_shape) { | |||
@@ -434,10 +430,16 @@ TensorLayout TensorLayout::broadcast(const TensorShape& tshape) const { | |||
bool TensorLayout::try_reshape(TensorLayout& result, | |||
const TensorShape& tshp) const { | |||
megdnn_assert(tshp.ndim); | |||
bool is_empty_shape = false; | |||
for (size_t i = 0; i < tshp.ndim; ++i) { | |||
megdnn_throw_if(!tshp.shape[i], tensor_reshape_error, | |||
megdnn_mangle(ssprintf("bad target tshp: %s", | |||
tshp.to_string().c_str()))); | |||
if (!tshp.shape[i]) { | |||
megdnn_throw_if(!format.is_default(), tensor_reshape_error, | |||
megdnn_mangle(ssprintf("bad target tshp: %s", | |||
tshp.to_string().c_str()))); | |||
is_empty_shape = true; | |||
break; | |||
} | |||
} | |||
megdnn_throw_if( | |||
@@ -454,6 +456,11 @@ bool TensorLayout::try_reshape(TensorLayout& result, | |||
result.format = this->format; | |||
result.TensorShape::operator=(tshp); | |||
if (is_empty_shape) { | |||
result.init_contiguous_stride(); | |||
return true; | |||
} | |||
size_t sdim = 0, prod = 1, cont_sdim = 0; | |||
for (size_t i = 0; i < tshp.ndim; ++i) { | |||
megdnn_assert(cont_sdim < cont.ndim); | |||
@@ -199,6 +199,8 @@ private: | |||
cb(Remap) \ | |||
cb(RemapBackwardData) \ | |||
cb(RemapBackwardMat) \ | |||
cb(AdaptivePoolingForward) \ | |||
cb(AdaptivePoolingBackward) \ | |||
/*! | |||
* \brief specialize HandleImpl::create_operator for a single opr type; | |||
@@ -0,0 +1,53 @@ | |||
/** | |||
* \file dnn/src/cuda/adaptive_pooling/opr_impl.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/cuda/adaptive_pooling/opr_impl.h" | |||
#include "src/cuda/utils.h" | |||
namespace megdnn { | |||
namespace cuda { | |||
void AdaptivePoolingForwardImpl::exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) { | |||
auto opr = handle()->create_operator<PoolingForward>(); | |||
opr->param() = deduce_pooling_param(src.layout, dst.layout); | |||
opr->exec(src, dst, workspace); | |||
} | |||
size_t AdaptivePoolingForwardImpl::get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& dst) { | |||
auto opr = handle()->create_operator<PoolingForward>(); | |||
opr->param() = deduce_pooling_param(src, dst); | |||
return opr->get_workspace_in_bytes(src, dst); | |||
} | |||
void AdaptivePoolingBackwardImpl::exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_in dst, | |||
_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) { | |||
auto opr = handle()->create_operator<PoolingBackward>(); | |||
opr->param() = deduce_pooling_param(src.layout, dst.layout); | |||
opr->exec(src, dst, diff, grad, workspace); | |||
} | |||
size_t AdaptivePoolingBackwardImpl::get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& dst, | |||
const TensorLayout& diff, const TensorLayout& grad) { | |||
auto opr = handle()->create_operator<PoolingBackward>(); | |||
opr->param() = deduce_pooling_param(src, dst); | |||
return opr->get_workspace_in_bytes(src, dst, diff, grad); | |||
} | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,44 @@ | |||
/** | |||
* \file dnn/src/cuda/adaptive_pooling/opr_impl.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megdnn/oprs.h" | |||
#include "src/cuda/cudnn_wrapper.h" | |||
#include "src/cuda/utils.h" | |||
namespace megdnn { | |||
namespace cuda { | |||
class AdaptivePoolingForwardImpl final : public AdaptivePoolingForward { | |||
public: | |||
using AdaptivePoolingForward::AdaptivePoolingForward; | |||
void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout& src, | |||
const TensorLayout& dst) override; | |||
}; | |||
class AdaptivePoolingBackwardImpl final : public AdaptivePoolingBackward { | |||
public: | |||
using AdaptivePoolingBackward::AdaptivePoolingBackward; | |||
void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout& src, | |||
const TensorLayout& dst, | |||
const TensorLayout& diff, | |||
const TensorLayout& grad) override; | |||
}; | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -11,6 +11,7 @@ | |||
#include "src/common/handle_impl.h" | |||
#include "src/cuda/adaptive_pooling/opr_impl.h" | |||
#include "src/cuda/add_update/opr_impl.h" | |||
#include "src/cuda/argmxx/opr_impl.h" | |||
#include "src/cuda/argsort/opr_impl.h" | |||
@@ -72,6 +72,7 @@ namespace indexing_multi_axis_vec { | |||
#define cb0(_dtype) \ | |||
MEGDNN_FOREACH_TENSOR_NDIM(INST, DTypeTrait<_dtype>::ctype) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb0) | |||
cb0(::megdnn::dtype::Bool) | |||
#undef cb0 | |||
#undef INST | |||
@@ -39,6 +39,11 @@ __device__ void atomicAdd(megdnn::dt_int16 *, megdnn::dt_int16) { | |||
((int*)0)[0] = 1; | |||
} | |||
__device__ void atomicAdd(megdnn::dt_bool *, megdnn::dt_bool) { | |||
__trap(); | |||
((int*)0)[0] = 1; | |||
} | |||
#define KERN_APPLY_OPR_OPR \ | |||
::megdnn::cuda::indexing_multi_axis_vec::OprAtomicIncr | |||
#include "./kern_apply_opr_impl.cuinl" | |||
@@ -120,6 +120,7 @@ void ExecImpl<Opr>::dispatch_exec() { | |||
case DTypeTrait<_dtype>::enumv: \ | |||
return dispatch_exec_ctype<DTypeTrait<_dtype>::ctype>(); | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
cb(::megdnn::dtype::Bool) | |||
#undef cb | |||
default: | |||
megdnn_throw("bad dtype"); | |||
@@ -0,0 +1,52 @@ | |||
/** | |||
* \file dnn/src/naive/adaptive_pooling/opr_impl.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/naive/adaptive_pooling/opr_impl.h" | |||
#include "src/common/opr_delegate.h" | |||
#include "src/common/utils.h" | |||
#include "src/naive/handle.h" | |||
namespace megdnn { | |||
namespace naive { | |||
void AdaptivePoolingForwardImpl::exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) { | |||
MEGDNN_DISPATCH_CPU_KERN(static_cast<naive::HandleImpl*>(handle()), { | |||
auto opr = inplace_cpu_handle()->create_operator<PoolingForward>(); | |||
opr->param() = deduce_pooling_param(src.layout, dst.layout); | |||
opr->exec(src, dst, workspace); | |||
}); | |||
} | |||
void AdaptivePoolingBackwardImpl::exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_in dst, | |||
_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) { | |||
MEGDNN_DISPATCH_CPU_KERN(static_cast<naive::HandleImpl*>(handle()), { | |||
auto opr = inplace_cpu_handle()->create_operator<PoolingBackward>(); | |||
opr->param() = deduce_pooling_param(src.layout, dst.layout); | |||
opr->exec(src, dst, diff, grad, workspace); | |||
}); | |||
} | |||
size_t AdaptivePoolingBackwardImpl::get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& dst, | |||
const TensorLayout& diff, const TensorLayout& grad) { | |||
auto opr = inplace_cpu_handle()->create_operator<PoolingBackward>(); | |||
opr->param() = deduce_pooling_param(src, dst); | |||
return opr->get_workspace_in_bytes(src, dst, diff, grad); | |||
} | |||
} // namespace naive | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,43 @@ | |||
/** | |||
* \file dnn/src/naive/adaptive_pooling/opr_impl.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megdnn/oprs.h" | |||
#include "src/common/utils.h" | |||
namespace megdnn { | |||
namespace naive { | |||
class AdaptivePoolingForwardImpl : public AdaptivePoolingForward { | |||
public: | |||
using AdaptivePoolingForward::AdaptivePoolingForward; | |||
void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout&, | |||
const TensorLayout&) override { | |||
return 0; | |||
} | |||
}; | |||
class AdaptivePoolingBackwardImpl : public AdaptivePoolingBackward { | |||
public: | |||
using AdaptivePoolingBackward::AdaptivePoolingBackward; | |||
void exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout& src, | |||
const TensorLayout& dst, | |||
const TensorLayout& diff, | |||
const TensorLayout& grad) override; | |||
}; | |||
} // namespace naive | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -13,6 +13,7 @@ | |||
#include "src/common/handle_impl.h" | |||
#include "src/naive/adaptive_pooling/opr_impl.h" | |||
#include "src/naive/add_update/opr_impl.h" | |||
#include "src/naive/argmxx/opr_impl.h" | |||
#include "src/naive/argsort/opr_impl.h" | |||
@@ -88,6 +88,7 @@ void dispatch_exec(HandleImpl *handle, | |||
} | |||
switch (data.layout.dtype.enumv()) { | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
cb(::megdnn::dtype::Bool) | |||
default: | |||
megdnn_throw(megdnn_mangle("bad dtype")); | |||
} | |||
@@ -0,0 +1,55 @@ | |||
/** | |||
* \file dnn/test/common/adaptive_pooling.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include <cstddef> | |||
#include "megdnn/basic_types.h" | |||
#include "megdnn/opr_param_defs.h" | |||
namespace megdnn { | |||
namespace test { | |||
namespace adaptive_pooling { | |||
struct TestArg { | |||
param::AdaptivePooling param; | |||
TensorShape ishape; | |||
TensorShape oshape; | |||
TestArg(param::AdaptivePooling param, TensorShape ishape, | |||
TensorShape oshape) | |||
: param(param), ishape(ishape), oshape(oshape) {} | |||
}; | |||
inline std::vector<TestArg> get_args() { | |||
std::vector<TestArg> args; | |||
using Param = param::AdaptivePooling; | |||
using Mode = param::AdaptivePooling::Mode; | |||
for (size_t i = 36; i < 40; ++i) { | |||
args.emplace_back(Param{Mode::AVERAGE}, TensorShape{2, 3, i, i + 1}, | |||
TensorShape{2, 3, i - 4, i - 2}); | |||
args.emplace_back(Param{Mode::MAX}, TensorShape{2, 3, i, i + 1}, | |||
TensorShape{2, 3, i - 4, i - 2}); | |||
} | |||
for (size_t i = 5; i < 10; ++i) { | |||
args.emplace_back(Param{Mode::AVERAGE}, TensorShape{2, 3, i, i + 1}, | |||
TensorShape{2, 3, i - 3, i - 2}); | |||
args.emplace_back(Param{Mode::MAX}, TensorShape{2, 3, i, i + 1}, | |||
TensorShape{2, 3, i - 3, i - 2}); | |||
} | |||
return args; | |||
} | |||
} // namespace adaptive_pooling | |||
} // namespace test | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -41,6 +41,8 @@ DEF(Images2NeibsForward, 2, true, true); | |||
DEF(Images2NeibsBackward, 2, true, false); | |||
DEF(PoolingForward, 2, true, true); | |||
DEF(PoolingBackward, 4, true, false); | |||
DEF(AdaptivePoolingForward, 2, true, false); | |||
DEF(AdaptivePoolingBackward, 4, true, false); | |||
DEF(LocalForward, 3, true, true); | |||
DEF(LocalBackwardData, 3, true, false); | |||
DEF(LocalBackwardFilter, 3, true, false); | |||
@@ -0,0 +1,97 @@ | |||
/** | |||
* \file dnn/test/cuda/adaptive_pooling.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "test/cuda/fixture.h" | |||
#include "megdnn/tensor_iter.h" | |||
#include "test/common/adaptive_pooling.h" | |||
#include "test/common/checker.h" | |||
#include "src/common/utils.h" | |||
#include "test/cuda/utils.h" | |||
#include <cudnn.h> | |||
#include "test/cuda/benchmark.h" | |||
namespace megdnn { | |||
namespace test { | |||
TEST_F(CUDA, ADAPTIVE_POOLING_FORWARD) { | |||
auto args = adaptive_pooling::get_args(); | |||
using Format = param::AdaptivePooling::Format; | |||
DType dtype = dtype::Float32(); | |||
for (auto&& arg : args) { | |||
auto param = arg.param; | |||
auto src = arg.ishape; | |||
auto dst = arg.oshape; | |||
param.format = Format::NCHW; | |||
Checker<AdaptivePooling> checker(handle_cuda()); | |||
checker.set_epsilon(1e-2); | |||
checker.set_param(param).set_dtype(0, dtype).set_dtype(1, dtype).exec( | |||
TensorShapeArray{src, dst, {}}); | |||
} | |||
} | |||
TEST_F(CUDA, ADAPTIVE_POOLING_BACKWARD) { | |||
auto args = adaptive_pooling::get_args(); | |||
for (auto&& arg : args) { | |||
Checker<AdaptivePoolingBackward> checker(handle_cuda()); | |||
TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32()); | |||
TensorLayout olayout = TensorLayout(arg.oshape, dtype::Float32()); | |||
auto constraint = [this, | |||
arg](CheckerHelper::TensorValueArray& tensors_orig) { | |||
megdnn_assert(tensors_orig.size() == 4); | |||
auto opr = handle_cuda()->create_operator<AdaptivePoolingForward>(); | |||
opr->param() = arg.param; | |||
auto tensors_cuda_storage = CheckerHelper::alloc_tensors( | |||
handle_cuda(), | |||
{tensors_orig[0].layout, tensors_orig[1].layout}, 0); | |||
auto&& tensors_cuda = *tensors_cuda_storage; | |||
auto span = tensors_cuda[0].layout.span(); | |||
auto dst = static_cast<dt_byte*>(tensors_cuda[0].raw_ptr) + | |||
span.low_byte; | |||
auto src = static_cast<const dt_byte*>(tensors_orig[0].raw_ptr) + | |||
span.low_byte; | |||
megdnn_memcpy_H2D(handle_cuda(), dst, src, span.dist_byte()); | |||
auto workspace_size = opr->get_workspace_in_bytes( | |||
tensors_cuda[0].layout, tensors_cuda[1].layout); | |||
auto workspace_cuda = megdnn_malloc(handle_cuda(), workspace_size); | |||
Workspace workspace{static_cast<dt_byte*>(workspace_cuda), | |||
workspace_size}; | |||
opr->exec(tensors_cuda[0], tensors_cuda[1], workspace); | |||
megdnn_free(handle_cuda(), workspace_cuda); | |||
span = tensors_cuda[1].layout.span(); | |||
dst = static_cast<dt_byte*>(tensors_orig[1].raw_ptr) + | |||
span.low_byte; | |||
src = static_cast<const dt_byte*>(tensors_cuda[1].raw_ptr) + | |||
span.low_byte; | |||
megdnn_memcpy_D2H(handle_cuda(), dst, src, span.dist_byte()); | |||
}; | |||
DType dtype = dtype::Float32(); | |||
checker.set_tensors_constraint(constraint) | |||
.set_dtype(0, dtype) | |||
.set_dtype(1, dtype) | |||
.set_dtype(2, dtype) | |||
.set_dtype(3, dtype) | |||
.set_param(arg.param) | |||
.exec(TensorShapeArray{ilayout, olayout, olayout, ilayout}); | |||
} | |||
} | |||
} // namespace test | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -6,7 +6,8 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megdnn/oprs/nn.h" | |||
@@ -37,7 +38,7 @@ std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) { | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 1}); | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 2}); | |||
args.emplace_back(BenchArgs{batch, 4, 256, 256, 32, 7, 2}); | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 1, 1}); | |||
args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 1, 1}); | |||
args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 1}); | |||
@@ -614,11 +615,8 @@ TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_HSWISH) { | |||
param.stride_h = param.stride_w = 1; | |||
param.format = param::ConvBias::Format::CHWN4; | |||
param.nonlineMode = param::ConvBias::NonlineMode::H_SWISH; | |||
checker.set_param(param).execs({{4, 12, 12, 32, 4}, | |||
{4, 3, 3, 16, 4}, | |||
{4, 1, 1, 1, 4}, | |||
{}, | |||
{}}); | |||
checker.set_param(param).execs( | |||
{{4, 12, 12, 32, 4}, {4, 3, 3, 16, 4}, {4, 1, 1, 1, 4}, {}, {}}); | |||
} | |||
TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_CHECK_BOUNDS) { | |||
@@ -1076,7 +1074,6 @@ TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_2) { | |||
} | |||
#if CUDA_VERSION >= 10020 | |||
/// \note: we only check several cases and block sizes in megdnn_test, the full | |||
/// testcases are written in cutlass repository | |||
@@ -1234,8 +1231,7 @@ TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4) { | |||
handle_cuda(), get_resnet50_bench_args(64), | |||
dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f}, | |||
dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, | |||
"INT8_NCHW4_DOTPROD_IMPLICIT_GEMM", | |||
param::ConvBias::Format::NCHW4); | |||
"INT8_NCHW4_DOTPROD_IMPLICIT_GEMM", param::ConvBias::Format::NCHW4); | |||
} | |||
#endif | |||
} // namespace test | |||
@@ -47,8 +47,7 @@ add_custom_target(gen_opr_py DEPENDS ${GEN_OPS_FILE}) | |||
##################### end of opdef generation ######################### | |||
set(VERSION_SCRIPT ${CMAKE_CURRENT_SOURCE_DIR}/src/version.ld) | |||
add_custom_target(_version_ld SOURCES ${VERSION_SCRIPT}) | |||
add_custom_target(_version_ld SOURCES ${MGE_VERSION_SCRIPT}) | |||
add_subdirectory(${PROJECT_SOURCE_DIR}/third_party/pybind11 ${PROJECT_BINARY_DIR}/third_party/pybind11) | |||
pybind11_add_module(${MODULE_NAME} NO_EXTRAS ${SRCS}) | |||
@@ -57,8 +56,21 @@ if (APPLE) | |||
elseif (MSVC OR WIN32) | |||
# Windows does not support implicitly importing data members from DLL. | |||
target_link_libraries(${MODULE_NAME} PRIVATE megbrain megdnn) | |||
message("-- CMAKE_MSVC_RUNTIME_LIBRARY: ${CMAKE_MSVC_RUNTIME_LIBRARY}") | |||
set_target_properties(${MODULE_NAME} PROPERTIES MSVC_RUNTIME_LIBRARY "${CMAKE_MSVC_RUNTIME_LIBRARY}") | |||
else() | |||
target_link_libraries(${MODULE_NAME} PRIVATE megengine_export -Wl,--version-script=${VERSION_SCRIPT}) | |||
if (MGE_WITH_PYTHON_MODULE) | |||
# use to fix runtime crash when build both mgb(MGE_WITH_PYTHON_MODULE) and imperative(MGE_BUILD_IMPERATIVE_RT) | |||
target_link_libraries(${MODULE_NAME} PRIVATE megengine_export -Wl,--version-script=${MGE_VERSION_SCRIPT}) | |||
else() | |||
# use to reduce whl size by depend on megbrain/dnn directly, caused by cmake create two cuda fatbin | |||
# elf section on both megengine_export and target which depend on megengine_export | |||
target_link_libraries(${MODULE_NAME} PRIVATE megbrain megdnn -Wl,--version-script=${MGE_VERSION_SCRIPT}) | |||
if (MGE_WITH_DISTRIBUTED) | |||
message("-- Imperative configured to link megray") | |||
target_link_libraries(${MODULE_NAME} PRIVATE megray) | |||
endif() | |||
endif() | |||
endif() | |||
target_include_directories(${MODULE_NAME} PUBLIC src/include PRIVATE ${PYTHON_INCLUDE_DIRS} ${NUMPY_INCLUDE_DIR}) | |||
@@ -76,7 +76,7 @@ from .logger import enable_debug_log, get_logger, set_log_file, set_log_level | |||
from .serialization import load, save | |||
from .tensor import Parameter, Tensor, tensor | |||
from .version import __version__ | |||
from .core import cgtools | |||
from .utils import comp_graph_tools as cgtools | |||
_set_fork_exec_path_for_timed_func( | |||
sys.executable, | |||
@@ -20,7 +20,7 @@ class GradManager: | |||
the forward operations start and when all resources should be released. A typical usage of | |||
GradManager is as follows: | |||
.. codeblock:: | |||
.. code-block:: | |||
gm = GradManager() | |||
gm.attach(model.parameters()) | |||
@@ -32,7 +32,7 @@ class GradManager: | |||
You can also use `record()` and `release()` method instead of `with` context: | |||
.. codeblock:: | |||
.. code-block:: | |||
gm = GradManager() | |||
gm.attach(model.parameters()) | |||
@@ -50,7 +50,7 @@ class GradManager: | |||
processes. Users will finally get the averaged gradients if an "AllReduce" | |||
callback is registered as follows: | |||
.. codeblock:: | |||
.. code-block:: | |||
import megengine.distributed as dist | |||
@@ -71,7 +71,7 @@ class GradManager: | |||
r"""Registers parameters that gradients should be calculated with respect to. | |||
Callback Functions should have a signature like this: | |||
.. codeblock:: | |||
.. code-block:: | |||
def cb(param: Tensor, grad: Tensor) -> Tensor: | |||
# do something | |||
@@ -100,6 +100,8 @@ class GradManager: | |||
:param ys: outputs of forward operators, e.g., the loss tensor | |||
:param dys: derivatives of ys | |||
""" | |||
from ..functional import ones_like | |||
global backwarding_grad_manager | |||
cache = backwarding_grad_manager | |||
backwarding_grad_manager = self | |||
@@ -113,7 +115,7 @@ class GradManager: | |||
if not isinstance(ys, (tuple, list)): | |||
ys = [ys] | |||
if dys is None: | |||
dys = [tensor(1.0).broadcast(y.shape) for y in ys] | |||
dys = [ones_like(y) for y in ys] | |||
if not isinstance(dys, (tuple, list)): | |||
dys = [dys] | |||
try: | |||
@@ -11,4 +11,3 @@ import sys | |||
from .tensor import Tensor | |||
from .tensor.megbrain_graph import Graph | |||
from .utils import comp_graph_tools as cgtools |
@@ -22,11 +22,13 @@ class Device: | |||
else: | |||
self._cn = CompNode(device) | |||
self.logical_name = self._cn.logical_name | |||
def to_c(self): | |||
return self._cn | |||
def __repr__(self): | |||
return "{}({})".format(type(self).__qualname__, self) | |||
return "{}({})".format(type(self).__qualname__, repr(self._cn)) | |||
def __str__(self): | |||
return str(self._cn) | |||
@@ -160,7 +160,7 @@ def subtensor_grad_fn(op, inputs, outputs, input_requires_grad): | |||
def make_grad(grad_op, dy): | |||
grad = ( | |||
TensorWrapper(0, dtype=dy.dtype, device=dy.device) | |||
.broadcast(TensorWrapper(input_shape)) | |||
._broadcast(TensorWrapper(input_shape)) | |||
.__wrapped__ | |||
) | |||
(dx,) = apply(grad_op, grad, dy, *params) | |||
@@ -186,7 +186,7 @@ def indexingMultiAxisVec_grad_fn(op, inputs, outputs, input_requires_grad): | |||
def make_grad(grad_op, dy): | |||
grad = ( | |||
TensorWrapper(0, dtype=dy.dtype, device=dy.device) | |||
.broadcast(TensorWrapper(input_shape)) | |||
._broadcast(TensorWrapper(input_shape)) | |||
.__wrapped__ | |||
) | |||
(dx,) = apply(grad_op, grad, dy, *params) | |||
@@ -50,8 +50,8 @@ class Function: | |||
""" | |||
Applies operations to ``inputs`` and returns results. It must be overriden by all subclasses. | |||
:param input: Input tensors. | |||
:return: A tuple of Tensor or a single Tensor. | |||
:param input: input tensors. | |||
:return: a tuple of Tensor or a single Tensor. | |||
.. note:: | |||
@@ -64,12 +64,12 @@ class Function: | |||
""" | |||
Compute the gradient of the forward function. It must be overriden by all subclasses. | |||
:param output_grads: gradients of outputs that are returned by :meth:`~.function.Function.forward` | |||
:param output_grads: gradients of outputs that are returned by :meth:`~.function.Function.forward`. | |||
.. note:: | |||
.. note:: | |||
In case when some tensors of outputs are not related to loss function, the corresponding | |||
values in ``output_grads`` would be ``None``. | |||
In case when some tensors of outputs are not related to loss function, the corresponding | |||
values in ``output_grads`` would be ``None``. | |||
.. note:: | |||
@@ -173,7 +173,7 @@ def unpack_getitem(inp, tuple_val, *, allow_newaxis=True): | |||
item.append(True) | |||
v = get_index(v) | |||
assert np.issubdtype(v.dtype, np.integer) or np.issubdtype( | |||
v.dtype, np.bool | |||
v.dtype, np.bool_ | |||
), "var type in the subscript must be int or bool" | |||
tensors.append(v) | |||
@@ -267,7 +267,7 @@ def setitem(tensor, index, value): | |||
value.shape, tmp_result.shape | |||
) | |||
) | |||
value = value.broadcast(tmp_result.shape) | |||
value = value._broadcast(tmp_result.shape) | |||
if use_subtensor: | |||
op = builtin.SetSubtensor(items=items) | |||
else: | |||
@@ -8,6 +8,7 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import collections | |||
import json | |||
import os | |||
import threading | |||
import weakref | |||
from concurrent.futures import Future, ThreadPoolExecutor | |||
@@ -49,7 +50,16 @@ class Graph(_imperative_rt.ComputingGraph): | |||
def execute(self, *args): | |||
assert self._future is None | |||
self._future = self._executor.submit(self._function.execute, *args) | |||
def wrapped(*args): | |||
try: | |||
self._function.execute(*args) | |||
except Exception as exc: | |||
for i in self._function._all_rendezvous: | |||
i.set_exception(str(exc)) | |||
raise exc | |||
self._future = self._executor.submit(wrapped, *args) | |||
def wait(self): | |||
assert self._future is not None | |||
@@ -275,6 +285,7 @@ def dump_graph( | |||
keep_param_name: bool = False, | |||
keep_opr_priority: bool = False, | |||
strip_info_file=None, | |||
append_json=False | |||
): | |||
"""serialize the computing graph of `output_vars` and get byte result. | |||
@@ -295,6 +306,9 @@ def dump_graph( | |||
:param keep_opr_priority: whether to keep priority setting for operators | |||
:param strip_info_file: a string for path or a file handler. if is not None, | |||
then the dump information for code strip would be written to ``strip_info_file`` | |||
:param append_json: will be check when `strip_info_file` is not None. if set | |||
true, the information for code strip will be append to strip_info_file. | |||
if set false, will rewrite strip_info_file | |||
:return: dump result as byte string, and an instance of namedtuple | |||
:class:`CompGraphDumpResult`, whose fields are: | |||
@@ -342,10 +356,25 @@ def dump_graph( | |||
if strip_info_file is not None: | |||
if isinstance(strip_info_file, str): | |||
strip_info_file = open(strip_info_file, "w") | |||
strip_info = json.loads(_imperative_rt.get_info_for_strip(ov)) | |||
strip_info["hash"] = dump_info.content_hash | |||
json.dump(strip_info, strip_info_file) | |||
if not os.path.exists(strip_info_file): | |||
os.mknod(strip_info_file) | |||
strip_info_file = open(strip_info_file, "r+") | |||
new_strip_dict = json.loads(_imperative_rt.get_info_for_strip(ov)) | |||
ori_strip_dict = new_strip_dict | |||
json_content = strip_info_file.read() | |||
if append_json and len(json_content) != 0: | |||
# if there are contents in json file. Read them first and then append new information | |||
ori_strip_dict = json.loads(json_content) | |||
for k in ori_strip_dict: | |||
new_strip_dict_v = new_strip_dict.get(k) | |||
if new_strip_dict_v is not None: | |||
for value in new_strip_dict_v: | |||
if not value in ori_strip_dict[k]: | |||
ori_strip_dict[k].append(value) | |||
ori_strip_dict["hash"] = dump_info.content_hash | |||
strip_info_file.seek(0) | |||
strip_info_file.truncate() | |||
json.dump(ori_strip_dict, strip_info_file) | |||
return dump_content, dump_info | |||
@@ -358,7 +387,7 @@ CompGraphLoadResult = collections.namedtuple( | |||
def load_graph(fpath): | |||
"""Load a serialized computing graph from file. | |||
:parma fpath: Path or Handle for the output file | |||
:param fpath: Path or Handle of the input file | |||
:return: An instance of namedtuple :class:`CompGraphLoadResult`, | |||
whose fields are: | |||
@@ -40,6 +40,8 @@ | |||
# All Megvii Modifications are Copyright (C) 2014-2020 Megvii Inc. All rights reserved. | |||
# -------------------------------------------------------------------------------------- | |||
from collections import OrderedDict | |||
from .utils import _toposort, groupby | |||
from .variadic import isvariadic | |||
@@ -159,5 +161,5 @@ def ordering(signatures): | |||
for s in signatures: | |||
if s not in edges: | |||
edges[s] = [] | |||
edges = dict((k, [b for a, b in v]) for k, v in edges.items()) | |||
edges = OrderedDict((k, [b for a, b in v]) for k, v in edges.items()) | |||
return _toposort(edges) |
@@ -100,6 +100,8 @@ def _(data: DeviceTensorND): | |||
@as_raw_tensor.register(np.ndarray) | |||
def _(array: np.ndarray, dtype=None, device=None): | |||
device = None if device is None else as_device(device).to_c() | |||
if 0 in array.strides: | |||
array = array.squeeze().reshape(array.shape) | |||
return RawTensor(put(array, dtype=dtype, device=device)) | |||
@@ -57,7 +57,29 @@ def _transpose(data, axes): | |||
def _broadcast(inp, shape): | |||
def valid_broadcast(src, tar): | |||
def failed(): | |||
raise ValueError( | |||
"the input shape {} can not be broadcasted to target shape {}".format( | |||
src, tar | |||
) | |||
) | |||
if isinstance(src, (TensorBase, TensorWrapperBase)): | |||
src = src.numpy() | |||
if isinstance(tar, (TensorBase, TensorWrapperBase)): | |||
tar = tar.numpy() | |||
if len(src) > len(tar): | |||
failed() | |||
for i in range(min(len(src), len(tar))): | |||
if src[-i - 1] != 1 and src[-i - 1] != tar[-i - 1]: | |||
failed() | |||
shape = utils.astensor1d(shape, inp, dtype="int32", device=inp.device) | |||
valid_broadcast(inp.shape, shape) | |||
(result,) = apply(builtin.Broadcast(), inp, shape) | |||
return result | |||
@@ -158,6 +180,10 @@ def _reduce(mode): | |||
def f(self, axis=None, keepdims: bool = False): | |||
data = self | |||
(data,) = utils.convert_inputs(data) | |||
if mode == "MEAN": | |||
data = data.astype("float32") | |||
elif self.dtype == np.bool_: | |||
data = data.astype("int32") | |||
if axis is None: | |||
data = data.reshape(-1) | |||
assert not keepdims, "can not set axis=None and keepdims=True" | |||
@@ -180,6 +206,9 @@ def _reduce(mode): | |||
if not keepdims: | |||
result = _remove_axis(result, axis) | |||
if self.dtype == np.bool_: | |||
if mode in ["MIN", "MAX"]: | |||
result = result.astype("bool") | |||
return result | |||
return f | |||
@@ -203,7 +232,8 @@ def _todo(*_): | |||
def _expand_args(args): | |||
if len(args) == 1: | |||
if isinstance( | |||
args[0], (collections.abc.Sequence, TensorBase, TensorWrapperBase) | |||
args[0], | |||
(collections.abc.Sequence, TensorBase, TensorWrapperBase, np.ndarray), | |||
): | |||
args = args[0] | |||
return args | |||
@@ -366,7 +396,8 @@ class ArrayMethodMixin(abc.ABC): | |||
def reshape(self, *args): | |||
return _reshape(self, _expand_args(args)) | |||
def broadcast(self, *args): | |||
# FIXME: remove this method | |||
def _broadcast(self, *args): | |||
return _broadcast(self, _expand_args(args)) | |||
def transpose(self, *args): | |||
@@ -377,7 +408,38 @@ class ArrayMethodMixin(abc.ABC): | |||
def flatten(self): | |||
return self.reshape(-1) | |||
sum = _reduce("SUM") | |||
def sum(self, axis=None, keepdims: bool = False): | |||
r"""Returns the sum of each row of the input tensor in the given dimension ``axis``. | |||
If ``axis`` is a list of axises, reduce over all of them. | |||
If ``keepdims`` is ``True``, the shape of output tensor is the same as the input tensor, except in the dimension(s) ``axis`` where it is of size 1. Otherwise, ``axis`` is squeezed(see :meth:`~.functional.tensor.squeeze`). | |||
Same for prod/mean/max/min. | |||
:param axis: the dimension or dimensions to reduce. | |||
:param keepdim: whether the output tensor has ndim retained or not. | |||
:return: output tensor. | |||
Examples: | |||
.. testcode:: | |||
from megengine import tensor | |||
a = tensor([False, True, True, False]) | |||
b = tensor([1.0, 2.0, 3.0, 4.0]) | |||
print(a.sum().numpy()) | |||
print(b.sum().numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[2] | |||
[10.] | |||
""" | |||
return _reduce("SUM")(self, axis, keepdims) | |||
prod = _reduce("PRODUCT") | |||
min = _reduce("MIN") | |||
max = _reduce("MAX") | |||
@@ -16,39 +16,74 @@ from ..ops.special import Const | |||
from ..tensor.core import OpBase, TensorBase, TensorWrapperBase, apply | |||
def dtype_promotion(raw_inputs): | |||
def add_dtype(i): | |||
if type(i) == int: | |||
return np.array(i, dtype=np.int32) | |||
if type(i) == float: | |||
return np.array(i, dtype=np.float32) | |||
if type(i) == bool: | |||
return np.array(i, dtype=np.bool_) | |||
return None | |||
scalar_inputs = [ | |||
add_dtype(i) for i in raw_inputs if not hasattr(i, "dtype") and add_dtype(i) | |||
] | |||
inputs = [i for i in raw_inputs if hasattr(i, "dtype")] | |||
assert len(scalar_inputs + inputs) > 0 | |||
dtype = None | |||
if len(inputs) > 0: | |||
dtype = np.result_type(*inputs) | |||
dtype_all = np.result_type(*(inputs + scalar_inputs)) | |||
assert ( | |||
dtype != np.float64 and dtype != np.int64 | |||
), "unsupport dtype {} by dtype_promotion, please use explict type convert".format( | |||
dtype | |||
) | |||
if dtype_all == np.bool_: | |||
for i in raw_inputs: | |||
if not hasattr(i, "dtype") or i.dtype != np.bool_: | |||
raise TypeError( | |||
"bool dtype can not be operated with an element without bool dtype" | |||
) | |||
if dtype_all == np.float64: | |||
dtype_all = np.float32 | |||
return dtype_all | |||
def dtype_promotion(inputs): | |||
""" | |||
Returns the dtype that would result from performing an arithmetic | |||
operation on the provided input tensors and scalars. | |||
""" | |||
# map numpy.dtype.kind to priority | |||
category_priority = { | |||
"f": 3, # floating-point | |||
"i": 2, # signed integer | |||
"u": 2, # unsigned integer | |||
"b": 1, # boolean | |||
} | |||
def scalar2dtype(x): | |||
""" | |||
For scalar `x`, returns its corresponding type. A floating point scalar | |||
has dtype 'float32'. An integral non-boolean scalar has dtype 'int32'. | |||
A boolean scalar has dtype 'bool'. | |||
""" | |||
if isinstance(x, bool): | |||
return np.bool_ | |||
if isinstance(x, int): | |||
return np.int32 | |||
if isinstance(x, float): | |||
return np.float32 | |||
def promote_types(types, cat): | |||
""" | |||
Returns the data type with sufficient size to hold all types of | |||
category `cat` in the list `types`. | |||
""" | |||
used_types = [ | |||
i for i in types if category_priority.get(np.dtype(i).kind, 0) == cat | |||
] | |||
assert len(used_types) > 0 | |||
res = used_types[0] | |||
for i in used_types: | |||
res = np.promote_types(res, i) | |||
return res | |||
def max_priority(types): | |||
""" | |||
Returns the maximum value of the priority of each type in the list | |||
`types`. | |||
""" | |||
if not types: | |||
return 0 | |||
else: | |||
return max([category_priority.get(np.dtype(i).kind, 0) for i in types]) | |||
scalars = [] | |||
tensors = [] | |||
for data in inputs: | |||
if hasattr(data, "dtype"): | |||
tensors.append(data.dtype) | |||
elif isinstance(data, (float, int, bool)): | |||
scalars.append(scalar2dtype(data)) | |||
max_pri_scalars = max_priority(scalars) | |||
max_pri_tensors = max_priority(tensors) | |||
assert max_pri_scalars > 0 or max_pri_tensors > 0 | |||
if max_pri_scalars > max_pri_tensors: | |||
return promote_types(scalars, max_pri_scalars) | |||
else: | |||
return promote_types(tensors, max_pri_tensors) | |||
def get_device(inputs): | |||
@@ -1,9 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from .comp_graph_tools import * |
@@ -26,7 +26,7 @@ def _clear_plasma_store(): | |||
# `_PlasmaStoreManager.__del__` will not be called automaticly in subprocess, | |||
# so this function should be called explicitly | |||
global MGE_PLASMA_STORE_MANAGER | |||
if MGE_PLASMA_STORE_MANAGER is not None: | |||
if MGE_PLASMA_STORE_MANAGER is not None and MGE_PLASMA_STORE_MANAGER.refcount == 0: | |||
del MGE_PLASMA_STORE_MANAGER | |||
MGE_PLASMA_STORE_MANAGER = None | |||
@@ -50,6 +50,7 @@ class _PlasmaStoreManager: | |||
stderr=None if debug_flag else subprocess.DEVNULL, | |||
) | |||
self.__initialized = True | |||
self.refcount = 1 | |||
def __del__(self): | |||
if self.__initialized and self.plasma_store.returncode is None: | |||
@@ -83,6 +84,8 @@ class PlasmaShmQueue: | |||
"Exception happened in starting plasma_store: {}\n" | |||
"Tips: {}".format(str(e), err_info) | |||
) | |||
else: | |||
MGE_PLASMA_STORE_MANAGER.refcount += 1 | |||
self.socket_name = MGE_PLASMA_STORE_MANAGER.socket_name | |||
@@ -133,6 +136,8 @@ class PlasmaShmQueue: | |||
def close(self): | |||
self.queue.close() | |||
self.disconnect_client() | |||
global MGE_PLASMA_STORE_MANAGER | |||
MGE_PLASMA_STORE_MANAGER.refcount -= 1 | |||
_clear_plasma_store() | |||
def cancel_join_thread(self): | |||
@@ -34,14 +34,14 @@ default_collate_err_msg_format = ( | |||
class Collator: | |||
r""" | |||
Used for merge a list of samples to form a mini-batch of Tenor(s). Used when using batched loading from a dataset. | |||
modified from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/collate.py | |||
Used for merging a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a dataset. | |||
Modified from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/collate.py | |||
""" | |||
def apply(self, inputs): | |||
""" | |||
input : sequence_N(tuple(CHW, C, CK)) | |||
output : tuple(NCHW, NC, NCK) | |||
:param input: sequence_N(tuple(CHW, C, CK)). | |||
:return: tuple(NCHW, NC, NCK). | |||
""" | |||
elem = inputs[0] | |||
elem_type = type(elem) | |||
@@ -43,7 +43,7 @@ class DataLoader: | |||
): | |||
r"""Provides a convenient way to iterate on a given dataset. | |||
`DataLoader` combines a dataset with sampler, transform and collator, | |||
`DataLoader` combines a dataset with `sampler`, `transform` and `collator`, | |||
make it flexible to get minibatch continually from a dataset. | |||
:type dataset: Dataset | |||
@@ -53,21 +53,21 @@ class DataLoader: | |||
If specified, :attr:`shuffle` must be ``False``. | |||
:type transform: Transform | |||
:param transform: defined the transforming strategy for a sampled batch. | |||
(default: ``None``) | |||
Default: None | |||
:type collator: Collator | |||
:param collator: defined the merging strategy for a transformed batch. | |||
(default: ``None``) | |||
Default: None | |||
:type num_workers: int | |||
:param num_workers: the number of sub-process to load, transform and collate | |||
the batch. ``0`` means using single-process. (default: ``0``) | |||
the batch. ``0`` means using single-process. Default: 0 | |||
:type timeout: int | |||
:param timeout: if positive, means the timeout value(second) for collecting a | |||
batch from workers. (default: 0) | |||
batch from workers. Default: 0 | |||
:type divide: bool | |||
:param divide: define the paralleling strategy in multi-processing mode. | |||
``True`` means one batch is divided into :attr:`num_workers` pieces, and | |||
the workers will process these pieces parallelly. ``False`` means | |||
different sub-process will process different batch. (default: ``False``) | |||
different sub-process will process different batch. Default: False | |||
""" | |||
@@ -12,7 +12,7 @@ from typing import Tuple | |||
class Dataset(ABC): | |||
r""" | |||
An abstract class for all Datasets | |||
An abstract class for all Datasets. | |||
""" | |||
@abstractmethod | |||
@@ -22,8 +22,8 @@ class Dataset(ABC): | |||
class MapDataset(Dataset): | |||
r""" | |||
An abstract class for map data | |||
__getitem__ and __len__ method are aditionally needed | |||
An abstract class for map data. | |||
__getitem__ and __len__ method are aditionally needed. | |||
""" | |||
@abstractmethod | |||
@@ -41,8 +41,8 @@ class MapDataset(Dataset): | |||
class StreamDataset(Dataset): | |||
r""" | |||
An abstract class for stream data | |||
__iter__ method is aditionally needed | |||
An abstract class for stream data. | |||
__iter__ method is aditionally needed. | |||
""" | |||
@abstractmethod | |||
@@ -21,7 +21,7 @@ logger = get_logger(__name__) | |||
class CIFAR10(VisionDataset): | |||
r""" ``Dataset`` for CIFAR10 meta data | |||
r""" ``Dataset`` for CIFAR10 meta data. | |||
""" | |||
url_path = "http://www.cs.utoronto.ca/~kriz/" | |||
@@ -118,7 +118,7 @@ class COCO(VisionDataset): | |||
self.ids = ids | |||
self.json_category_id_to_contiguous_id = { | |||
v: i + 1 for i, v in enumerate(self.cats.keys()) | |||
v: i + 1 for i, v in enumerate(sorted(self.cats.keys())) | |||
} | |||
self.contiguous_category_id_to_json_id = { | |||
@@ -30,19 +30,18 @@ class ImageFolder(VisionDataset): | |||
r""" | |||
ImageFolder is a class for loading image data and labels from a organized folder. | |||
the folder is expected to be organized as followed | |||
root/cls/xxx.img_ext | |||
The folder is expected to be organized as followed: root/cls/xxx.img_ext | |||
labels are indices of sorted classes in the root directory | |||
Labels are indices of sorted classes in the root directory. | |||
:param root: root directory of an image folder | |||
:param root: root directory of an image folder. | |||
:param loader: a function used to load image from path, | |||
if ``None``, default function that loads | |||
images with PILwill be called | |||
images with PIL will be called. | |||
:param check_valid_func: a function used to check if files in folder are | |||
expected image files, if ``None``, default function | |||
that checks file extensions will be called | |||
:param class_name: if ``True``, return class name instead of class index | |||
that checks file extensions will be called. | |||
:param class_name: if ``True``, return class name instead of class index. | |||
""" | |||
super().__init__(root, order=("image", "image_category")) | |||
@@ -31,7 +31,7 @@ logger = get_logger(__name__) | |||
class ImageNet(ImageFolder): | |||
r""" | |||
Load ImageNet from raw files or folder, expected folder looks like | |||
Load ImageNet from raw files or folder. Expected folder looks like: | |||
.. code-block:: bash | |||
@@ -60,25 +60,25 @@ class ImageNet(ImageFolder): | |||
def __init__(self, root: str = None, train: bool = True, **kwargs): | |||
r""" | |||
initialization: | |||
Initialization: | |||
* if ``root`` contains ``self.target_folder`` depent on ``train``: | |||
* if ``root`` contains ``self.target_folder`` depending on ``train``: | |||
* initialize ImageFolder with target_folder | |||
* initialize ImageFolder with target_folder. | |||
* else: | |||
* if all raw files are in ``root``: | |||
* parse ``self.target_folder`` from raw files | |||
* initialize ImageFolder with ``self.target_folder`` | |||
* parse ``self.target_folder`` from raw files. | |||
* initialize ImageFolder with ``self.target_folder``. | |||
* else: | |||
* raise error | |||
* raise error. | |||
:param root: root directory of imagenet data, if root is ``None``, used default_dataset_root | |||
:param train: if ``True``, load the train split, otherwise load the validation split | |||
:param root: root directory of imagenet data, if root is ``None``, use default_dataset_root. | |||
:param train: if ``True``, load the train split, otherwise load the validation split. | |||
""" | |||
# process the root path | |||
@@ -22,12 +22,12 @@ logger = get_logger(__name__) | |||
class MNIST(VisionDataset): | |||
r""" ``Dataset`` for MNIST meta data | |||
r""" ``Dataset`` for MNIST meta data. | |||
""" | |||
url_path = "http://yann.lecun.com/exdb/mnist/" | |||
""" | |||
url prefix for downloading raw file | |||
Url prefix for downloading raw file. | |||
""" | |||
raw_file_name = [ | |||
"train-images-idx3-ubyte.gz", | |||
@@ -36,7 +36,7 @@ class MNIST(VisionDataset): | |||
"t10k-labels-idx1-ubyte.gz", | |||
] | |||
""" | |||
raw file names of both training set and test set (10k) | |||
Raw file names of both training set and test set (10k). | |||
""" | |||
raw_file_md5 = [ | |||
"f68b3c2dcbeaaa9fbdd348bbdeb94873", | |||
@@ -45,7 +45,7 @@ class MNIST(VisionDataset): | |||
"ec29112dd5afa0611ce80d1b7f02629c", | |||
] | |||
""" | |||
md5 for checking raw files | |||
Md5 for checking raw files. | |||
""" | |||
def __init__( | |||
@@ -57,10 +57,10 @@ class MNIST(VisionDataset): | |||
): | |||
r""" | |||
:param root: path for mnist dataset downloading or loading, if ``None``, | |||
set ``root`` to the ``_default_root`` | |||
:param train: if ``True``, loading trainingset, else loading test set | |||
set ``root`` to the ``_default_root``. | |||
:param train: if ``True``, loading trainingset, else loading test set. | |||
:param download: if raw files do not exists and download sets to ``True``, | |||
download raw files and process, otherwise raise ValueError, default is True | |||
download raw files and process, otherwise raise ValueError, default is True. | |||
""" | |||
super().__init__(root, order=("image", "image_category")) | |||
@@ -81,7 +81,7 @@ class Objects365(VisionDataset): | |||
self.ids = ids | |||
self.json_category_id_to_contiguous_id = { | |||
v: i + 1 for i, v in enumerate(self.cats.keys()) | |||
v: i + 1 for i, v in enumerate(sorted(self.cats.keys())) | |||
} | |||
self.contiguous_category_id_to_json_id = { | |||
@@ -75,6 +75,8 @@ class PascalVOC(VisionDataset): | |||
else: | |||
raise NotImplementedError | |||
self.img_infos = dict() | |||
def __getitem__(self, index): | |||
target = [] | |||
for k in self.order: | |||
@@ -107,9 +109,8 @@ class PascalVOC(VisionDataset): | |||
mask = mask[:, :, np.newaxis] | |||
target.append(mask) | |||
elif k == "info": | |||
if image is None: | |||
image = cv2.imread(self.images[index], cv2.IMREAD_COLOR) | |||
info = [image.shape[0], image.shape[1], self.file_names[index]] | |||
info = self.get_img_info(index, image) | |||
info = [info["height"], info["width"], info["file_name"]] | |||
target.append(info) | |||
else: | |||
raise NotImplementedError | |||
@@ -119,6 +120,17 @@ class PascalVOC(VisionDataset): | |||
def __len__(self): | |||
return len(self.images) | |||
def get_img_info(self, index, image=None): | |||
if index not in self.img_infos: | |||
if image is None: | |||
image = cv2.imread(self.images[index], cv2.IMREAD_COLOR) | |||
self.img_infos[index] = dict( | |||
height=image.shape[0], | |||
width=image.shape[1], | |||
file_name=self.file_names[index], | |||
) | |||
return self.img_infos[index] | |||
def _trans_mask(self, mask): | |||
label = np.ones(mask.shape[:2]) * 255 | |||
for i in range(len(self.class_colors)): | |||
@@ -171,25 +183,3 @@ class PascalVOC(VisionDataset): | |||
"train", | |||
"tvmonitor", | |||
) | |||
class_colors = [ | |||
[0, 0, 128], | |||
[0, 128, 0], | |||
[0, 128, 128], | |||
[128, 0, 0], | |||
[128, 0, 128], | |||
[128, 128, 0], | |||
[128, 128, 128], | |||
[0, 0, 64], | |||
[0, 0, 192], | |||
[0, 128, 64], | |||
[0, 128, 192], | |||
[128, 0, 64], | |||
[128, 0, 192], | |||
[128, 128, 64], | |||
[128, 128, 192], | |||
[0, 64, 0], | |||
[0, 64, 128], | |||
[0, 192, 0], | |||
[0, 192, 128], | |||
[128, 64, 0], | |||
] |
@@ -28,25 +28,25 @@ class Sampler(ABC): | |||
seed=None, | |||
): | |||
r""" | |||
An abstract class for all sampler | |||
An abstract class for all sampler. | |||
:type dataset: `dataset` | |||
:param dataset: dataset to sample from | |||
:param dataset: dataset to sample from. | |||
:type batch_size: positive integer | |||
:param batch_size: batch size for batch method | |||
:param batch_size: batch size for batch method. | |||
:type drop_last: bool | |||
:param drop_last: set ``True`` to drop the last incomplete batch, | |||
if the dataset size is not divisible by the batch size. If ``False`` and | |||
the size of dataset is not divisible by the batch_size, then the last batch will | |||
be smaller. (default: ``False``) | |||
be smaller. Default: False | |||
:type num_samples: positive integer | |||
:param num_samples: number of samples assigned to one rank | |||
:param num_samples: number of samples assigned to one rank. | |||
:type world_size: positive integer | |||
:param world_size: number of ranks | |||
:param world_size: number of ranks. | |||
:type rank: non-negative integer within 0 and world_size | |||
:param rank: rank id, non-negative interger within 0 and ``world_size`` | |||
:param rank: rank id, non-negative interger within 0 and ``world_size``. | |||
:type seed: non-negative integer | |||
:param seed: seed for random operators | |||
:param seed: seed for random operators. | |||
""" | |||
if ( | |||
not isinstance(batch_size, int) | |||
@@ -103,15 +103,15 @@ class Sampler(ABC): | |||
def sample(self): | |||
""" | |||
return a list contains all sample indices | |||
Return a list contains all sample indices. | |||
""" | |||
raise NotImplementedError | |||
def scatter(self, indices) -> List: | |||
r""" | |||
scatter method is used for splitting indices into subset, each subset | |||
Scatter method is used for splitting indices into subset, each subset | |||
will be assigned to a rank. Indices are evenly splitted by default. | |||
If customized indices assignment method is needed, please rewrite this method | |||
If customized indices assignment method is needed, please rewrite this method. | |||
""" | |||
total_size = self.num_samples * self.world_size | |||
@@ -127,7 +127,7 @@ class Sampler(ABC): | |||
def batch(self) -> Iterator[List[Any]]: | |||
r""" | |||
batch method provides a batch indices generator | |||
Batch method provides a batch indices generator. | |||
""" | |||
indices = list(self.sample()) | |||
@@ -156,7 +156,7 @@ class SequentialSampler(Sampler): | |||
rank=None, | |||
): | |||
r""" | |||
Sample elements sequentially | |||
Sample elements sequentially. | |||
""" | |||
super().__init__(dataset, batch_size, drop_last, None, world_size, rank) | |||
if indices is not None and not isinstance(indices, collections.abc.Sequence): | |||
@@ -168,7 +168,7 @@ class SequentialSampler(Sampler): | |||
def sample(self) -> Iterator[Any]: | |||
r""" | |||
return a generator | |||
Return a generator. | |||
""" | |||
if self.indices is None: | |||
return iter(range(len(self.dataset))) | |||
@@ -188,7 +188,7 @@ class RandomSampler(Sampler): | |||
seed=None, | |||
): | |||
r""" | |||
Sample elements randomly without replacement | |||
Sample elements randomly without replacement. | |||
""" | |||
super().__init__(dataset, batch_size, drop_last, None, world_size, rank, seed) | |||
if indices is not None and not isinstance(indices, collections.abc.Sequence): | |||
@@ -218,10 +218,10 @@ class ReplacementSampler(Sampler): | |||
seed=None, | |||
): | |||
r""" | |||
Sample elements randomly with replacement | |||
Sample elements randomly with replacement. | |||
:type weights: List | |||
:param weights: weights for sampling indices, it could be unnormalized weights | |||
:param weights: weights for sampling indices, it could be unnormalized weights. | |||
""" | |||
super().__init__( | |||
dataset, batch_size, drop_last, num_samples, world_size, rank, seed | |||
@@ -250,7 +250,7 @@ class ReplacementSampler(Sampler): | |||
class Infinite(Sampler): | |||
r"""Infinite Sampler warper for basic sampler""" | |||
r"""Infinite Sampler warper for basic sampler.""" | |||
def sample(self): | |||
raise NotImplementedError("sample method not supported in Infinite") | |||
@@ -12,7 +12,7 @@ from typing import Sequence, Tuple | |||
class Transform(ABC): | |||
""" | |||
rewrite apply method in subclass | |||
Rewrite apply method in subclass. | |||
""" | |||
def apply_batch(self, inputs: Sequence[Tuple]): | |||
@@ -15,7 +15,7 @@ import numpy as np | |||
def wrap_keepdims(func): | |||
"""Wraper to keep the dimension of input images unchanged""" | |||
"""Wraper to keep the dimension of input images unchanged.""" | |||
@functools.wraps(func) | |||
def wrapper(image, *args, **kwargs): | |||
@@ -34,10 +34,10 @@ def wrap_keepdims(func): | |||
@wrap_keepdims | |||
def to_gray(image): | |||
r""" | |||
Change BGR format image's color space to gray | |||
Change BGR format image's color space to gray. | |||
:param image: Input BGR format image, with (H, W, C) shape | |||
:return: Gray format image, with (H, W, C) shape | |||
:param image: input BGR format image, with `(H, W, C)` shape. | |||
:return: gray format image, with `(H, W, C)` shape. | |||
""" | |||
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |||
@@ -45,10 +45,10 @@ def to_gray(image): | |||
@wrap_keepdims | |||
def to_bgr(image): | |||
r""" | |||
Change gray format image's color space to BGR | |||
Change gray format image's color space to BGR. | |||
:param image: input Gray format image, with (H, W, C) shape | |||
:return: BGR format image, with (H, W, C) shape | |||
:param image: input Gray format image, with `(H, W, C)` shape. | |||
:return: BGR format image, with `(H, W, C)` shape. | |||
""" | |||
return cv2.cvtColor(image, cv2.COLOR_GRAY2BGR) | |||
@@ -56,18 +56,18 @@ def to_bgr(image): | |||
@wrap_keepdims | |||
def pad(input, size, value): | |||
r""" | |||
Pad input data with *value* and given *size* | |||
Pad input data with *value* and given *size*. | |||
:param input: Input data, with (H, W, C) shape | |||
:param size: Padding size of input data, it could be integer or sequence. | |||
If it's an integer, the input data will be padded in four directions. | |||
If it's a sequence contains two integer, the bottom and right side | |||
:param input: input data, with `(H, W, C)` shape. | |||
:param size: padding size of input data, it could be integer or sequence. | |||
If it is an integer, the input data will be padded in four directions. | |||
If it is a sequence contains two integer, the bottom and right side | |||
of input data will be padded. | |||
If it's a sequence contains four integer, the top, bottom, left, right | |||
If it is a sequence contains four integer, the top, bottom, left, right | |||
side of input data will be padded with given size. | |||
:param value: Padding value of data, could be a sequence of int or float. | |||
if it's float value, the dtype of image will be casted to float32 also. | |||
:return: Padded image | |||
:param value: padding value of data, could be a sequence of int or float. | |||
If it is float value, the dtype of image will be casted to float32 also. | |||
:return: padded image. | |||
""" | |||
if isinstance(size, int): | |||
size = (size, size, size, size) | |||
@@ -81,14 +81,18 @@ def pad(input, size, value): | |||
@wrap_keepdims | |||
def flip(image, flipCode): | |||
r""" | |||
Accordding to the flipCode (the type of flip), flip the input image | |||
Accordding to the flipCode (the type of flip), flip the input image. | |||
:param image: Input image, with (H, W, C) shape | |||
:param image: input image, with `(H, W, C)` shape. | |||
:param flipCode: code that indicates the type of flip. | |||
1 : Flip horizontally | |||
0 : Flip vertically | |||
-1 : Flip horizontally and vertically | |||
:return: BGR format image, with (H, W, C) shape | |||
* 1 : Flip horizontally | |||
* 0 : Flip vertically | |||
* -1: Flip horizontally and vertically | |||
:return: BGR format image, with `(H, W, C)` shape. | |||
""" | |||
return cv2.flip(image, flipCode=flipCode) | |||
@@ -96,12 +100,12 @@ def flip(image, flipCode): | |||
@wrap_keepdims | |||
def resize(input, size, interpolation=cv2.INTER_LINEAR): | |||
r""" | |||
resize the input data to given size | |||
Resize the input data to given size. | |||
:param input: Input data, could be image or masks, with (H, W, C) shape | |||
:param size: Target size of input data, with (height, width) shape. | |||
:param interpolation: Interpolation method. | |||
:return: Resized data, with (H, W, C) shape | |||
:param input: input data, could be image or masks, with `(H, W, C)` shape. | |||
:param size: target size of input data, with (height, width) shape. | |||
:param interpolation: interpolation method. | |||
:return: resized data, with `(H, W, C)` shape. | |||
""" | |||
if len(size) != 2: | |||
raise ValueError("resize needs (h, w), but got {}".format(size)) | |||
@@ -44,26 +44,26 @@ __all__ = [ | |||
class VisionTransform(Transform): | |||
r""" | |||
Base class of all transforms used in computer vision. | |||
calling logic: apply_batch() -> apply() -> _apply_image() and other _apply_*() | |||
Calling logic: apply_batch() -> apply() -> _apply_image() and other _apply_*() | |||
method. If you want to implement a self-defined transform method for image, | |||
rewrite _apply_image method in subclass. | |||
:param order: Input type order. Input is a tuple contains different structures, | |||
:param order: input type order. Input is a tuple containing different structures, | |||
order is used to specify the order of structures. For example, if your input | |||
is (image, boxes) type, then the order should be ("image", "boxes"). | |||
Current available strings & data type are describe below: | |||
is (image, boxes) type, then the ``order`` should be ("image", "boxes"). | |||
Current available strings and data type are describe below: | |||
* "image": input image, with shape of (H, W, C) | |||
* "coords": coordinates, with shape of (N, 2) | |||
* "boxes": bounding boxes, with shape of (N, 4), "xyxy" format, | |||
* "image": input image, with shape of `(H, W, C)`. | |||
* "coords": coordinates, with shape of `(N, 2)`. | |||
* "boxes": bounding boxes, with shape of `(N, 4)`, "xyxy" format, | |||
the 1st "xy" represents top left point of a box, | |||
the 2nd "xy" represents right bottom point. | |||
* "mask": map used for segmentation, with shape of (H, W, 1) | |||
* "keypoints": keypoints with shape of (N, K, 3), N for number of instances, | |||
* "mask": map used for segmentation, with shape of `(H, W, 1)`. | |||
* "keypoints": keypoints with shape of `(N, K, 3)`, N for number of instances, | |||
and K for number of keypoints in one instance. The first two dimensions | |||
of last axis is coordinate of keypoints and the the 3rd dimension is | |||
the label of keypoints. | |||
* "polygons": A sequence contains numpy array, its length is number of instances. | |||
* "polygons": a sequence containing numpy arrays, its length is the number of instances. | |||
Each numpy array represents polygon coordinate of one instance. | |||
* "category": categories for some data type. For example, "image_category" | |||
means category of the input image and "boxes_category" means categories of | |||
@@ -94,11 +94,11 @@ class VisionTransform(Transform): | |||
self.order = order | |||
def apply_batch(self, inputs: Sequence[Tuple]): | |||
r"""Apply transform on batch input data""" | |||
r"""Apply transform on batch input data.""" | |||
return tuple(self.apply(input) for input in inputs) | |||
def apply(self, input: Tuple): | |||
r"""Apply transform on single input data""" | |||
r"""Apply transform on single input data.""" | |||
if not isinstance(input, tuple): | |||
input = (input,) | |||
@@ -156,10 +156,10 @@ class VisionTransform(Transform): | |||
class ToMode(VisionTransform): | |||
r"""Change input data to a target mode. | |||
For example, most transforms use HWC mode image, | |||
while the Neural Network might use CHW mode input tensor | |||
while the neural network might use CHW mode input tensor. | |||
:param mode: Output mode of input. Use "CHW" mode by default. | |||
:param order: The same with :class:`VisionTransform` | |||
:param mode: output mode of input. Default: "CHW" | |||
:param order: the same with :class:`VisionTransform` | |||
""" | |||
def __init__(self, mode="CHW", *, order=None): | |||
@@ -185,14 +185,14 @@ class Compose(VisionTransform): | |||
r""" | |||
Composes several transforms together. | |||
:param transforms: List of :class:`VisionTransform` to compose. | |||
:param batch_compose: Whether use shuffle_indices for batch data or not. | |||
:param transforms: list of :class:`VisionTransform` to compose. | |||
:param batch_compose: whether use shuffle_indices for batch data or not. | |||
If True, use original input sequence. | |||
Otherwise, the shuffle_indices will be used for transforms. | |||
:param shuffle_indices: Indices used for random shuffle, start at 1. | |||
:param shuffle_indices: indices used for random shuffle, start at 1. | |||
For example, if shuffle_indices is [(1, 3), (2, 4)], then the 1st and 3rd transform | |||
will be random shuffled, the 2nd and 4th transform will also be shuffled. | |||
:param order: The same with :class:`VisionTransform` | |||
:param order: the same with :class:`VisionTransform` | |||
Examples: | |||
@@ -264,8 +264,8 @@ class TorchTransformCompose(VisionTransform): | |||
some transforms with tensor in torchvision are not supported, | |||
such as Normalize and ToTensor in torchvision. | |||
:param transforms: The same with ``Compose`` | |||
:param order: The same with :class:`VisionTransform` | |||
:param transforms: the same with ``Compose``. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, transforms, *, order=None): | |||
@@ -303,16 +303,16 @@ class TorchTransformCompose(VisionTransform): | |||
class Pad(VisionTransform): | |||
r"""Pad the input data. | |||
:param size: Padding size of input image, it could be integer or sequence. | |||
If it's an integer, the input image will be padded in four directions. | |||
If it's a sequence contains two integer, the bottom and right side | |||
:param size: padding size of input image, it could be integer or sequence. | |||
If it is an integer, the input image will be padded in four directions. | |||
If it is a sequence containing two integers, the bottom and right side | |||
of image will be padded. | |||
If it's a sequence contains four integer, the top, bottom, left, right | |||
If it is a sequence containing four integers, the top, bottom, left, right | |||
side of image will be padded with given size. | |||
:param value: Padding value of image, could be a sequence of int or float. | |||
if it's float value, the dtype of image will be casted to float32 also. | |||
:param mask_value: Padding value of segmentation map. | |||
:param order: The same with :class:`VisionTransform` | |||
:param value: padding value of image, could be a sequence of int or float. | |||
if it is float value, the dtype of image will be casted to float32 also. | |||
:param mask_value: padding value of segmentation map. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, size=0, value=0, mask_value=0, *, order=None): | |||
@@ -350,15 +350,15 @@ class Pad(VisionTransform): | |||
class Resize(VisionTransform): | |||
r"""Resize the input data. | |||
:param output_size: Target size of image, with (height, width) shape. | |||
:param interpolation: Interpolation method. All methods are listed below: | |||
:param output_size: target size of image, with (height, width) shape. | |||
:param interpolation: interpolation method. All methods are listed below: | |||
* cv2.INTER_NEAREST – a nearest-neighbor interpolation. | |||
* cv2.INTER_LINEAR – a bilinear interpolation (used by default). | |||
* cv2.INTER_AREA – resampling using pixel area relation. | |||
* cv2.INTER_CUBIC – a bicubic interpolation over 4×4 pixel neighborhood. | |||
* cv2.INTER_LANCZOS4 – a Lanczos interpolation over 8×8 pixel neighborhood. | |||
:param order: The same with :class:`VisionTransform` | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, output_size, interpolation=cv2.INTER_LINEAR, *, order=None): | |||
@@ -476,8 +476,8 @@ class ShortestEdgeResize(VisionTransform): | |||
class RandomResize(VisionTransform): | |||
r"""Resize the input data randomly. | |||
:param scale_range: . | |||
:param order: The same with :class:`VisionTransform` | |||
:param scale_range: range of scaling. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, scale_range, interpolation=cv2.INTER_LINEAR, *, order=None): | |||
@@ -519,13 +519,13 @@ class RandomResize(VisionTransform): | |||
class RandomCrop(VisionTransform): | |||
r"""Crop the input data randomly. Before applying the crop transform, | |||
pad the image first. And if target size is still bigger than the size of | |||
pad the image first. If target size is still bigger than the size of | |||
padded image, pad the image size to target size. | |||
:param output_size: Target size of output image, with (height, width) shape. | |||
:param padding_size: The same with `size` in ``Pad`` | |||
:param padding_value: The same with `value` in ``Pad`` | |||
:param order: The same with :class:`VisionTransform` | |||
:param output_size: target size of output image, with (height, width) shape. | |||
:param padding_size: the same with `size` in ``Pad``. | |||
:param padding_value: the same with `value` in ``Pad``. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__( | |||
@@ -580,10 +580,10 @@ class RandomResizedCrop(VisionTransform): | |||
aspect ratio (default: of 3/4 to 1.33) of the original aspect ratio is made. | |||
After applying crop transfrom, the input data will be resized to given size. | |||
:param output_size: Target size of output image, with (height, width) shape. | |||
:param scale_range: Range of size of the origin size cropped. Default: (0.08, 1.0) | |||
:param ratio_range: Range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) | |||
:param order: The same with :class:`VisionTransform` | |||
:param output_size: target size of output image, with (height, width) shape. | |||
:param scale_range: range of size of the origin size cropped. Default: (0.08, 1.0) | |||
:param ratio_range: range of aspect ratio of the origin aspect ratio cropped. Default: (0.75, 1.33) | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__( | |||
@@ -666,8 +666,8 @@ class RandomResizedCrop(VisionTransform): | |||
class CenterCrop(VisionTransform): | |||
r"""Crops the given the input data at the center. | |||
:param output_size: Target size of output image, with (height, width) shape. | |||
:param order: The same with :class:`VisionTransform` | |||
:param output_size: target size of output image, with (height, width) shape. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, output_size, *, order=None): | |||
@@ -710,7 +710,7 @@ class RandomHorizontalFlip(VisionTransform): | |||
r"""Horizontally flip the input data randomly with a given probability. | |||
:param p: probability of the input data being flipped. Default: 0.5 | |||
:param order: The same with :class:`VisionTransform` | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, prob: float = 0.5, *, order=None): | |||
@@ -742,7 +742,7 @@ class RandomVerticalFlip(VisionTransform): | |||
r"""Vertically flip the input data randomly with a given probability. | |||
:param p: probability of the input data being flipped. Default: 0.5 | |||
:param order: The same with :class:`VisionTransform` | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, prob: float = 0.5, *, order=None): | |||
@@ -776,9 +776,9 @@ class Normalize(VisionTransform): | |||
this transform will normalize each channel of the input data. | |||
``output[channel] = (input[channel] - mean[channel]) / std[channel]`` | |||
:param mean: Sequence of means for each channel. | |||
:param std: Sequence of standard deviations for each channel. | |||
:param order: The same with :class:`VisionTransform` | |||
:param mean: sequence of means for each channel. | |||
:param std: sequence of standard deviations for each channel. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, mean=0.0, std=1.0, *, order=None): | |||
@@ -802,7 +802,7 @@ class GaussianNoise(VisionTransform): | |||
:param mean: Gaussian mean used to generate noise. | |||
:param std: Gaussian standard deviation used to generate noise. | |||
:param order: The same with :class:`VisionTransform` | |||
:param order: the same with :class:`VisionTransform` | |||
""" | |||
def __init__(self, mean=0.0, std=1.0, *, order=None): | |||
@@ -826,9 +826,9 @@ class GaussianNoise(VisionTransform): | |||
class BrightnessTransform(VisionTransform): | |||
r"""Adjust brightness of the input data. | |||
:param value: How much to adjust the brightness. Can be any | |||
non negative number. 0 gives the original image | |||
:param order: The same with :class:`VisionTransform` | |||
:param value: how much to adjust the brightness. Can be any | |||
non negative number. 0 gives the original image. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, value, *, order=None): | |||
@@ -857,9 +857,9 @@ class BrightnessTransform(VisionTransform): | |||
class ContrastTransform(VisionTransform): | |||
r"""Adjust contrast of the input data. | |||
:param value: How much to adjust the contrast. Can be any | |||
non negative number. 0 gives the original image | |||
:param order: The same with :class:`VisionTransform` | |||
:param value: how much to adjust the contrast. Can be any | |||
non negative number. 0 gives the original image. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, value, *, order=None): | |||
@@ -888,9 +888,9 @@ class ContrastTransform(VisionTransform): | |||
class SaturationTransform(VisionTransform): | |||
r"""Adjust saturation of the input data. | |||
:param value: How much to adjust the saturation. Can be any | |||
non negative number. 0 gives the original image | |||
:param order: The same with :class:`VisionTransform` | |||
:param value: how much to adjust the saturation. Can be any | |||
non negative number. 0 gives the original image. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, value, *, order=None): | |||
@@ -919,9 +919,9 @@ class SaturationTransform(VisionTransform): | |||
class HueTransform(VisionTransform): | |||
r"""Adjust hue of the input data. | |||
:param value: How much to adjust the hue. Can be any number | |||
between 0 and 0.5, 0 gives the original image | |||
:param order: The same with :class:`VisionTransform` | |||
:param value: how much to adjust the hue. Can be any number | |||
between 0 and 0.5, 0 gives the original image. | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, value, *, order=None): | |||
@@ -957,19 +957,19 @@ class HueTransform(VisionTransform): | |||
class ColorJitter(VisionTransform): | |||
r"""Randomly change the brightness, contrast, saturation and hue of an image. | |||
:param brightness: How much to jitter brightness. | |||
:param brightness: how much to jitter brightness. | |||
Chosen uniformly from [max(0, 1 - brightness), 1 + brightness] | |||
or the given [min, max]. Should be non negative numbers. | |||
:param contrast: How much to jitter contrast. | |||
:param contrast: how much to jitter contrast. | |||
Chosen uniformly from [max(0, 1 - contrast), 1 + contrast] | |||
or the given [min, max]. Should be non negative numbers. | |||
:param saturation: How much to jitter saturation. | |||
:param saturation: how much to jitter saturation. | |||
Chosen uniformly from [max(0, 1 - saturation), 1 + saturation] | |||
or the given [min, max]. Should be non negative numbers. | |||
:param hue: How much to jitter hue. | |||
:param hue: how much to jitter hue. | |||
Chosen uniformly from [-hue, hue] or the given [min, max]. | |||
Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5. | |||
:param order: The same with :class:`VisionTransform` | |||
:param order: the same with :class:`VisionTransform`. | |||
""" | |||
def __init__(self, brightness=0, contrast=0, saturation=0, hue=0, *, order=None): | |||
@@ -7,6 +7,7 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import os | |||
import re | |||
from .core._imperative_rt.common import CompNode, DeviceType | |||
from .core._imperative_rt.common import set_prealloc_config as _set_prealloc_config | |||
@@ -22,10 +23,8 @@ __all__ = [ | |||
def _valid_device(inp): | |||
if isinstance(inp, str) and len(inp) == 4: | |||
if inp[0] in {"x", "c", "g"} and inp[1:3] == "pu": | |||
if inp[3] == "x" or inp[3].isdigit(): | |||
return True | |||
if isinstance(inp, str) and re.match("^[cxg]pu(\d+|\d+:\d+|x)$", inp): | |||
return True | |||
return False | |||
@@ -71,11 +70,11 @@ def set_default_device(device: str = "xpux"): | |||
'multithread' device type is avaliable when inference, which implements | |||
multi-threading parallelism at the operator level. For example, | |||
'multithread4' will compute with 4 threads. which implements | |||
'multithread4' will compute with 4 threads. | |||
The default value is 'xpux' to specify any device available. The priority of using gpu is higher when both gpu and cpu are available. | |||
It can also be set by environmental variable `MGE_DEFAULT_DEVICE`. | |||
It can also be set by environment variable `MGE_DEFAULT_DEVICE`. | |||
""" | |||
assert _valid_device(device), "Invalid device name {}".format(device) | |||
CompNode._set_default_device(device) | |||
@@ -99,13 +98,13 @@ def set_prealloc_config( | |||
growth_factor=2.0, | |||
device_type=DeviceType.CUDA, | |||
): | |||
"""specifies how to pre-allocate from raw dev allocator | |||
"""Specifies how to pre-allocate from raw device allocator. | |||
:param alignment: specifies the alignment in bytes. | |||
:param min_req: min request size in bytes. | |||
:param max_overhead: max overhead above required size in bytes. | |||
:growth_factor: request size / cur allocated | |||
:device_type: the device type | |||
:param growth_factor: `request size / cur allocated` | |||
:param device_type: the device type | |||
""" | |||
assert alignment > 0 | |||
@@ -102,7 +102,7 @@ def _(op: RemoteRecv): | |||
def collective_comm(inp, mode, group, device): | |||
"""Helper function for applying collective communication functions""" | |||
"""Helper function for applying collective communication functions.""" | |||
assert isinstance(group, Group) | |||
if group is None: | |||
return inp | |||
@@ -123,11 +123,11 @@ def collective_comm(inp, mode, group, device): | |||
def reduce_sum( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create reduce_sum operator for collective communication | |||
"""Create reduce_sum operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.REDUCE_SUM | |||
return collective_comm(inp, mode, group, device) | |||
@@ -136,11 +136,11 @@ def reduce_sum( | |||
def broadcast( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create broadcast operator for collective communication | |||
"""Create broadcast operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.BROADCAST | |||
return collective_comm(inp, mode, group, device) | |||
@@ -149,11 +149,11 @@ def broadcast( | |||
def all_gather( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create all_gather operator for collective communication | |||
"""Create all_gather operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.ALL_GATHER | |||
return collective_comm(inp, mode, group, device) | |||
@@ -162,11 +162,11 @@ def all_gather( | |||
def reduce_scatter_sum( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create reduce_scatter_sum operator for collective communication | |||
"""Create reduce_scatter_sum operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.REDUCE_SCATTER_SUM | |||
return collective_comm(inp, mode, group, device) | |||
@@ -175,11 +175,11 @@ def reduce_scatter_sum( | |||
def all_reduce_sum( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create all_reduce_sum operator for collective communication | |||
"""Create all_reduce_sum operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.ALL_REDUCE_SUM | |||
return collective_comm(inp, mode, group, device) | |||
@@ -188,11 +188,11 @@ def all_reduce_sum( | |||
def all_reduce_max( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create all_reduce_max operator for collective communication | |||
"""Create all_reduce_max operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.ALL_REDUCE_MAX | |||
return collective_comm(inp, mode, group, device) | |||
@@ -201,11 +201,11 @@ def all_reduce_max( | |||
def all_reduce_min( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create all_reduce_min operator for collective communication | |||
"""Create all_reduce_min operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.ALL_REDUCE_MIN | |||
return collective_comm(inp, mode, group, device) | |||
@@ -214,11 +214,11 @@ def all_reduce_min( | |||
def gather( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create gather operator for collective communication | |||
"""Create gather operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.GATHER | |||
return collective_comm(inp, mode, group, device) | |||
@@ -227,11 +227,11 @@ def gather( | |||
def scatter( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create scatter operator for collective communication | |||
"""Create scatter operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.SCATTER | |||
return collective_comm(inp, mode, group, device) | |||
@@ -240,21 +240,21 @@ def scatter( | |||
def all_to_all( | |||
inp: Tensor, group: Optional[Group] = WORLD, device: Optional[str] = "" | |||
) -> Tensor: | |||
"""Create all_to_all operator for collective communication | |||
"""Create all_to_all operator for collective communication. | |||
:param inp: input tensor | |||
:param group: communication group | |||
:param device: execute placement | |||
:param inp: input tensor. | |||
:param group: communication group. | |||
:param device: execution device. | |||
""" | |||
mode = CollectiveCommMode.ALL_TO_ALL | |||
return collective_comm(inp, mode, group, device) | |||
def remote_send(inp: Tensor, dest_rank: int) -> Tensor: | |||
"""Send a Tensor to a remote process | |||
"""Send a Tensor to a remote process. | |||
:param inp: tensor to send | |||
:param dest_rank: destination process rank | |||
:param inp: tensor to send. | |||
:param dest_rank: destination process rank. | |||
""" | |||
op = RemoteSend() | |||
op.key = "{}->{}".format(get_rank(), dest_rank) | |||
@@ -266,12 +266,12 @@ def remote_send(inp: Tensor, dest_rank: int) -> Tensor: | |||
def remote_recv( | |||
src_rank: int, shape: Tuple[int], dtype: type, device: Optional[str] = None | |||
) -> Tensor: | |||
"""Receive a Tensor from a remote process | |||
"""Receive a Tensor from a remote process. | |||
:param src_rank: source process rank | |||
:param shape: the shape of the tensor to receive | |||
:param dtype: the data type of the tensor to receive | |||
:param device: the device to place the received tensor | |||
:param src_rank: source process rank. | |||
:param shape: the shape of the tensor to receive. | |||
:param dtype: the data type of the tensor to receive. | |||
:param device: the device to place the received tensor. | |||
""" | |||
key = "{}->{}".format(src_rank, get_rank()) | |||
@@ -83,12 +83,12 @@ def init_process_group( | |||
) -> None: | |||
"""Initialize the distributed process group and specify the device used in the current process | |||
:param master_ip: IP address of the master node | |||
:param port: Port available for all processes to communicate | |||
:param world_size: Total number of processes participating in the job | |||
:param rank: Rank of the current process | |||
:param device: The GPU device id to bind this process to | |||
:param backend: Communicator backend, currently support 'nccl' and 'ucx' | |||
:param master_ip: ip address of the master node. | |||
:param port: port available for all processes to communicate. | |||
:param world_size: total number of processes participating in the job. | |||
:param rank: rank of the current process. | |||
:param device: the GPU device id to bind this process to. | |||
:param backend: communicator backend, currently support 'nccl' and 'ucx'. | |||
""" | |||
if not isinstance(master_ip, str): | |||
raise TypeError("Expect type str but got {}".format(type(master_ip))) | |||
@@ -127,50 +127,50 @@ def init_process_group( | |||
def is_distributed() -> bool: | |||
"""Return True if the distributed process group has been initialized""" | |||
"""Return True if the distributed process group has been initialized.""" | |||
return _sd is not None | |||
def get_rank() -> int: | |||
"""Get the rank of the current process""" | |||
"""Get the rank of the current process.""" | |||
return _sd.proc_rank if _sd is not None else 0 | |||
def get_world_size() -> int: | |||
"""Get the total number of processes participating in the job""" | |||
"""Get the total number of processes participating in the job.""" | |||
return _sd.world_size if _sd is not None else 1 | |||
def get_backend() -> str: | |||
"""Get the backend str""" | |||
"""Get the backend str.""" | |||
assert _sd is not None, "please call init_process_group first" | |||
return _sd.backend if _sd is not None else None | |||
def get_py_server_addr() -> Tuple[str, int]: | |||
"""Get master_ip and port of python XML RPC server""" | |||
"""Get master_ip and port of python XML RPC server.""" | |||
assert _sd is not None, "please call init_process_group first" | |||
return _sd.master_ip, _sd.py_server_port | |||
def get_mm_server_addr() -> Tuple[str, int]: | |||
"""Get master_ip and port of C++ mm_server""" | |||
"""Get master_ip and port of C++ mm_server.""" | |||
assert _sd is not None, "please call init_process_group first" | |||
return _sd.master_ip, _sd.mm_server_port | |||
def get_client() -> Client: | |||
"""Get client of python XML RPC server""" | |||
"""Get client of python XML RPC server.""" | |||
assert _sd is not None, "please call init_process_group first" | |||
return _sd.client | |||
def new_group(proc_ranks: List[int]) -> Group: | |||
"""Build a subgroup containing certain ranks""" | |||
"""Build a subgroup containing certain ranks.""" | |||
return Group(proc_ranks) | |||
def group_barrier(group: Optional[Group] = WORLD) -> None: | |||
"""Block until all ranks in the group reach this barrier""" | |||
"""Block until all ranks in the group reach this barrier.""" | |||
assert isinstance(group, Group) | |||
_sd.client.group_barrier(group.key, group.size) |
@@ -17,11 +17,112 @@ import numpy as np | |||
from megengine.autodiff.grad_manager import GradManager, get_backwarding_grad_manager | |||
from megengine.device import get_default_device, get_device_count | |||
from ..functional.param_pack import get_offsets, pack_allreduce_split | |||
from ..core.ops.builtin import ParamPackConcat, ParamPackSplit | |||
from ..core.tensor.core import apply | |||
from ..functional.utils import copy | |||
from ..tensor import Tensor | |||
from ..utils.future import Future | |||
from .functional import all_reduce_sum, broadcast | |||
from .group import WORLD, group_barrier, is_distributed | |||
from .group import WORLD, Group, group_barrier, is_distributed | |||
def param_pack_split(inp: Tensor, offsets: list, shapes: list): | |||
r""" | |||
Returns split tensor to tensor list as offsets and shapes described, | |||
only used for ``parampack``. | |||
:param inp: input tensor. | |||
:param offsets: offsets of outputs, length of `2 * n`, | |||
while n is tensor nums you want to split, | |||
format `[begin0, end0, begin1, end1]`. | |||
:param shapes: tensor shapes of outputs. | |||
:return: splitted tensors. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
from megengine.distributed.helper import param_pack_split | |||
a = tensor(np.ones((10,), np.int32)) | |||
b, c = param_pack_split(a, [0, 1, 1, 10], [(1,), (3, 3)]) | |||
print(b.numpy()) | |||
print(c.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[1] | |||
[[1 1 1] | |||
[1 1 1] | |||
[1 1 1]] | |||
""" | |||
op = ParamPackSplit() | |||
op.offsets = offsets | |||
op.shapes = shapes | |||
return apply(op, inp) | |||
def param_pack_concat(inps: list, offsets: Tensor, offsets_val: list): | |||
r""" | |||
Returns concated tensor, only used for ``parampack``. | |||
:param inps: input tensors. | |||
:param offsets: device value of offsets. | |||
:param offsets_val: offsets of inputs, length of `2 * n`, | |||
format `[begin0, end0, begin1, end1]`. | |||
:return: concated tensor. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
from megengine.distributed.helper import param_pack_concat | |||
a = tensor(np.ones((1,), np.int32)) | |||
b = tensor(np.ones((3, 3), np.int32)) | |||
offsets_val = [0, 1, 1, 10] | |||
offsets = tensor(offsets_val, np.int32) | |||
c = param_pack_concat([a, b], offsets, offsets_val) | |||
print(c.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[1 1 1 1 1 1 1 1 1 1] | |||
""" | |||
op = ParamPackConcat() | |||
op.offsets = offsets_val | |||
return apply(op, *inps, offsets)[0] | |||
def get_offsets(shapes): | |||
offsets = [] | |||
offset = 0 | |||
for shape in shapes: | |||
offsets.append(offset) | |||
offset += int(np.prod(shape)) | |||
offsets.append(offset) | |||
return offsets | |||
def pack_allreduce_split(pack_list, shapes, group, reduce_method): | |||
offsets_val = get_offsets(shapes) | |||
offsets = Tensor(offsets_val) | |||
packed_grads = param_pack_concat(pack_list, offsets, offsets_val) | |||
packed_grads = all_reduce_sum(packed_grads, group, group.comp_node) | |||
if reduce_method == "mean": | |||
packed_grads /= group.size | |||
grads = param_pack_split(packed_grads, offsets_val, shapes) | |||
return grads | |||
class TensorFuture(Future): | |||
@@ -54,28 +155,43 @@ def synchronized(func: Callable): | |||
return wrapper | |||
def get_device_count_by_fork(device_type: str): | |||
q = mp.Queue() | |||
def _get_device_count_worker(queue, device_type): | |||
num = get_device_count(device_type) | |||
queue.put(num) | |||
def worker(queue): | |||
num = get_device_count(device_type) | |||
queue.put(num) | |||
p = mp.Process(target=worker, args=(q,)) | |||
def get_device_count_by_fork(device_type: str): | |||
"""Get device count in fork thread. | |||
See https://stackoverflow.com/questions/22950047/cuda-initialization-error-after-fork | |||
for more information. | |||
""" | |||
q = mp.Queue() | |||
p = mp.Process(target=_get_device_count_worker, args=(q, device_type)) | |||
p.start() | |||
p.join() | |||
return q.get() | |||
def bcast_list_(params, group): | |||
for p in params: | |||
p._reset(broadcast(p, group)) | |||
def bcast_list_(inps: list, group: Group = WORLD): | |||
"""Broadcast tensors between given group. | |||
:param inps: input tensors. | |||
:param group: communication group. | |||
""" | |||
for inp in inps: | |||
inp._reset(broadcast(inp, group)) | |||
class AllreduceCallback: | |||
def __init__(self, reduce_method, group=WORLD): | |||
"""Allreduce Callback with tensor fusion optimization. | |||
:param reduce_method: the method to reduce gradiants. | |||
:param group: communication group. | |||
""" | |||
def __init__(self, reduce_method: str, group: Group = WORLD): | |||
reduce_method = reduce_method.lower() | |||
assert reduce_method in ["sum", "mean"] | |||
assert reduce_method in ["sum", "mean"], "reduce_method should be sum or mean" | |||
self._reduce_method = reduce_method | |||
self._group = group | |||
self._marked_gm = WeakSet() | |||
@@ -88,6 +204,7 @@ class AllreduceCallback: | |||
self._futures_dict = dict() | |||
self._packing_list = defaultdict(list) | |||
self._packing_size = defaultdict(int) | |||
self._grad_origin_device = dict() | |||
def _pack(self, dtype): | |||
grad_list = [self._gradients_dict[p] for p in self._packing_list[dtype]] | |||
@@ -109,6 +226,7 @@ class AllreduceCallback: | |||
self._params.append(param) | |||
self._futures_dict[param] = TensorFuture(ack=False) | |||
self._gradients_dict[param] = grad | |||
self._grad_origin_device[param] = str(grad.device) | |||
dtype_str = str(np.dtype(param.dtype)) | |||
dtype_size = np.dtype(param.dtype).itemsize | |||
@@ -123,6 +241,7 @@ class AllreduceCallback: | |||
self._pack(dtype) | |||
for param in self._params: | |||
grad = self._gradients_dict[param] | |||
grad = copy(grad, self._grad_origin_device[param]) | |||
self._futures_dict[param].set(grad) | |||
self._reset() | |||
@@ -15,7 +15,7 @@ from .util import get_free_ports | |||
def _run_wrapped(func, master_ip, port, world_size, rank, dev, args, kwargs): | |||
"""init distributed process group and run wrapped function""" | |||
"""Init distributed process group and run wrapped function.""" | |||
init_process_group( | |||
master_ip=master_ip, port=port, world_size=world_size, rank=rank, device=dev | |||
) | |||
@@ -23,7 +23,7 @@ def _run_wrapped(func, master_ip, port, world_size, rank, dev, args, kwargs): | |||
def launcher(func): | |||
"""decorator for launching multiple processes in single-machine multi-gpu training""" | |||
"""Decorator for launching multiple processes in single-machine multi-gpu training.""" | |||
n_gpus = get_device_count_by_fork("gpu") | |||
@@ -21,6 +21,12 @@ from .util import get_free_ports | |||
class Methods: | |||
"""Distributed Server Method. | |||
Used for exchange information between distributed nodes. | |||
:param mm_server_port: multiple machine rpc server port. | |||
""" | |||
def __init__(self, mm_server_port): | |||
self.lock = threading.Lock() | |||
self.mm_server_port = mm_server_port | |||
@@ -31,51 +37,65 @@ class Methods: | |||
self.dict_barrier_event = defaultdict(threading.Event) | |||
def connect(self): | |||
"""Method for checking connection success.""" | |||
return True | |||
def get_mm_server_port(self): | |||
"""Get multiple machine rpc server port.""" | |||
return self.mm_server_port | |||
def set_is_grad(self, rank_peer, is_grad): | |||
def set_is_grad(self, key, is_grad): | |||
"""Mark send/recv need gradiants by key. | |||
:param key: key to match send/recv op. | |||
:param is_grad: whether this op need grad. | |||
""" | |||
with self.lock: | |||
future = self.dict_is_grad[rank_peer] | |||
future = self.dict_is_grad[key] | |||
future.set(is_grad) | |||
return True | |||
def check_is_grad(self, rank_peer): | |||
def check_is_grad(self, key): | |||
"""Check whether send/recv need gradiants. | |||
:param key: key to match send/recv op. | |||
""" | |||
with self.lock: | |||
future = self.dict_is_grad[rank_peer] | |||
future = self.dict_is_grad[key] | |||
ret = future.get() | |||
with self.lock: | |||
del self.dict_is_grad[rank_peer] | |||
del self.dict_is_grad[key] | |||
return ret | |||
def set_remote_tracer(self, rank_peer, tracer_set): | |||
def set_remote_tracer(self, key, tracer_set): | |||
"""Set tracer dict for tracing send/recv op. | |||
:param key: key to match send/recv op. | |||
:param tracer_set: valid tracer set. | |||
""" | |||
with self.lock: | |||
future = self.dict_remote_tracer[rank_peer] | |||
future = self.dict_remote_tracer[key] | |||
future.set(tracer_set) | |||
return True | |||
def check_remote_tracer(self, rank_peer): | |||
def check_remote_tracer(self, key): | |||
"""Get tracer dict for send/recv op. | |||
:param key: key to match send/recv op. | |||
""" | |||
with self.lock: | |||
future = self.dict_remote_tracer[rank_peer] | |||
future = self.dict_remote_tracer[key] | |||
ret = future.get() | |||
with self.lock: | |||
del self.dict_remote_tracer[rank_peer] | |||
del self.dict_remote_tracer[key] | |||
return ret | |||
def set_pack_list(self, key, pack_list): | |||
with self.lock: | |||
future = self.dict_pack_list[key] | |||
future.set(pack_list) | |||
return True | |||
def get_pack_list(self, key): | |||
with self.lock: | |||
future = self.dict_pack_list[key] | |||
return future.get() | |||
def group_barrier(self, key, size): | |||
"""A barrier wait for all group member. | |||
:param key: group key to match each other. | |||
:param size: group size. | |||
""" | |||
with self.lock: | |||
self.dict_barrier_counter[key] += 1 | |||
counter = self.dict_barrier_counter[key] | |||
@@ -94,12 +114,23 @@ class ThreadXMLRPCServer(ThreadingMixIn, SimpleXMLRPCServer): | |||
def start_server(py_server_port, mm_server_port): | |||
"""Start python distributed server and multiple machine server. | |||
:param py_server_port: python server port. | |||
:param mm_server_port: multiple machine server port. | |||
""" | |||
server = ThreadXMLRPCServer(("0.0.0.0", py_server_port), logRequests=False) | |||
server.register_instance(Methods(mm_server_port)) | |||
server.serve_forever() | |||
class Server: | |||
"""Distributed Server for distributed training. | |||
Should be running at master node. | |||
:param port: python server port. | |||
""" | |||
def __init__(self, port): | |||
self.py_server_port = get_free_ports(1)[0] if port == 0 else port | |||
self.mm_server_port = create_mm_server("0.0.0.0", 0) | |||
@@ -112,12 +143,19 @@ class Server: | |||
class Client: | |||
"""Distributed Client for distributed training. | |||
:param master_ip: ip address of master node. | |||
:param port: port of server at master node. | |||
""" | |||
def __init__(self, master_ip, port): | |||
self.master_ip = master_ip | |||
self.port = port | |||
self.connect() | |||
def connect(self): | |||
"""Check connection success.""" | |||
while True: | |||
try: | |||
self.proxy = ServerProxy( | |||
@@ -129,25 +167,43 @@ class Client: | |||
time.sleep(1) | |||
def get_mm_server_port(self): | |||
"""Get multiple machine server port.""" | |||
return self.proxy.get_mm_server_port() | |||
def set_is_grad(self, rank_peer, is_grad): | |||
self.proxy.set_is_grad(rank_peer, is_grad) | |||
def check_is_grad(self, rank_peer): | |||
return self.proxy.check_is_grad(rank_peer) | |||
def set_remote_tracer(self, rank_peer, tracer_set): | |||
self.proxy.set_remote_tracer(rank_peer, tracer_set) | |||
def check_remote_tracer(self, rank_peer): | |||
return self.proxy.check_remote_tracer(rank_peer) | |||
def set_pack_list(self, key, pack_list): | |||
self.proxy.set_pack_list(key, pack_list) | |||
def get_pack_list(self, key): | |||
return self.proxy.get_pack_list(key) | |||
def set_is_grad(self, key, is_grad): | |||
"""Mark send/recv need gradiants by key. | |||
:param key: key to match send/recv op. | |||
:param is_grad: whether this op need grad. | |||
""" | |||
self.proxy.set_is_grad(key, is_grad) | |||
def check_is_grad(self, key): | |||
"""Check whether send/recv need gradiants. | |||
:param key: key to match send/recv op. | |||
""" | |||
return self.proxy.check_is_grad(key) | |||
def set_remote_tracer(self, key, tracer_set): | |||
"""Set tracer dict for tracing send/recv op. | |||
:param key: key to match send/recv op. | |||
:param tracer_set: valid tracer set. | |||
""" | |||
self.proxy.set_remote_tracer(key, tracer_set) | |||
def check_remote_tracer(self, key): | |||
"""Get tracer dict for send/recv op. | |||
:param key: key to match send/recv op. | |||
""" | |||
return self.proxy.check_remote_tracer(key) | |||
def group_barrier(self, key, size): | |||
"""A barrier wait for all group member. | |||
:param key: group key to match each other. | |||
:param size: group size. | |||
""" | |||
self.proxy.group_barrier(key, size) |
@@ -8,13 +8,10 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# pylint: disable=redefined-builtin | |||
from .elemwise import * | |||
from .graph import add_update | |||
from .loss import * | |||
from .math import * | |||
from .nn import * | |||
from .quantized import conv_bias_activation | |||
from .tensor import * | |||
from .utils import accuracy, copy | |||
from .utils import * | |||
from . import distributed # isort:skip | |||
@@ -26,14 +26,14 @@ def set_conv_execution_strategy(option: str): | |||
Available values: | |||
* 'HEURISTIC' uses heuristic to choose the fastest algorithm. | |||
* 'PROFILE' runs possible algorithms on real device to find the best. | |||
* 'PROFILE_HEURISTIC' uses profile result and heuristic to choose the fastest algorithm. | |||
* 'PROFILE_REPRODUCIBLE' uses the fastest of profile result that is also reproducible. | |||
* 'PROFILE' runs possible algorithms on real device to find the best one. | |||
* 'PROFILE_HEURISTIC' uses profiling result and heuristic to choose the fastest algorithm. | |||
* 'PROFILE_REPRODUCIBLE' uses the fastest of profiling result that is also reproducible. | |||
* 'HEURISTIC_REPRODUCIBLE' uses heuristic to choose the fastest algorithm that is also reproducible. | |||
The default strategy is 'HEURISTIC'. | |||
It can also be set through the environmental variable 'MEGENGINE_CONV_EXECUTION_STRATEGY'. | |||
It can also be set through the environment variable 'MEGENGINE_CONV_EXECUTION_STRATEGY'. | |||
""" | |||
valid_option = ( | |||
"HEURISTIC", | |||
@@ -26,23 +26,22 @@ __all__ = [ | |||
"acosh", | |||
"atanh", | |||
"ceil", | |||
"clamp", | |||
"clip", | |||
"cos", | |||
"cosh", | |||
"div", | |||
"eq", | |||
"equal", | |||
"exp", | |||
"expm1", | |||
"fast_tanh", | |||
"floor", | |||
"floor_div", | |||
"gt", | |||
"ge", | |||
"greater", | |||
"greater_equal", | |||
"hswish", | |||
"hsigmoid", | |||
"left_shift", | |||
"lt", | |||
"le", | |||
"less", | |||
"less_equal", | |||
"log", | |||
"log1p", | |||
"logical_and", | |||
@@ -54,7 +53,7 @@ __all__ = [ | |||
"mod", | |||
"mul", | |||
"neg", | |||
"ne", | |||
"not_equal", | |||
"pow", | |||
"relu", | |||
"relu6", | |||
@@ -88,13 +87,6 @@ def _elwise(*args, mode): | |||
return result | |||
def _logical(*args, mode): | |||
op = builtin.CondExecPredLogical(mode=mode) | |||
args = utils.convert_inputs(*args) | |||
(result,) = apply(op, *args) | |||
return result | |||
def _elemwise_multi_type(*args, mode, **kwargs): | |||
op = builtin.ElemwiseMultiType(mode=mode, **kwargs) | |||
args = utils.convert_inputs(*args) | |||
@@ -106,9 +98,10 @@ def _elemwise_multi_type(*args, mode, **kwargs): | |||
def add(x, y): | |||
"""Element-wise addition. | |||
"""Element-wise `addition`. | |||
At least one operand should be tensor. | |||
Same for sub/mul/div/floor_div/pow/mod/atan2/eq/ne/lt/le/gt/ge/maximum/minmium. | |||
Same for sub/mul/div/floor_div/pow/mod/atan2/equal/not_equal/less/less_equal/greater/greater_equal/maximum/minmium. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
@@ -138,68 +131,68 @@ def add(x, y): | |||
def sub(x, y): | |||
"""Element-wise subtraction.""" | |||
"""Element-wise `subtraction`.""" | |||
return _elwise(x, y, mode="sub") | |||
def mul(x, y): | |||
"""Element-wise multiplication.""" | |||
"""Element-wise `multiplication`.""" | |||
return _elwise(x, y, mode="mul") | |||
def div(x, y): | |||
"""Element-wise (x / y).""" | |||
"""Element-wise `(x / y)`.""" | |||
return _elwise(x, y, mode="true_div") | |||
def floor_div(x, y): | |||
"""Element-wise floor(x / y).""" | |||
"""Element-wise `floor(x / y)`.""" | |||
return _elwise(x, y, mode="floor_divide") | |||
def neg(x): | |||
"""Element-wise negation.""" | |||
"""Element-wise `negation`.""" | |||
return _elwise(x, mode="negate") | |||
def pow(x, y): | |||
"""Element-wise power.""" | |||
"""Element-wise `power`.""" | |||
return _elwise(x, y, mode="pow") | |||
def mod(x, y): | |||
"""Element-wise remainder of division.""" | |||
"""Element-wise `remainder of division`.""" | |||
return _elwise(x, y, mode="mod") | |||
def abs(x): | |||
"""Element-wise absolute value.""" | |||
"""Element-wise `absolute value`.""" | |||
return _elwise(x, mode="abs") | |||
def exp(x): | |||
"""Element-wise exponential.""" | |||
"""Element-wise `exponential`.""" | |||
return _elwise(x, mode="exp") | |||
def expm1(x): | |||
"""Element-wise exp(x)-1.""" | |||
"""Element-wise `exp(x)-1`.""" | |||
return _elwise(x, mode="expm1") | |||
def log(x): | |||
"""Element-wise logarithm (base `e`).""" | |||
"""Element-wise `logarithm (base e)`.""" | |||
return _elwise(x, mode="log") | |||
def log1p(x): | |||
"""Element-wise log(x+1) (base `e`).""" | |||
"""Element-wise `log(x+1) (base e)`.""" | |||
return _elwise(x, mode="log1p") | |||
def sqrt(x: Tensor) -> Tensor: | |||
"""Element-wise sqrt. | |||
For negative input value, return ``NaN``. | |||
"""Element-wise `sqrt`. | |||
Returns ``NaN`` for negative input value. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
@@ -229,10 +222,10 @@ def sqrt(x: Tensor) -> Tensor: | |||
def square(x: Tensor) -> Tensor: | |||
""" | |||
Return a new tensor with the square of the elements of input tensor. | |||
Returns a new tensor with the square of the elements of input tensor. | |||
:param inp: The input tensor | |||
:return: The computed tensor | |||
:param inp: input tensor. | |||
:return: computed tensor. | |||
Examples: | |||
@@ -258,27 +251,27 @@ def square(x: Tensor) -> Tensor: | |||
def round(x): | |||
"""Element-wise rounding to int.""" | |||
"""Element-wise `rounding to int`.""" | |||
return _elwise(x, mode="round") | |||
def ceil(x): | |||
"""Element-wise ceiling.""" | |||
"""Element-wise `ceiling`.""" | |||
return _elwise(x, mode="ceil") | |||
def floor(x): | |||
"""Element-wise floor.""" | |||
"""Element-wise `floor`.""" | |||
return _elwise(x, mode="floor") | |||
def maximum(x, y): | |||
"""Element-wise maximum of array elements.""" | |||
"""Element-wise `maximum of array elements`.""" | |||
return _elwise(x, y, mode="max") | |||
def minimum(x, y): | |||
"""Element-wise minimum of array elements.""" | |||
"""Element-wise `minimum of array elements`.""" | |||
return _elwise(x, y, mode="min") | |||
@@ -286,7 +279,7 @@ def minimum(x, y): | |||
def cos(x): | |||
"""Element-wise cosine. | |||
"""Element-wise `cosine`. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
@@ -315,80 +308,71 @@ def cos(x): | |||
def sin(x): | |||
"""Element-wise sine.""" | |||
"""Element-wise `sine`.""" | |||
return _elwise(x, mode="sin") | |||
def tan(x): | |||
"""Element-wise tangent.""" | |||
"""Element-wise `tangent`.""" | |||
return sin(x) / cos(x) | |||
def acos(x): | |||
"""Element-wise inverse cosine.""" | |||
"""Element-wise `inverse cosine`.""" | |||
return _elwise(x, mode="acos") | |||
def asin(x): | |||
"""Element-wise inverse sine.""" | |||
"""Element-wise `inverse sine`.""" | |||
return _elwise(x, mode="asin") | |||
def atan(x): | |||
"""Element-wise inverse tangent.""" | |||
"""Element-wise `inverse tangent`.""" | |||
return _elwise(x, 1, mode="atan2") | |||
def atan2(y, x): | |||
"""Element-wise 2-argument arctangent.""" | |||
"""Element-wise `2-argument arctangent`.""" | |||
return _elwise(y, x, mode="atan2") | |||
def cosh(x): | |||
r"""Element-wise hyperbolic cosine.""" | |||
r"""Element-wise `hyperbolic cosine`.""" | |||
return 0.5 * (exp(x) + exp(-x)) | |||
def sinh(x): | |||
r"""Element-wise hyperbolic sine.""" | |||
r"""Element-wise `hyperbolic sine`.""" | |||
u = expm1(x) | |||
return 0.5 * u / (u + 1) * (u + 2) | |||
def tanh(x): | |||
r"""Element-wise hyperbolic tangent.""" | |||
r"""Element-wise `hyperbolic tangent`.""" | |||
return _elwise(x, mode="tanh") | |||
def asinh(x): | |||
r"""Element-wise inverse hyperbolic sine.""" | |||
r"""Element-wise `inverse hyperbolic sine`.""" | |||
return log(x + (x ** 2 + 1) ** 0.5) | |||
def acosh(x): | |||
r"""Element-wise inverse hyperbolic cosine.""" | |||
r"""Element-wise `inverse hyperbolic cosine`.""" | |||
return log(x + (x ** 2 - 1) ** 0.5) | |||
def atanh(x): | |||
r"""Element-wise inverse hyperbolic tangent.""" | |||
r"""Element-wise `inverse hyperbolic tangent`.""" | |||
return log1p(2 * x / (1 - x)) / 2 | |||
def fast_tanh(x): | |||
r"""Element-wise fast tanh; this is an approximation: | |||
.. math:: | |||
\text{fast_tanh}(x) = x * (27. + x * x) / (27. + 9. * x * x) | |||
""" | |||
return _elwise(x, mode="fast_tanh") | |||
# bit-twiddling functions | |||
def left_shift(x, y): | |||
"""Element-wise bitwise binary: x << y. | |||
"""Element-wise `bitwise binary: x << y`. | |||
:param x: input tensor, should be int. | |||
:param y: how many bits to be left-shifted. | |||
@@ -418,7 +402,7 @@ def left_shift(x, y): | |||
def right_shift(x, y): | |||
"""Element-wise bitwise binary: x >> y.""" | |||
"""Element-wise `bitwise binary: x >> y`.""" | |||
return _elwise(x, y, mode="shr") | |||
@@ -426,30 +410,30 @@ def right_shift(x, y): | |||
def logical_and(x, y): | |||
"""Element-wise logical and: x && y.""" | |||
"""Element-wise `logical and: x && y`.""" | |||
return _elwise(x, y, mode="AND") | |||
def logical_not(x): | |||
"""Element-wise logical not: ~x.""" | |||
"""Element-wise `logical not: ~x`.""" | |||
return _elwise(x, mode="NOT") | |||
def logical_or(x, y): | |||
"""Element-wise logical or: x || y.""" | |||
"""Element-wise `logical or: x || y`.""" | |||
return _elwise(x, y, mode="OR") | |||
def logical_xor(x, y): | |||
"""Element-wise logical xor: x ^ y.""" | |||
"""Element-wise `logical xor: x ^ y`.""" | |||
return _elwise(x, y, mode="XOR") | |||
# comparison functions | |||
def eq(x, y): | |||
"""Element-wise (x == y). | |||
def equal(x, y): | |||
"""Element-wise `(x == y)`. | |||
:param x: input tensor 1. | |||
:param y: input tensor 2. | |||
@@ -465,7 +449,7 @@ def eq(x, y): | |||
x = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) | |||
y = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) | |||
out = F.eq(x, y) | |||
out = F.equal(x, y) | |||
print(out.numpy()) | |||
Outputs: | |||
@@ -479,28 +463,28 @@ def eq(x, y): | |||
return _elwise(x, y, mode="eq") | |||
def ne(x, y): | |||
"""Element-wise (x != y).""" | |||
def not_equal(x, y): | |||
"""Element-wise `(x != y)`.""" | |||
return x != y | |||
def lt(x, y): | |||
"""Element-wise (x < y).""" | |||
def less(x, y): | |||
"""Element-wise `(x < y)`.""" | |||
return _elwise(x, y, mode="lt") | |||
def le(x, y): | |||
"""Element-wise (x <= y).""" | |||
def less_equal(x, y): | |||
"""Element-wise `(x <= y)`.""" | |||
return _elwise(x, y, mode="leq") | |||
def gt(x, y): | |||
"""Element-wise (x > y).""" | |||
def greater(x, y): | |||
"""Element-wise `(x > y)`.""" | |||
return _elwise(y, x, mode="lt") | |||
def ge(x, y): | |||
"""Element-wise (x >= y).""" | |||
def greater_equal(x, y): | |||
"""Element-wise `(x >= y)`.""" | |||
return _elwise(y, x, mode="leq") | |||
@@ -508,7 +492,7 @@ def ge(x, y): | |||
def hswish(x): | |||
"""Element-wise x * relu6(x + 3) / 6. | |||
"""Element-wise `x * relu6(x + 3) / 6`. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
@@ -534,7 +518,7 @@ def hswish(x): | |||
def hsigmoid(x): | |||
"""Element-wise relu6(x + 3) / 6.""" | |||
"""Element-wise `relu6(x + 3) / 6`.""" | |||
return relu6(x + 3) / 6 | |||
@@ -544,16 +528,16 @@ def relu(x): | |||
def relu6(x): | |||
"""Element-wise min(max(x, 0), 6).""" | |||
"""Element-wise `min(max(x, 0), 6)`.""" | |||
return minimum(maximum(x, 0), 6) | |||
def sigmoid(x): | |||
"""Element-wise 1 / ( 1 + exp( -x ) ).""" | |||
"""Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
return _elwise(x, mode="sigmoid") | |||
def clamp(x: Tensor, lower=None, upper=None) -> Tensor: | |||
def clip(x: Tensor, lower=None, upper=None) -> Tensor: | |||
r"""Clamps all elements in input tensor into the range `[` :attr:`lower`, :attr:`upper` `]` and returns | |||
a resulting tensor: | |||
@@ -578,9 +562,9 @@ def clamp(x: Tensor, lower=None, upper=None) -> Tensor: | |||
import megengine.functional as F | |||
a = tensor(np.arange(5).astype(np.int32)) | |||
print(F.clamp(a, 2, 4).numpy()) | |||
print(F.clamp(a, lower=3).numpy()) | |||
print(F.clamp(a, upper=3).numpy()) | |||
print(F.clip(a, 2, 4).numpy()) | |||
print(F.clip(a, lower=3).numpy()) | |||
print(F.clip(a, upper=3).numpy()) | |||
Outputs: | |||
@@ -596,7 +580,7 @@ def clamp(x: Tensor, lower=None, upper=None) -> Tensor: | |||
), "At least one of 'lower' or 'upper' must not be None" | |||
if lower is not None: | |||
if upper is not None: | |||
assert lower <= upper, "clamp lower bound is bigger that upper bound" | |||
assert lower <= upper, "clip lower bound is bigger that upper bound" | |||
return minimum(maximum(x, lower), upper) | |||
else: | |||
return maximum(x, lower) | |||
@@ -1,44 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
# pylint: disable=too-many-lines | |||
from typing import List | |||
from ..tensor import Tensor | |||
def cambricon_subgraph( | |||
inputs: List[Tensor], data: bytes, symbol: str, tensor_dim_mutable: bool, | |||
) -> List[Tensor]: | |||
"""Loads a serialized Cambricon subgraph (i.e. cnrtModel_t) and | |||
execute the operations defined in the subgraph. | |||
:param inputs: list of input tensors of the subgraph. | |||
:param data: the serialized subgraph. | |||
:param symbol: the name of the function in the subgraph. | |||
The function is corresponding to a cnmlFusionOp | |||
which is added to the cnmlModel_t/cnrtModel_t. | |||
:param tensor_dim_mutable: whether the input tensors' shapes are mutalbe | |||
in cnrtModel_t. | |||
""" | |||
raise NotImplementedError | |||
def extern_opr_subgraph( | |||
inputs, output_shapes: List[tuple], dump_name: str, dump_data: bytes, | |||
) -> List[Tensor]: | |||
"""Loads a serialized extern opr subgraph and fake execute the operator. | |||
:param inputs: tensor or list of input tensors. | |||
:param output_shapes: the output shapes. | |||
:param dump_name: the serialized subgraph name. | |||
:param dump_data: the serialized subgraph. | |||
:return: list of tensors. | |||
""" | |||
raise NotImplementedError |
@@ -1,41 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import collections | |||
from typing import Iterable, Optional, Union | |||
from ..tensor import Tensor | |||
def add_update( | |||
dest: Tensor, | |||
delta: Tensor, | |||
*, | |||
alpha: Union[Tensor, float, int] = 1.0, | |||
beta: Union[Tensor, float, int] = 1.0, | |||
bias: Union[Tensor, float, int] = 0.0 | |||
): | |||
r"""Modify ``dest`` inplace as follows: | |||
.. math:: | |||
dest = alpha * dest + beta * delta + bias | |||
:param dest: input data that will be inplace modified. | |||
:param delta: update value that will be added to ``dest``. | |||
:param alpha: weight ratio of ``dest``. Default: 1.0 | |||
:param beta: weight ratio of ``delta``. Default: 1.0 | |||
:param bias: bias value appended to the result. Default: 0.0 | |||
""" | |||
if beta is not None and beta != 1.0: | |||
delta = delta * beta | |||
if bias is not None and bias != 0.0: | |||
delta = delta + bias | |||
if alpha is not None and alpha != 1.0: | |||
dest *= alpha | |||
dest += delta | |||
return dest |
@@ -10,14 +10,14 @@ import numpy as np | |||
from ..core.tensor.utils import make_shape_tuple | |||
from ..tensor import Tensor | |||
from .elemwise import abs, eq, exp, log, maximum, pow, relu | |||
from .nn import indexing_one_hot | |||
from .elemwise import abs, equal, exp, log, maximum, pow, relu | |||
from .nn import indexing_one_hot, logsigmoid, logsumexp | |||
from .tensor import where | |||
__all__ = [ | |||
"l1_loss", | |||
"square_loss", | |||
"cross_entropy_with_softmax", | |||
"cross_entropy", | |||
"binary_cross_entropy", | |||
"hinge_loss", | |||
] | |||
@@ -55,7 +55,7 @@ def l1_loss(pred: Tensor, label: Tensor) -> Tensor: | |||
ipt = mge.tensor(np.array([3, 3, 3, 3]).astype(np.float32)) | |||
tgt = mge.tensor(np.array([2, 8, 6, 1]).astype(np.float32)) | |||
loss = F.l1_loss(ipt, tgt) | |||
loss = F.nn.l1_loss(ipt, tgt) | |||
print(loss.numpy()) | |||
Outputs: | |||
@@ -106,7 +106,7 @@ def square_loss(pred: Tensor, label: Tensor) -> Tensor: | |||
ipt = mge.tensor(np.array([3, 3, 3, 3]).astype(np.float32)) | |||
tgt = mge.tensor(np.array([2, 8, 6, 1]).astype(np.float32)) | |||
loss = F.square_loss(ipt, tgt) | |||
loss = F.nn.square_loss(ipt, tgt) | |||
print(loss.numpy()) | |||
Outputs: | |||
@@ -120,10 +120,16 @@ def square_loss(pred: Tensor, label: Tensor) -> Tensor: | |||
return (diff ** 2).mean() | |||
def cross_entropy_with_softmax( | |||
pred: Tensor, label: Tensor, axis: int = 1, label_smooth: float = 0 | |||
def cross_entropy( | |||
pred: Tensor, | |||
label: Tensor, | |||
axis: int = 1, | |||
with_logits: bool = True, | |||
label_smooth: float = 0, | |||
) -> Tensor: | |||
r"""Returns loss after applying :func:`~.softmax` + :func:`~.cross_entropy`. | |||
r"""Compute the multi-class cross entropy loss (using logits by default). | |||
By default, prediction is assumed to be logits, whose softmax gives probabilities. | |||
It has better numerical stability compared with sequential calls to :func:`~.softmax` and :func:`~.cross_entropy`. | |||
@@ -132,11 +138,12 @@ def cross_entropy_with_softmax( | |||
.. math:: y^{LS}_{k}=y_{k}\left(1-\alpha\right)+\alpha/K | |||
where :math:`y^{LS}` and :math:`y` are new label distribution and origin label distribution respectively. | |||
k is the index of label distribution. :math:`\alpha` is label_smooth and :math:`K` is the number of classes. | |||
k is the index of label distribution. :math:`\alpha` is ``label_smooth`` and :math:`K` is the number of classes. | |||
:param pred: input tensor representing the predicted probability. | |||
:param label: input tensor representing the classification label. | |||
:param axis: an axis along which softmax will be applied. Default: 1 | |||
:param with_logits: whether to apply softmax first. Default: True | |||
:param label_smooth: a label smoothing of parameter that can re-distribute target distribution. Default: 0 | |||
:return: loss value. | |||
@@ -150,9 +157,9 @@ def cross_entropy_with_softmax( | |||
data_shape = (1, 2) | |||
label_shape = (1, ) | |||
pred = tensor(np.array([0.5, 0.5], dtype=np.float32).reshape(data_shape)) | |||
pred = tensor(np.array([0, 0], dtype=np.float32).reshape(data_shape)) | |||
label = tensor(np.ones(label_shape, dtype=np.int32)) | |||
loss = F.cross_entropy_with_softmax(pred, label) | |||
loss = F.nn.cross_entropy(pred, label) | |||
print(loss.numpy()) | |||
Outputs: | |||
@@ -170,26 +177,41 @@ def cross_entropy_with_softmax( | |||
) | |||
num_classes = pred.shape[axis] | |||
no_label_smooth = ( | |||
label_smooth is None or type(label_smooth) in (int, float) and label_smooth == 0 | |||
) | |||
if not with_logits: | |||
if no_label_smooth: | |||
return -log(indexing_one_hot(pred, label, axis)).mean() | |||
pred = log(pred) | |||
return ( | |||
label_smooth * pred.mean() | |||
- (1 - label_smooth) * indexing_one_hot(pred, label, axis).mean() | |||
) | |||
# Denominator of the softmax | |||
offset = pred.max(axis=axis, keepdims=True).detach() | |||
pred = pred - offset | |||
down = exp(pred).sum(axis=axis, keepdims=True) | |||
down = logsumexp(pred, axis=axis, keepdims=True) | |||
up = indexing_one_hot(pred, label, axis) | |||
if label_smooth != 0: | |||
if not no_label_smooth: | |||
factor = label_smooth / num_classes | |||
up = up * (1 - label_smooth) + pred.sum(axis=axis, keepdims=True) * factor | |||
return (log(down) - up).mean() | |||
return (down - up).mean() | |||
def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor: | |||
r"""Function that measures the Binary Cross Entropy between the target and the prediction. | |||
def binary_cross_entropy( | |||
pred: Tensor, label: Tensor, with_logits: bool = True | |||
) -> Tensor: | |||
r"""Compute the binary cross entropy loss (using logits by default). | |||
By default, prediction is assumed to be logits, whose sigmoid gives probabilities. | |||
:param pred: `(N, *)` where `*` means any number of additional dimensions. | |||
:param pred: `(N, *)`, where `*` means any number of additional dimensions. | |||
:param label: `(N, *)`, same shape as the input. | |||
:param with_logits: bool, whether to apply sigmoid first. Default: True | |||
:return: loss value. | |||
Examples: | |||
@@ -200,9 +222,9 @@ def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor: | |||
from megengine import tensor | |||
import megengine.functional as F | |||
pred = tensor(np.array([0.5, 0.5], dtype=np.float32).reshape(1, 2)) | |||
pred = tensor(np.array([0, 0], dtype=np.float32).reshape(1, 2)) | |||
label = tensor(np.ones((1, 2), dtype=np.float32)) | |||
loss = F.binary_cross_entropy(pred, label) | |||
loss = F.nn.binary_cross_entropy(pred, label) | |||
print(loss.numpy()) | |||
Outputs: | |||
@@ -212,11 +234,15 @@ def binary_cross_entropy(pred: Tensor, label: Tensor) -> Tensor: | |||
[0.6931] | |||
""" | |||
return -1.0 * (label * log(pred) + (1.0 - label) * log(1 - pred)).mean() | |||
if not with_logits: | |||
return -(label * log(pred) + (1 - label) * log(1 - pred)).mean() | |||
# logsigmoid(pred) and logsigmoid(-pred) has common sub-expression | |||
# hopefully the backend would optimize this | |||
return -(label * logsigmoid(pred) + (1 - label) * logsigmoid(-pred)).mean() | |||
def hinge_loss(pred: Tensor, label: Tensor, norm: str = "L1") -> Tensor: | |||
r"""Caculate the hinge loss which is often used in SVMs. | |||
r"""Caculates the hinge loss which is often used in SVM. | |||
The hinge loss can be described as: | |||
@@ -236,7 +262,7 @@ def hinge_loss(pred: Tensor, label: Tensor, norm: str = "L1") -> Tensor: | |||
pred = tensor([[0.5, -0.5, 0.1], [-0.6, 0.7, 0.8]], dtype="float32") | |||
label = tensor([[1, -1, -1], [-1, 1, 1]], dtype="float32") | |||
loss = F.hinge_loss(pred, label) | |||
loss = F.nn.hinge_loss(pred, label) | |||
print(loss.numpy()) | |||
Outputs: | |||
@@ -14,11 +14,12 @@ from typing import Optional, Sequence, Tuple, Union | |||
from ..core.ops import builtin | |||
from ..core.ops._internal import param_defs as P | |||
from ..core.ops.special import Const | |||
from ..core.tensor import utils | |||
from ..core.tensor.core import apply | |||
from ..core.tensor.core import TensorBase, TensorWrapperBase, apply | |||
from ..tensor import Tensor | |||
from .elemwise import clamp, exp, log, log1p | |||
from .tensor import add_axis, remove_axis, reshape | |||
from .elemwise import clip, exp, log, log1p | |||
from .tensor import reshape, squeeze | |||
__all__ = [ | |||
"argmax", | |||
@@ -45,7 +46,7 @@ def isnan(inp: Tensor) -> Tensor: | |||
r"""Returns a new tensor representing if each element is ``NaN`` or not. | |||
:param inp: input tensor. | |||
:return: a new tensor representing if each element in inp is NaN or not. | |||
:return: result tensor. | |||
Examples: | |||
@@ -71,7 +72,7 @@ def isinf(inp: Tensor) -> Tensor: | |||
r"""Returns a new tensor representing if each element is ``Inf`` or not. | |||
:param inp: input tensor. | |||
:return: a new tensor representing if each element in inp is Inf or not. | |||
:return: result tensor. | |||
Examples: | |||
@@ -84,7 +85,7 @@ def isinf(inp: Tensor) -> Tensor: | |||
print(F.isinf(x).numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[False True False] | |||
@@ -108,7 +109,7 @@ def sign(inp: Tensor): | |||
x = tensor([1, -1, 0]) | |||
print(F.sign(x).numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
@@ -128,7 +129,7 @@ def sum( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. | |||
Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. | |||
Default: False | |||
@@ -163,7 +164,7 @@ def prod( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -199,7 +200,7 @@ def mean( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -235,7 +236,7 @@ def var( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -275,7 +276,7 @@ def std( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -310,7 +311,7 @@ def min( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -346,7 +347,7 @@ def max( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -373,18 +374,14 @@ def max( | |||
def norm( | |||
inp: Tensor, | |||
p: int = 2, | |||
axis: Optional[Union[int, Sequence[int]]] = None, | |||
keepdims=False, | |||
inp: Tensor, ord: float = None, axis: int = None, keepdims=False, | |||
): | |||
"""Calculates ``p``-norm of input tensor along | |||
given axis. If axis is a list of dimensions, | |||
reduce over all of them. | |||
given axis. | |||
:param inp: input tensor. | |||
:param p: power of value applied to inp. Default: 2 | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param ord: power of value applied to inp. Default: 2 | |||
:param axis: dimension to reduce. If None, input must be a vector. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -396,7 +393,7 @@ def norm( | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(-3, 3, dtype=np.float32).reshape(2,3)) | |||
x = tensor(np.arange(-3, 3, dtype=np.float32)) | |||
out = F.norm(x) | |||
print(out.numpy()) | |||
@@ -407,13 +404,18 @@ def norm( | |||
[4.3589] | |||
""" | |||
if p == 0: | |||
if axis is None: | |||
if inp.ndim != 1: | |||
raise TypeError("axis is required unless input is a vector") | |||
if ord is None: | |||
ord = 2 | |||
if ord == 0: | |||
return sum(inp != 0, axis=axis, keepdims=keepdims) | |||
if p == math.inf: | |||
if ord == math.inf: | |||
return max(abs(inp)) | |||
if p == -math.inf: | |||
if ord == -math.inf: | |||
return min(abs(inp)) | |||
return sum(abs(inp) ** p, axis=axis, keepdims=keepdims) ** (1.0 / p) | |||
return sum(abs(inp) ** ord, axis=axis, keepdims=keepdims) ** (1.0 / ord) | |||
def argmin( | |||
@@ -426,7 +428,7 @@ def argmin( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -458,7 +460,7 @@ def argmin( | |||
(inp,) = apply(op, inp) | |||
if not keepdims: | |||
inp = remove_axis(inp, ai) | |||
inp = squeeze(inp, ai) | |||
return inp | |||
@@ -470,7 +472,7 @@ def argmin( | |||
op = builtin.Argmin(axis=axis) | |||
(result,) = apply(op, inp) | |||
if not keepdims: | |||
result = remove_axis(result, axis) | |||
result = squeeze(result, axis) | |||
return result | |||
@@ -484,7 +486,7 @@ def argmax( | |||
reduce over all of them. | |||
:param inp: input tensor. | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced. Default: None | |||
:param axis: dimension to reduce. If None, all dimensions will be reduced. Default: None | |||
:param keepdims: whether the output tensor has axis retained or not. Default: False | |||
:return: output tensor. | |||
@@ -516,7 +518,7 @@ def argmax( | |||
(inp,) = apply(op, inp) | |||
if not keepdims: | |||
inp = remove_axis(inp, ai) | |||
inp = squeeze(inp, ai) | |||
return inp | |||
@@ -528,45 +530,40 @@ def argmax( | |||
op = builtin.Argmax(axis=axis) | |||
(result,) = apply(op, inp) | |||
if not keepdims: | |||
result = remove_axis(result, axis) | |||
result = squeeze(result, axis) | |||
return result | |||
def normalize( | |||
inp: Tensor, | |||
p: int = 2, | |||
axis: Optional[Union[int, Sequence[int]]] = None, | |||
eps: float = 1e-12, | |||
inp: Tensor, ord: float = None, axis: int = None, eps: float = 1e-12, | |||
) -> Tensor: | |||
r"""Performs :math:`L_p` normalization of input tensor along | |||
given axis. If axis is a list of dimensions, | |||
reduce over all of them. | |||
given axis. | |||
For a tensor inp of shape :math:`(n_0, ..., n_{dim}, ..., n_k)`, each | |||
For a tensor of shape :math:`(n_0, ..., n_{dim}, ..., n_k)`, each | |||
:math:`n_{dim}` -element vector :math:`v` along dimension :attr:`axis` is transformed as: | |||
.. math:: | |||
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}. | |||
:param inp: input tensor. | |||
:param p: power of value applied to inp. Default: 2 | |||
:param axis: dimension to reduce. If None, all the dimensions will be reduced | |||
to calculate the norm. Default: None | |||
:param ord: power of value applied to input tensor. Default: 2 | |||
:param axis: dimension to reduce.If None, input must be a vector. Default: None | |||
:param eps: a small value to avoid division by zero. Default: 1e-12 | |||
:return: normalized output tensor. | |||
""" | |||
if axis is None: | |||
return inp / clamp(norm(inp, p, axis), lower=eps) | |||
return inp / clip(norm(inp, ord, axis), lower=eps) | |||
else: | |||
return inp / clamp(norm(inp, p, axis, keepdims=True), lower=eps) | |||
return inp / clip(norm(inp, ord, axis, keepdims=True), lower=eps) | |||
def argsort(inp: Tensor, descending: bool = False) -> Tensor: | |||
r"""Sorts the target 2d matrix by row, return both the sorted tensor and indices. | |||
r"""Returns the indices that would sort the input tensor. | |||
:param inp: input tensor, if 2d, each row will be sorted. | |||
:param descending: Sort in descending order, where the largest comes first. Default: False | |||
:return: Tuple of two tensors `(sorted_tensor, indices_of_int32)`. | |||
:param inp: input tensor. If it's 2d, the result would be array of indices show how to sort each row in the input tensor. | |||
:param descending: sort in descending order, where the largest comes first. Default: False | |||
:return: indices of int32 indicates how to sort the input. | |||
Examples: | |||
@@ -603,6 +600,31 @@ def argsort(inp: Tensor, descending: bool = False) -> Tensor: | |||
def sort(inp: Tensor, descending: bool = False) -> Tuple[Tensor, Tensor]: | |||
r"""Returns sorted tensor and the indices would sort the input tensor. | |||
:param inp: input tensor. If it's 2d, the result would be sorted by row. | |||
:param descending: sort in descending order, where the largest comes first. Default: False | |||
:return: tuple of two tensors `(sorted_tensor, indices_of_int32)`. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.array([1,2], dtype=np.float32)) | |||
out, indices = F.sort(x) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[1. 2.] | |||
""" | |||
assert len(inp.shape) <= 2, "Input should be 1d or 2d" | |||
if descending: | |||
order = P.Argsort.Order.DESCENDING | |||
@@ -625,13 +647,13 @@ def topk( | |||
kth_only: bool = False, | |||
no_sort: bool = False, | |||
) -> Tuple[Tensor, Tensor]: | |||
r"""Selects the ``Top-K(by default)`` smallest elements of 2d matrix by row. | |||
r"""Selects the ``Top-K``(by default) smallest elements of 2d matrix by row. | |||
:param inp: input tensor, if 2d, each row will be sorted. | |||
:param inp: input tensor. If input tensor is 2d, each row will be sorted. | |||
:param k: number of elements needed. | |||
:param descending: if true, return the largest elements instead. Default: False | |||
:param kth_only: if true, only the k-th element will be returned. Default: False | |||
:param no_sort: if true, the returned elements can be unordered. Default: False | |||
:param descending: if True, return the largest elements instead. Default: False | |||
:param kth_only: if True, only the k-th element will be returned. Default: False | |||
:param no_sort: if True, the returned elements can be unordered. Default: False | |||
:return: tuple of two tensors `(topk_tensor, indices_of_int32)`. | |||
Examples: | |||
@@ -665,15 +687,18 @@ def topk( | |||
mode = Mode.VALUE_IDX_SORTED | |||
op = builtin.TopK(mode=mode) | |||
if not isinstance(k, (TensorBase, TensorWrapperBase)): | |||
(k,) = Const(k, dtype="int32", device=inp.device)(inp) | |||
if len(inp.shape) == 1: | |||
inp = inp.reshape(1, -1) | |||
res = apply(op, inp, Tensor(k, dtype="int32")) | |||
res = apply(op, inp, k) | |||
if kth_only: | |||
tns = res[0] | |||
else: | |||
tns, ind = res[0][0], res[1][0] | |||
else: | |||
res = apply(op, inp, Tensor(k, dtype="int32")) | |||
res = apply(op, inp, k) | |||
if kth_only: | |||
tns = res | |||
else: | |||
@@ -13,46 +13,51 @@ from ..core._imperative_rt import CompNode | |||
from ..core.ops import builtin | |||
from ..core.ops._internal import param_defs as P | |||
from ..core.ops.special import Const | |||
from ..core.tensor import utils | |||
from ..core.tensor import megbrain_graph, utils | |||
from ..core.tensor.core import TensorBase, TensorWrapperBase, apply | |||
from ..core.tensor.utils import astensor1d | |||
from ..distributed import WORLD, is_distributed | |||
from ..jit.tracing import is_tracing | |||
from ..random import uniform | |||
from ..tensor import Tensor | |||
from .debug_param import get_conv_execution_strategy | |||
from .distributed import all_reduce_sum | |||
from .elemwise import exp, floor, log, log1p, maximum, minimum, relu | |||
from .math import argsort, max, sum | |||
from .tensor import add_axis, broadcast, concat, full, ones, remove_axis, reshape, zeros | |||
from .tensor import ( | |||
broadcast_to, | |||
concat, | |||
expand_dims, | |||
full, | |||
ones, | |||
reshape, | |||
squeeze, | |||
zeros, | |||
) | |||
from .types import _pair, _pair_nonzero | |||
__all__ = [ | |||
"adaptive_avg_pool2d", | |||
"adaptive_max_pool2d", | |||
"avg_pool2d", | |||
"batched_nms", | |||
"batch_norm2d", | |||
"batch_norm", | |||
"conv2d", | |||
"conv_transpose2d", | |||
"dot", | |||
"dropout", | |||
"embedding", | |||
"indexing_one_hot", | |||
"interpolate", | |||
"leaky_relu", | |||
"linear", | |||
"local_conv2d", | |||
"logsigmoid", | |||
"logsumexp", | |||
"log_softmax", | |||
"logsoftmax", | |||
"matmul", | |||
"max_pool2d", | |||
"nms", | |||
"one_hot", | |||
"prelu", | |||
"roi_align", | |||
"roi_pooling", | |||
"softmax", | |||
"softplus", | |||
"svd", | |||
"sync_batch_norm", | |||
"warp_perspective", | |||
] | |||
@@ -106,19 +111,18 @@ def conv2d( | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 2D convolution operation. Default: 1 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a ``grouped convolution``. When groups is not 1, | |||
in_channels and out_channels must be divisible by groups, | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a ``grouped convolution``. When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. | |||
:type conv_mode: string or :class:`P.Convolution.Mode`. | |||
:type conv_mode: string or :class:`P.Convolution.Mode` | |||
:param conv_mode: supports "CROSS_CORRELATION" or "CONVOLUTION". Default: | |||
"CROSS_CORRELATION" | |||
:type compute_mode: string or | |||
:class:`P.Convolution.ComputeMode`. | |||
:class:`P.Convolution.ComputeMode` | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
Float32 would be used for accumulator and intermediate result, but only | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of Float16 dtype. | |||
:return: output tensor. | |||
""" | |||
@@ -167,24 +171,23 @@ def conv_transpose2d( | |||
:param inp: feature map of the convolution operation. | |||
:param weight: convolution kernel. | |||
:param bias: bias added to the result of convolution (if given) | |||
:param bias: bias added to the result of convolution (if given). | |||
:param stride: stride of the 2D convolution operation. Default: 1 | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 2D convolution operation. Default: 1 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a ``grouped convolution``. When groups is not 1, | |||
in_channels and out_channels must be divisible by groups, | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a ``grouped convolution``. When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by groups, | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. Default: 1 | |||
:type conv_mode: string or :class:`P.Convolution.Mode`. | |||
:type conv_mode: string or :class:`P.Convolution.Mode` | |||
:param conv_mode: supports "CROSS_CORRELATION" or "CONVOLUTION". Default: | |||
"CROSS_CORRELATION" | |||
:type compute_mode: string or | |||
:class:`P.Convolution.ComputeMode`. | |||
:class:`P.Convolution.ComputeMode` | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
Float32 would be used for accumulator and intermediate result, but only | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of Float16 dtype. | |||
:return: output tensor. | |||
""" | |||
@@ -222,10 +225,8 @@ def local_conv2d( | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
conv_mode="CROSS_CORRELATION", | |||
) -> Tensor: | |||
"""Applies spatial 2D convolution over an image with untied kernels. | |||
Refer to :class:`~.LocalConv2d` for more information. | |||
): | |||
"""Applies spatial 2D convolution over an groupped channeled image with untied kernels. | |||
""" | |||
assert conv_mode == "CROSS_CORRELATION" or conv_mode.name == "CROSS_CORRELATION" | |||
@@ -233,6 +234,8 @@ def local_conv2d( | |||
pad_h, pad_w = expand_hw(padding) | |||
dilate_h, dilate_w = expand_hw(dilation) | |||
Sparse = P.Convolution.Sparse | |||
op = builtin.GroupLocal( | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
@@ -240,7 +243,9 @@ def local_conv2d( | |||
pad_w=pad_w, | |||
dilate_h=dilate_h, | |||
dilate_w=dilate_w, | |||
# strategy=get_conv_execution_strategy(), | |||
mode=conv_mode, | |||
compute_mode="DEFAULT", | |||
sparse=Sparse.DENSE, | |||
) | |||
inp, weight = utils.convert_inputs(inp, weight) | |||
(output,) = apply(op, inp, weight) | |||
@@ -263,7 +268,7 @@ def max_pool2d( | |||
:param kernel_size: size of the window. | |||
:param stride: stride of the window. If not provided, its value is set to kernel_size. | |||
Default: None | |||
:param padding: implicit zero padding to be added on both sides. Default: 0 | |||
:param padding: implicit zero padding added on both sides. Default: 0 | |||
:return: output tensor. | |||
""" | |||
if stride is None: | |||
@@ -292,15 +297,15 @@ def avg_pool2d( | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
mode: str = "AVERAGE_COUNT_EXCLUDE_PADDING", | |||
) -> Tensor: | |||
"""Applies a 2D average pooling over an input tensor. | |||
"""Applies 2D average pooling over an input tensor. | |||
Refer to :class:`~.AvgPool2d` for more information. | |||
:param inp: input tensor. | |||
:param kernel_size: size of the window. | |||
:param stride: stride of the window. If not provided, its value is set to kernel_size. | |||
:param stride: stride of the window. If not provided, its value is set to ``kernel_size``. | |||
Default: None | |||
:param padding: implicit zero padding to be added on both sides. Default: 0 | |||
:param padding: implicit zero padding added on both sides. Default: 0 | |||
:param mode: whether to count padding values. Default: "AVERAGE_COUNT_EXCLUDE_PADDING" | |||
:return: output tensor. | |||
""" | |||
@@ -323,6 +328,48 @@ def avg_pool2d( | |||
return output | |||
def adaptive_max_pool2d( | |||
inp: Tensor, oshp: Union[Tuple[int, int], int, Tensor], | |||
) -> Tensor: | |||
"""Applies a 2D max adaptive pooling over an input. | |||
Refer to :class:`~.MaxAdaptivePool2d` for more information. | |||
:param inp: The input tensor. | |||
:param oshp: (OH, OW) size of the output shape. | |||
:return: output tensor. | |||
""" | |||
assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type" | |||
if isinstance(oshp, int): | |||
oshp = (oshp, oshp) | |||
op = builtin.AdaptivePooling(mode="MAX", format="NCHW",) | |||
oshp = astensor1d(oshp, inp, dtype="int32", device=inp.device) | |||
(output,) = apply(op, inp, oshp) | |||
return output | |||
def adaptive_avg_pool2d( | |||
inp: Tensor, oshp: Union[Tuple[int, int], int, Tensor], | |||
) -> Tensor: | |||
"""Applies a 2D average adaptive pooling over an input. | |||
Refer to :class:`~.AvgAdaptivePool2d` for more information. | |||
:param inp: The input tensor. | |||
:param oshp: (OH, OW) size of the output shape. | |||
:return: output tensor. | |||
""" | |||
assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type" | |||
if isinstance(oshp, int): | |||
oshp = (oshp, oshp) | |||
op = builtin.AdaptivePooling(mode="AVERAGE", format="NCHW",) | |||
oshp = astensor1d(oshp, inp, dtype="int32", device=inp.device) | |||
(output,) = apply(op, inp, oshp) | |||
return output | |||
def prelu(inp: Tensor, weight: Tensor) -> Tensor: | |||
r""" | |||
Applies the element-wise PReLU function. | |||
@@ -346,17 +393,17 @@ def softplus(inp: Tensor) -> Tensor: | |||
.. math:: | |||
\text{softplus}(x) = \log(1 + \exp(x)) | |||
softplus is a smooth approximation to the ReLU function and can be used | |||
to constrain the output of a machine to always be positive. | |||
to constrain the output to be always positive. | |||
For numerical stability the implementation follows this transformation: | |||
.. math:: | |||
\text{softplus}(x) = \log(1 + \exp(x)) | |||
= \log(1 + \exp(-\text{abs}(x))) + \max(x, 0) | |||
\text{softplus}(x) = \log(1 + \exp(x)) | |||
= \log(1 + \exp(-\text{abs}(x))) + \max(x, 0) | |||
= \log1p(\exp(-\text{abs}(x))) + \text{relu}(x) | |||
:param inp: The input tensor | |||
:param inp: input tensor. | |||
Examples: | |||
@@ -369,9 +416,9 @@ def softplus(inp: Tensor) -> Tensor: | |||
x = tensor(np.arange(-3, 3, dtype=np.float32)) | |||
y = F.softplus(x) | |||
print(y.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[0.0486 0.1269 0.3133 0.6931 1.3133 2.1269] | |||
@@ -380,7 +427,7 @@ def softplus(inp: Tensor) -> Tensor: | |||
return log1p(exp(-abs(inp))) + relu(inp) | |||
def log_softmax(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
def logsoftmax(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
r"""Applies the :math:`\log(\text{Softmax}(x))` function to an n-dimensional | |||
input Tensor. The LogSoftmax formulation can be simplified as: | |||
@@ -390,13 +437,13 @@ def log_softmax(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
For numerical stability the implementation follows this transformation: | |||
.. math:: | |||
\operatorname{logsoftmax}(x) | |||
\operatorname{logsoftmax}(x) | |||
= \log (\frac{\exp (x)}{\sum_{i}(\exp (x_{i}))}) | |||
= x - \log (\sum_{i}(\exp (x_{i}))) | |||
= x - logsumexp(x) | |||
:param inp: The input tensor | |||
:param axis: An axis along which log_softmax will be applied. | |||
:param inp: input tensor. | |||
:param axis: axis along which logsoftmax will be applied. | |||
Examples: | |||
@@ -407,11 +454,11 @@ def log_softmax(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
import megengine.functional as F | |||
x = tensor(np.arange(-5, 5, dtype=np.float32)).reshape(2,5) | |||
y = F.log_softmax(x, axis=1) | |||
y = F.logsoftmax(x, axis=1) | |||
print(y.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[-4.4519 -3.4519 -2.4519 -1.4519 -0.4519] | |||
@@ -430,7 +477,7 @@ def logsigmoid(inp: Tensor) -> Tensor: | |||
= - \log(1 + exp(-x)) | |||
= - \text{softplus}(-x) | |||
:param inp: The input tensor | |||
:param inp: input tensor. | |||
Examples: | |||
@@ -459,11 +506,10 @@ def logsumexp( | |||
inp: Tensor, axis: Union[int, Sequence[int]], keepdims: bool = False | |||
) -> Tensor: | |||
r""" | |||
Compute the log of the sum of exponentials of inputs along the given :attr:`axis`. | |||
The computation is numerically stabilized. | |||
Calculates the logarithm of the inputs' exponential sum along the given :attr:`axis`. | |||
.. math:: | |||
\operatorname{logsumexp}(\boldsymbol{x})= \log \sum_{j=1}^{n} \exp \left(x_{j}\right) | |||
For numerical stability, the implementation follows this transformation: | |||
@@ -472,18 +518,18 @@ def logsumexp( | |||
\operatorname{logsumexp}(\boldsymbol{x})= \log \sum_{j=1}^{n} \exp \left(x_{j}\right) | |||
= \operatorname{logsumexp}(\boldsymbol{x})=b+\log \sum_{j=1}^{n} \exp \left(x_{j}-b\right) | |||
where | |||
.. math:: | |||
b = \max(x_j) | |||
:param inp: The input tensor. | |||
:param axis: Axis over which the sum is taken. It can be a single axis or a list of axes. | |||
:param inp: input tensor. | |||
:param axis: axis over which the sum is taken. It could be single axis or list of axes. | |||
:param keepdims: whether to retain :attr:`axis` or not for the output tensor. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
@@ -501,11 +547,11 @@ def logsumexp( | |||
[-0.5481 4.4519] | |||
""" | |||
max_value = max(inp, axis, keepdims=True) | |||
max_value = max(inp.detach(), axis, keepdims=True) | |||
if keepdims: | |||
return max_value + log(sum(exp(inp - max_value), axis, keepdims)) | |||
else: | |||
return remove_axis(max_value, axis=None) + log( | |||
return squeeze(max_value, axis=None) + log( | |||
sum(exp(inp - max_value), axis, keepdims) | |||
) | |||
@@ -523,13 +569,13 @@ def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: | |||
.. math:: | |||
\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)} | |||
It is applied to all elements along axis, and will re-scale them so that | |||
the elements lie in the range `[0, 1]` and sum to 1. | |||
It is applied to all elements along axis, and rescales elements so that | |||
they stay in the range `[0, 1]` and sum to 1. | |||
See :class:`~megengine.module.activation.Softmax` for more details. | |||
:param inp: The input tensor. | |||
:param axis: An axis along which softmax will be applied. By default, | |||
:param inp: input tensor. | |||
:param axis: an axis along which softmax will be applied. By default, | |||
softmax will apply along the highest ranked axis. | |||
Examples: | |||
@@ -560,7 +606,7 @@ def softmax(inp: Tensor, axis: Optional[int] = None) -> Tensor: | |||
return cached / down | |||
def batch_norm2d( | |||
def batch_norm( | |||
inp: Tensor, | |||
running_mean: Tensor = None, | |||
running_var: Tensor = None, | |||
@@ -572,7 +618,7 @@ def batch_norm2d( | |||
eps: float = 1e-5, | |||
inplace: bool = True | |||
): | |||
"""Applies batch normalization to the input. | |||
r"""Applies batch normalization to the input. | |||
Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. | |||
@@ -584,26 +630,28 @@ def batch_norm2d( | |||
:param bias: bias tensor in the learnable affine parameters. | |||
See :math:`\beta` in :class:`~.BatchNorm2d`. | |||
:param training: a boolean value to indicate whether batch norm is performed | |||
in traning mode. Default: False | |||
in training mode. Default: False | |||
:param momentum: value used for the ``running_mean`` and ``running_var`` | |||
computation. | |||
Default: 0.9 | |||
:param eps: a value added to the denominator for numerical stability. | |||
Default: 1e-5 | |||
:param inplace: whether to update running_mean and running_var inplace or return new tensors | |||
:param inplace: whether to update ``running_mean`` and ``running_var`` inplace or return new tensors | |||
Default: True | |||
:return: output tensor. | |||
""" | |||
if inp.ndim != 4: | |||
raise NotImplementedError("batch_norm for ndim != 4") | |||
def full_value(value): | |||
C = inp.shape[1] | |||
(x,) = Const(value, dtype=inp.dtype, device=inp.device)(inp) | |||
return broadcast(x, [1, C, 1, 1]) | |||
return broadcast_to(x, [1, C, 1, 1]) | |||
def expand_or_full(x, value): | |||
if x is None: | |||
return full_value(value) | |||
return add_axis(x, [0, 2, 3]) | |||
return expand_dims(x, [0, 2, 3]) | |||
def make_full_if_none(x, value): | |||
if x is None: | |||
@@ -676,7 +724,7 @@ def sync_batch_norm( | |||
eps_mode="ADDITIVE", | |||
group=WORLD, | |||
) -> Tensor: | |||
"""Applies synchronized batch normalization to the input. | |||
r"""Applies synchronized batch normalization to the input. | |||
Refer to :class:`~.BatchNorm2d` and :class:`~.BatchNorm1d` for more information. | |||
@@ -717,7 +765,7 @@ def sync_batch_norm( | |||
if is_distributed(): | |||
# reduce all nodes' data to calculate mean and variance | |||
reduce_size = broadcast(Tensor(reduce_size, dtype=_dtype), [1] * _ndim) | |||
reduce_size = broadcast_to(Tensor(reduce_size, dtype=_dtype), [1] * _ndim) | |||
stat = concat( | |||
[reduce_size.astype(_dtype), channel_x1s, channel_x2s], axis=1 | |||
) | |||
@@ -838,6 +886,10 @@ def warp_perspective( | |||
:param interp_mode: interpolation methods. Default: "LINEAR" | |||
:return: output tensor. | |||
Note: | |||
The transformation matrix is the inverse of that used by `cv2.warpPerspective`. | |||
Examples: | |||
.. testcode:: | |||
@@ -868,7 +920,8 @@ def warp_perspective( | |||
imode=interp_mode, bmode=border_mode, format="NCHW", border_val=border_val | |||
) | |||
inp, M = utils.convert_inputs(inp, M) | |||
(result,) = apply(op, inp, M, Tensor(dsize)) | |||
dsize = astensor1d(dsize, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, M, dsize) | |||
return result | |||
@@ -885,19 +938,18 @@ def matmul( | |||
With different inputs dim, this function behaves differently: | |||
- Both 1-D tensor, simply forward to dot. | |||
- Both 1-D tensor, simply forward to ``dot``. | |||
- Both 2-D tensor, normal matrix multiplication. | |||
- If one input tensor is 1-D, matrix vector multiplication. | |||
- If at least one tensor are 3-dimensional or >3-dimensional, the batched matrix-matrix is returned, and the tensor with smaller dimension will | |||
- If at least one tensor are 3-dimensional or >3-dimensional, the other tensor should have dim >= 2, the batched matrix-matrix is returned, and the tensor with smaller dimension will | |||
be broadcasted. For example: | |||
- inp1: `(k, m)`, inp2: `(m, p)`, return: `(k, p)` | |||
- inp1: `(n, k, m)`, inp2: `(n, m, p)`, return: `(n, k, p)` | |||
- inp1: `(n, k, m)`, inp2: `(m, p)`, return: `(n, k, p)` | |||
- inp1: `(n, j, k, m)`, inp2: `(n, j, m, p)`, return: `(n, j, k, p)` | |||
:param inp1: The first matrix to be multiplied | |||
:param inp2: The second matrix to be multiplied | |||
:return: The output tensor | |||
:param inp1: first matrix to be multiplied. | |||
:param inp2: second matrix to be multiplied. | |||
:return: output tensor. | |||
Examples: | |||
@@ -931,10 +983,10 @@ def matmul( | |||
if dim1 != dim2: | |||
if dim1 < dim2: | |||
shape1 = shape2[: dim2 - dim1] + shape1 | |||
inp1 = inp1.broadcast(*shape1) | |||
inp1 = broadcast_to(inp1, shape1) | |||
else: | |||
shape2 = shape1[: dim1 - dim2] + shape2 | |||
inp2 = inp2.broadcast(*shape2) | |||
inp2 = broadcast_to(inp2, shape2) | |||
reshaped_batch_size = 1 | |||
for i in shape1[:-2]: | |||
reshaped_batch_size *= i | |||
@@ -949,9 +1001,9 @@ def matmul( | |||
shp = shape1[:-1] + shape2[-1:] | |||
elif dim1 == 3 or dim2 == 3: | |||
if dim2 < 3: | |||
inp2 = inp2.broadcast(*(inp1.shape[:1] + inp2.shape)) | |||
inp2 = broadcast_to(inp2, inp1.shape[:1] + inp2.shape) | |||
elif dim1 < 3: | |||
inp1 = inp1.broadcast(*(inp2.shape[:1] + inp1.shape)) | |||
inp1 = broadcast_to(inp1, inp2.shape[:1] + inp1.shape) | |||
op = builtin.BatchedMatrixMul( | |||
transposeA=transpose_a, | |||
transposeB=transpose_b, | |||
@@ -961,10 +1013,10 @@ def matmul( | |||
else: | |||
if dim1 == 1: | |||
shp = (inp2.shape[1],) | |||
inp1 = add_axis(inp1, 0) | |||
inp1 = expand_dims(inp1, 0) | |||
if dim2 == 1: | |||
shp = (inp1.shape[0],) | |||
inp2 = add_axis(inp2, 1) | |||
inp2 = expand_dims(inp2, 1) | |||
op = builtin.MatrixMul( | |||
transposeA=transpose_a, | |||
transposeB=transpose_b, | |||
@@ -981,12 +1033,12 @@ def matmul( | |||
def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
""" | |||
Compute dot-product of two vectors ``inp1`` and ``inp2``. | |||
Computes dot-product of two vectors ``inp1`` and ``inp2``. | |||
inputs must be 1-dimensional, scalar input can be automatically broadcasted. | |||
:param inp1: The first vector | |||
:param inp2: The second vector | |||
:return: The output value | |||
:param inp1: first vector. | |||
:param inp2: second vector. | |||
:return: output value. | |||
Examples: | |||
@@ -1016,10 +1068,10 @@ def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
""" | |||
Compute the singular value decompositions of input matrix ``inp``. | |||
Computes the singular value decompositions of input matrix. | |||
:param inp: The input matrix, must has shape ``[..., M, N]`` | |||
:return: The output matrices, U, sigma, V | |||
:param inp: input matrix, must has shape `[..., M, N]`. | |||
:return: output matrices, `(U, sigma, V)`. | |||
Examples: | |||
@@ -1036,7 +1088,7 @@ def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
Outputs: | |||
.. testoutput:: | |||
[7.3485 1. ] | |||
""" | |||
@@ -1052,8 +1104,7 @@ def interpolate( | |||
mode: str = "BILINEAR", | |||
align_corners: bool = None, | |||
) -> Tensor: | |||
r"""Down/up samples the input tensor to either the given size or the given | |||
scale_factor. | |||
r"""Down/up samples the input tensor to either the given size or with the given scale_factor. ``size`` can not coexist with ``scale_factor``. | |||
:param inp: input tensor. | |||
:param size: size of the output tensor. Default: None | |||
@@ -1069,13 +1120,12 @@ def interpolate( | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
from megengine.test import assertTensorClose | |||
x = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
out = F.interpolate(x, [4, 4], align_corners=False) | |||
out = F.nn.interpolate(x, [4, 4], align_corners=False) | |||
print(out.numpy()) | |||
out2 = F.interpolate(x, scale_factor=2.) | |||
assertTensorClose(out.numpy(), out2.numpy()) | |||
out2 = F.nn.interpolate(x, scale_factor=2.) | |||
np.testing.assert_allclose(out.numpy(), out2.numpy()) | |||
Outputs: | |||
@@ -1100,7 +1150,7 @@ def interpolate( | |||
align_corners = False | |||
if mode == "LINEAR": | |||
inp = add_axis(inp, 3) | |||
inp = expand_dims(inp, 3) | |||
if inp.ndim != 4: | |||
raise ValueError("shape of input tensor must correspond to the operartion mode") | |||
@@ -1170,7 +1220,7 @@ def interpolate( | |||
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
axis=0, | |||
).reshape(1, 3, 3) | |||
weight = broadcast(weight, (inp.shape[0], 3, 3)) | |||
weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
else: | |||
hscale = 1.0 * ih / oh | |||
wscale = 1.0 * iw / ow | |||
@@ -1186,7 +1236,7 @@ def interpolate( | |||
[row0, row1, Tensor([[0, 0, 1]], dtype="float32", device=inp.device)], | |||
axis=0, | |||
).reshape(1, 3, 3) | |||
weight = broadcast(weight, (inp.shape[0], 3, 3)) | |||
weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
weight = weight.astype("float32") | |||
ret = warp_perspective(inp, weight, dsize, interp_mode="LINEAR") | |||
@@ -1197,12 +1247,12 @@ def interpolate( | |||
def dropout(inp: Tensor, drop_prob: float, training: bool = True) -> Tensor: | |||
"""Returns a new tensor where each of the elements are randomly set to zero | |||
with probability P = ``drop_prob``. Optionally rescale the output tensor. | |||
with probability P = ``drop_prob``. Optionally rescale the output tensor if ``training`` is True. | |||
:param inp: input tensor. | |||
:param drop_prob: probability to drop (set to zero) a single element. | |||
:param training: the default behavior of ``dropout`` during training is to rescale the output, | |||
then it can be replaced by an :class:`~.Identity` during inference, default to True. | |||
then it can be replaced by an :class:`~.Identity` during inference. Default: True | |||
:return: the output tensor | |||
Examples: | |||
@@ -1244,10 +1294,10 @@ def embedding( | |||
"""Applies lookup table for embedding. | |||
:param inp: tensor with indices. | |||
:param weight: learnable weights which embedding from. | |||
:param padding_idx: should be set to None, not support now. | |||
:param max_norm: should be set to None, not support now. | |||
:param norm_type: should be set to None, not support now. | |||
:param weight: learnable weights which embeds from. | |||
:param padding_idx: should be set to None, not supported now. | |||
:param max_norm: should be set to None, not supported now. | |||
:param norm_type: should be set to None, not supported now. | |||
:return: output tensor. | |||
Refer to :class:`~.Embedding` for more information. | |||
@@ -1288,7 +1338,7 @@ def roi_pooling( | |||
np.random.seed(42) | |||
inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
rois = tensor(np.random.random((4, 5))) | |||
y = F.roi_pooling(inp, rois, (2, 2)) | |||
y = F.nn.roi_pooling(inp, rois, (2, 2)) | |||
print(y.numpy()[0]) | |||
Outputs: | |||
@@ -1323,14 +1373,14 @@ def roi_align( | |||
) -> Tensor: | |||
"""Applies roi align on input feature. | |||
:param inp: tensor that represents the input feature, `(N, C, H, W)` images. | |||
:param rois: `(N, 5)` boxes. First column is the index into N. The other 4 columns are xyxy. | |||
:param inp: tensor that represents the input feature, shape is `(N, C, H, W)`. | |||
:param rois: `(N, 5)` boxes. First column is the box index. The other 4 columns are ``xyxy``. | |||
:param output_shape: `(height, width)` shape of output rois feature. | |||
:param mode: "max" or "average", use max/average align just like max/average pooling. Default: "average" | |||
:param spatial_scale: scale the input boxes by this number. Default: 1.0 | |||
:param sample_points: number of inputs samples to take for each output sample. | |||
0 to take samples densely. Default: 2 | |||
:param aligned: wheather align the input feature, with `aligned=True`, | |||
:param aligned: wheather to align the input feature, with `aligned=True`, | |||
we first appropriately scale the ROI and then shift it by -0.5. Default: True | |||
:return: output tensor. | |||
@@ -1345,7 +1395,7 @@ def roi_align( | |||
np.random.seed(42) | |||
inp = tensor(np.random.randn(1, 1, 128, 128)) | |||
rois = tensor(np.random.random((4, 5))) | |||
y = F.roi_align(inp, rois, (2, 2)) | |||
y = F.nn.roi_align(inp, rois, (2, 2)) | |||
print(y.numpy()[0]) | |||
Outputs: | |||
@@ -1383,7 +1433,7 @@ def roi_align( | |||
def indexing_one_hot( | |||
src: Tensor, index: Tensor, axis: int = 1, keepdims=False | |||
) -> Tensor: | |||
r"""One-hot indexing for some axis. | |||
r"""One-hot indexing for some axes. | |||
:param src: input tensor. | |||
:param index: index tensor. | |||
@@ -1417,19 +1467,23 @@ def indexing_one_hot( | |||
index = utils.convert_single_value(index, (src,), dtype="int32", device=src.device) | |||
(result,) = apply(op, src, index) | |||
if not keepdims: | |||
result = remove_axis(result, axis) | |||
result = squeeze(result, axis) | |||
return result | |||
def nms(boxes: Tensor, scores: Tensor, iou_thresh: float) -> Tensor: | |||
def nms( | |||
boxes: Tensor, scores: Tensor, iou_thresh: float, max_output: Optional[int] = None | |||
) -> Tensor: | |||
r""" | |||
Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union(IoU). | |||
:param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format. | |||
:param iou_thresh: iou threshold for overlapping. | |||
:param iou_thresh: IoU threshold for overlapping. | |||
:param scores: tensor of shape `(N,)`, the score of boxes. | |||
:param max_output: the maximum number of boxes to keep; it is optional if this operator is not traced | |||
otherwise it required to be specified; if it is not specified, all boxes are kept. | |||
:return: indices of the elements that have been kept by NMS. | |||
Examples: | |||
.. testcode:: | |||
@@ -1444,13 +1498,13 @@ def nms(boxes: Tensor, scores: Tensor, iou_thresh: float) -> Tensor: | |||
x[:,2:] = np.random.rand(100,2)*20 + 100 | |||
scores = tensor(np.random.rand(100)) | |||
inp = tensor(x) | |||
result = F.nms(inp, scores, iou_thresh=0.7) | |||
result = F.nn.nms(inp, scores, iou_thresh=0.7) | |||
print(result.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[75 69] | |||
""" | |||
@@ -1466,74 +1520,24 @@ def nms(boxes: Tensor, scores: Tensor, iou_thresh: float) -> Tensor: | |||
scores = scores.detach() | |||
sorted_idx = argsort(scores, descending=True) | |||
boxes = boxes[sorted_idx] | |||
max_output = boxes.shape[0] | |||
if is_tracing(): | |||
assert ( | |||
max_output is not None and max_output > 0 | |||
), "max_output should be specified under tracing" | |||
if max_output is None: | |||
max_output = boxes.shape[0] | |||
op = builtin.NMSKeep(iou_thresh, max_output) | |||
inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||
indices, count = apply(op, *inp) | |||
indices = indices[0][: count.item()] | |||
indices = indices[0][: count[0]] | |||
keep_inds = sorted_idx[indices] | |||
return keep_inds | |||
def batched_nms( | |||
boxes: Tensor, scores: Tensor, idxs: Tensor, iou_thresh: float, | |||
) -> Tensor: | |||
r""" | |||
Performs non-maximum suppression (NMS) on the boxes according to their intersection-over-union (IoU). | |||
:param boxes: tensor of shape `(N, 4)`; the boxes to perform nms on; each box is expected to be in `(x1, y1, x2, y2)` format | |||
:param iou_thresh: iou threshold for overlapping | |||
:param idxs: tensor of shape `(N,)`, the class indexs of boxes in the batch. | |||
:param scores: tensor of shape `(N,)`, the score of boxes. | |||
:return: indices and the number of the elements that have been kept by NMS | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = np.zeros((100,4)) | |||
np.random.seed(42) | |||
x[:,:2] = np.random.rand(100,2)*20 | |||
x[:,2:] = np.random.rand(100,2)*20 + 100 | |||
scores = tensor(np.random.rand(100)) | |||
idxs = tensor(np.random.randint(0, 10, 100)) | |||
inp = tensor(x) | |||
result = F.batched_nms(inp, scores, idxs, iou_thresh=0.6) | |||
print(result.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[75 41 99 98 69 64 11 27 35 18] | |||
""" | |||
assert ( | |||
boxes.ndim == 2 and boxes.shape[1] == 4 | |||
), "the expected shape of boxes is (N, 4)" | |||
assert scores.ndim == 1, "the expected shape of scores is (N,)" | |||
assert idxs.ndim == 1, "the expected shape of idxs is (N,)" | |||
assert boxes.shape[0] == scores.shape[0] == idxs.shape[0] | |||
boxes = boxes.detach() | |||
scores = scores.detach() | |||
idxs = idxs.detach() | |||
max_coordinate = boxes.max() | |||
offsets = idxs.astype("float32") * (max_coordinate + 1) | |||
boxes = boxes + offsets.reshape(-1, 1).broadcast(boxes.shape[0], 4) | |||
sorted_idx = argsort(scores, descending=True) | |||
boxes = boxes[sorted_idx] | |||
max_output = boxes.shape[0] | |||
op = builtin.NMSKeep(iou_thresh, max_output) | |||
inp = utils.convert_inputs(boxes.reshape(1, -1, 4)) | |||
indices, count = apply(op, *inp) | |||
indices = indices[0][: count.item()] | |||
keep_inds = sorted_idx[indices] | |||
return keep_inds | |||
from .loss import * # isort:skip | |||
from .quantized import conv_bias_activation # isort:skip |
@@ -1,34 +0,0 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import numpy as np | |||
from ..tensor import Tensor | |||
from .distributed import all_reduce_sum | |||
from .tensor import param_pack_concat, param_pack_split | |||
def get_offsets(shapes): | |||
offsets = [] | |||
offset = 0 | |||
for shape in shapes: | |||
offsets.append(offset) | |||
offset += int(np.prod(shape)) | |||
offsets.append(offset) | |||
return offsets | |||
def pack_allreduce_split(pack_list, shapes, group, reduce_method): | |||
offsets_val = get_offsets(shapes) | |||
offsets = Tensor(offsets_val) | |||
packed_grads = param_pack_concat(pack_list, offsets, offsets_val) | |||
packed_grads = all_reduce_sum(packed_grads, group) | |||
if reduce_method == "mean": | |||
packed_grads /= group.size | |||
grads = param_pack_split(packed_grads, offsets_val, shapes) | |||
return grads |
@@ -34,26 +34,23 @@ def conv_bias_activation( | |||
:param weight: convolution kernel. | |||
:param bias: bias added to the result of convolution | |||
:param stride: stride of the 2D convolution operation. Default: 1 | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param padding: size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 2D convolution operation. Default: 1 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a "grouped convolution". When groups is not 1, | |||
in_channels and out_channels must be divisible by groups, | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. | |||
:type conv_mode: string or :class:`P.Convolution.Mode`. | |||
:param conv_mode: supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: | |||
'CROSS_CORRELATION' | |||
:param dtype: support for np.dtype, Default: np.int8 | |||
:param dtype: support for ``np.dtype``, Default: np.int8 | |||
:param scale: scale if use quantization, Default: 0.0 | |||
:param zero_point: scale if use quantization quint8, Default: 0.0 | |||
:type compute_mode: string or | |||
:class:`P.Convolution.ComputeMode`. | |||
:param compute_mode: when set to 'DEFAULT', no special requirements will be | |||
placed on the precision of intermediate results. When set to 'FLOAT32', | |||
Float32 would be used for accumulator and intermediate result, but only | |||
effective when input and output are of Float16 dtype. | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. | |||
""" | |||
ph, pw = _pair(padding) | |||
@@ -19,6 +19,7 @@ from ..core.ops import builtin | |||
from ..core.ops._internal import param_defs as P | |||
from ..core.ops.special import Const | |||
from ..core.tensor.core import TensorBase, TensorWrapperBase, apply | |||
from ..core.tensor.tensor_wrapper import _broadcast, _remove_axis | |||
from ..core.tensor.utils import ( | |||
astensor1d, | |||
convert_inputs, | |||
@@ -31,27 +32,22 @@ from ..tensor import Tensor | |||
from .elemwise import ceil | |||
__all__ = [ | |||
"add_axis", | |||
"arange", | |||
"broadcast", | |||
"broadcast_to", | |||
"concat", | |||
"cond_take", | |||
"transpose", | |||
"add_axis", | |||
"expand_dims", | |||
"eye", | |||
"flatten", | |||
"full", | |||
"full_like", | |||
"gather", | |||
"identity", | |||
"linspace", | |||
"ones", | |||
"ones_like", | |||
"param_pack_concat", | |||
"param_pack_split", | |||
"reshape", | |||
"remove_axis", | |||
"split", | |||
"squeeze", | |||
"stack", | |||
"scatter", | |||
"transpose", | |||
@@ -61,11 +57,10 @@ __all__ = [ | |||
] | |||
def eye(shape, *, dtype="float32", device: Optional[CompNode] = None) -> Tensor: | |||
def eye(N, M=None, *, dtype="float32", device: Optional[CompNode] = None) -> Tensor: | |||
"""Returns a 2D tensor with ones on the diagonal and zeros elsewhere. | |||
:param shape: expected shape of otuput tensor. | |||
:param m: number of columns. Default: None | |||
:param shape: expected shape of output tensor. | |||
:param dtype: data type. Default: None | |||
:param device: compute node of the matrix. Default: None | |||
:return: eye matrix. | |||
@@ -77,8 +72,7 @@ def eye(shape, *, dtype="float32", device: Optional[CompNode] = None) -> Tensor: | |||
import numpy as np | |||
import megengine.functional as F | |||
data_shape = (4, 6) | |||
out = F.eye(data_shape, dtype=np.float32) | |||
out = F.eye(4, 6, dtype=np.float32) | |||
print(out.numpy()) | |||
Outputs: | |||
@@ -91,8 +85,17 @@ def eye(shape, *, dtype="float32", device: Optional[CompNode] = None) -> Tensor: | |||
[0. 0. 0. 1. 0. 0.]] | |||
""" | |||
if M is not None: | |||
if isinstance(N, Tensor) or isinstance(M, Tensor): | |||
shape = astensor1d((N, M)) | |||
else: | |||
shape = Tensor([N, M], dtype="int32", device=device) | |||
elif isinstance(N, Tensor): | |||
shape = N | |||
else: | |||
shape = Tensor(N, dtype="int32", device=device) | |||
op = builtin.Eye(k=0, dtype=dtype, comp_node=device) | |||
(result,) = apply(op, Tensor(shape, dtype="int32", device=device)) | |||
(result,) = apply(op, shape) | |||
return result | |||
@@ -106,7 +109,7 @@ def full(shape, value, dtype="float32", device=None): | |||
(x,) = Const(value, dtype=dtype, device=device)( | |||
Tensor(value, dtype=dtype, device=device) | |||
) | |||
return broadcast(x, shape) | |||
return broadcast_to(x, shape) | |||
def ones(shape, dtype="float32", device=None): | |||
@@ -160,7 +163,7 @@ def zeros_like(inp: Tensor) -> Tensor: | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[0 0 0] | |||
@@ -171,7 +174,7 @@ def zeros_like(inp: Tensor) -> Tensor: | |||
def ones_like(inp: Tensor) -> Tensor: | |||
"""Returns a identity tensor with the same shape as input tensor. | |||
"""Returns a ones tensor with the same shape as input tensor. | |||
""" | |||
return ones(inp.shape, dtype=inp.dtype, device=inp.device) | |||
@@ -182,19 +185,7 @@ def full_like(inp: Tensor, value: Union[int, float]) -> Tensor: | |||
return full(inp.shape, value, dtype=inp.dtype, device=inp.device) | |||
def identity(inp: Tensor) -> Tensor: | |||
"""Applies an identity transform to the input tensor. | |||
:param inp: input tensor. | |||
:return: output tensor. | |||
""" | |||
op = builtin.Identity() | |||
(data,) = convert_inputs(inp) | |||
(output,) = apply(op, data) | |||
return output | |||
def broadcast(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: | |||
def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: | |||
""" | |||
Broadcasts a tensor to given shape. | |||
@@ -211,7 +202,7 @@ def broadcast(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: | |||
import megengine.functional as F | |||
data = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) | |||
out = F.broadcast(data, (4, 2, 3)) | |||
out = F.broadcast_to(data, (4, 2, 3)) | |||
print(out.numpy()) | |||
Outputs: | |||
@@ -231,9 +222,7 @@ def broadcast(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: | |||
[3. 4. 5.]]] | |||
""" | |||
shape = astensor1d(shape, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(builtin.Broadcast(), inp, shape) | |||
return result | |||
return _broadcast(inp, shape) | |||
def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: | |||
@@ -241,8 +230,8 @@ def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: | |||
Concat some tensors | |||
:param inps: input tensors to concat. | |||
:param axis: dimension over which the tensors are concatenated. Default: 0 | |||
:param device: comp node output on. Default: None | |||
:param axis: over which dimension the tensors are concatenated. Default: 0 | |||
:param device: which device output will be. Default: None | |||
:return: output tensor. | |||
Examples: | |||
@@ -290,7 +279,7 @@ def stack(inps, axis=0, device=None): | |||
:param inps: input tensors. | |||
:param axis: which axis will be concatenated. | |||
:param device: The comp node output on. Default: None | |||
:param device: the device output will be. Default: None | |||
:return: output concatenated tensor. | |||
Examples: | |||
@@ -322,7 +311,7 @@ def stack(inps, axis=0, device=None): | |||
if len(shapes) != 1: | |||
raise ValueError("All input tensors must have the same shape") | |||
inps = [add_axis(inp, axis=axis) for inp in inps] | |||
inps = [expand_dims(inp, axis=axis) for inp in inps] | |||
return concat(inps, axis=axis, device=device) | |||
@@ -331,7 +320,7 @@ def split(inp, nsplits_or_sections, axis=0): | |||
When nsplits_or_sections is int, the last tensor may be smaller than others. | |||
:param inp: input tensor. | |||
:param nsplits_or_sections: number of sub tensors or section information list. | |||
:param nsplits_or_sections: number of sub tensors or sections information list. | |||
:param axis: which axis will be splited. | |||
:return: output tensor list. | |||
@@ -399,8 +388,7 @@ def _get_idx(index, axis): | |||
0, index.shape[i] - 1, index.shape[i], device=index.device, | |||
) | |||
arange = ( | |||
arange.reshape(*shape) | |||
.broadcast(index.shape) | |||
broadcast_to(arange.reshape(*shape), index.shape) | |||
.reshape(-1) | |||
.astype(np.int32) | |||
) | |||
@@ -411,7 +399,8 @@ def _get_idx(index, axis): | |||
def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: | |||
r"""Gathers data from inp on axis using index. | |||
# TODO: rewrite doc | |||
r"""Gathers data from input tensor on axis using index. | |||
For a 3-D tensor, the output is specified by:: | |||
@@ -419,14 +408,14 @@ def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: | |||
out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1 | |||
out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2 | |||
if inp is an n-dimensional tensor with size | |||
if input tensor is a n-dimensional tensor with size | |||
:math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i, | |||
then index must be an n-dimensional tensor with size | |||
then index must be a n-dimensional tensor with size | |||
:math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and | |||
output will have the same size as index. | |||
:param inp: input tensor. | |||
:param axis: axis along which to index. | |||
:param axis: along which axis to index. | |||
:param index: indices of elements to gather. | |||
:return: output tensor. | |||
@@ -482,20 +471,21 @@ def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: | |||
def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: | |||
r"""Writes all values from the tensor source into inp | |||
# TODO: rewrite doc | |||
r"""Writes all values from the tensor source into input tensor | |||
at the indices specified in the index tensor. | |||
For each value in source, its output index is specified by its index | |||
in source for ``axis != dimension`` and by the corresponding value in | |||
index for ``axis = dimension``. | |||
For a 3-D tensor, inp is updated as:: | |||
For a 3-D tensor, input tensor is updated as:: | |||
inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0 | |||
inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1 | |||
inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2 | |||
inp, index and source should have same number of dimensions. | |||
``inp``, ``index`` and ``source`` should have same number of dimensions. | |||
It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)`` | |||
for all dimensions ``d``. | |||
@@ -504,10 +494,10 @@ def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: | |||
.. note:: | |||
Please notice that, due to performance issues, the result is uncertain on the GPU device | |||
if scatter difference positions from source to the same destination position | |||
if scattering different positions from source to the same destination position | |||
regard to index tensor. | |||
Show the case using the following examples, the oup[0][2] is maybe | |||
Check the following examples, the oup[0][2] is maybe | |||
from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339 | |||
if set the index[1][2] from 1 to 0. | |||
@@ -593,7 +583,7 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
\textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i | |||
:param mask: a mask used for choosing x or y. | |||
:param mask: a mask used for choosing ``x`` or ``y``. | |||
:param x: first choice. | |||
:param y: second choice. | |||
:return: output tensor. | |||
@@ -649,7 +639,7 @@ def where(mask: Tensor, x: Tensor, y: Tensor) -> Tensor: | |||
def cond_take(mask: Tensor, x: Tensor) -> Tensor: | |||
r""" | |||
Take elements from data if specific condition is satisfied on mask. | |||
Takes elements from data if specific condition is satisfied on mask. | |||
This operator has two outputs: the first is the elements taken, | |||
and the second is the indices corresponding to those elements; | |||
they are both 1-dimensional. High-dimension input would first be flattened. | |||
@@ -696,7 +686,7 @@ def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor: | |||
Swaps shapes and strides according to given pattern. | |||
:param inp: input tensor. | |||
:param pattern: a list of integers including 0, 1, ... , ``ndim``-1, | |||
:param pattern: a list of integers including 0, 1, ... , ``ndim``-1, | |||
and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples: | |||
* (``'x'``) -> make a 0d (scalar) into a 1d vector | |||
@@ -707,7 +697,7 @@ def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor: | |||
* (2, 0, 1) -> AxBxC to CxAxB | |||
* (0, ``'x'``, 1) -> AxB to Ax1xB | |||
* (1, ``'x'``, 0) -> AxB to Bx1xA | |||
* (1,) -> This remove dimensions 0. It must be a broadcastable dimension (1xA to A) | |||
* (1,) -> this removes dimensions 0. It must be a broadcastable dimension (1xA to A) | |||
:return: output tensor. | |||
@@ -730,13 +720,7 @@ def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor: | |||
[1 0]] | |||
""" | |||
op = builtin.Dimshuffle(pattern) | |||
(inp,) = convert_inputs(inp) | |||
(result,) = apply(op, inp) | |||
return result | |||
dimshuffle = transpose | |||
return inp.transpose(pattern) | |||
def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: | |||
@@ -745,8 +729,7 @@ def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: | |||
remain unchanged | |||
:param inp: input tensor. | |||
:param target_shape: target shape, the components would be concatenated to form the | |||
target shape, and it can contain an element of -1 representing unspec_axis. | |||
:param target_shape: target shape, it can contain an element of -1 representing ``unspec_axis``. | |||
Examples: | |||
@@ -773,26 +756,7 @@ def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: | |||
[10 11]]] | |||
""" | |||
if isinstance(target_shape, (TensorBase, TensorWrapperBase)): | |||
target_shape = target_shape.numpy() | |||
target_shape = tuple(map(int, target_shape)) | |||
unspec_axis = None | |||
for i, s in enumerate(target_shape): | |||
if s < 0: | |||
if s != -1: | |||
raise ValueError("expect shape[{}] >= -1, got {}".format(i, s)) | |||
if unspec_axis is not None: | |||
raise ValueError("multiple -1 in shape: {} & {}".format(unspec_axis, i)) | |||
unspec_axis = i | |||
# TODO: device should be None (cpu) | |||
(target_shape,) = Const(target_shape, dtype="int32", device=inp.device)(inp) | |||
if unspec_axis is None: | |||
op = builtin.Reshape() | |||
else: | |||
op = builtin.Reshape(unspec_axis=unspec_axis) | |||
(x,) = apply(op, inp, target_shape) | |||
return x | |||
return inp.reshape(target_shape) | |||
AxisAddRemove = builtin.AxisAddRemove | |||
@@ -837,7 +801,7 @@ def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: | |||
return inp.reshape(*target_shape) | |||
def add_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
def expand_dims(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
r""" | |||
Adds dimension before given axis. | |||
@@ -854,7 +818,7 @@ def add_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
import megengine.functional as F | |||
x = tensor([1, 2]) | |||
out = F.add_axis(x, 0) | |||
out = F.expand_dims(x, 0) | |||
print(out.shape) | |||
Outputs: | |||
@@ -883,12 +847,7 @@ def add_axis(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: | |||
return result | |||
add_axis = add_axis | |||
def remove_axis( | |||
inp: Tensor, axis: Optional[Union[int, Sequence[int]]] = None | |||
) -> Tensor: | |||
def squeeze(inp: Tensor, axis: Optional[Union[int, Sequence[int]]] = None) -> Tensor: | |||
r""" | |||
Removes dimension of shape 1. | |||
@@ -905,7 +864,7 @@ def remove_axis( | |||
import megengine.functional as F | |||
x = tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1)) | |||
out = F.remove_axis(x, 3) | |||
out = F.squeeze(x, 3) | |||
print(out.shape) | |||
Outputs: | |||
@@ -915,25 +874,7 @@ def remove_axis( | |||
(1, 1, 2) | |||
""" | |||
Param = builtin.AxisAddRemove.Param | |||
def get_axes(): | |||
if axis is None: | |||
return [i for i, s in enumerate(inp.shape) if s == 1] | |||
try: | |||
return [int(axis)] | |||
except (TypeError, ValueError): | |||
pass | |||
return list(map(int, axis)) | |||
axis = get_axes() | |||
axis = sorted(i + inp.ndim if i < 0 else i for i in axis) | |||
axis = [a - i for i, a in enumerate(axis)] | |||
param = Param(*map(builtin.AxisAddRemove.AxisDesc.make_remove, axis)) | |||
op = builtin.AxisAddRemove(param=param) | |||
(result,) = apply(op, inp) | |||
return result | |||
return _remove_axis(inp, axis) | |||
def linspace( | |||
@@ -962,7 +903,7 @@ def linspace( | |||
print(a.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[ 3. 4.75 6.5 8.25 10. ] | |||
@@ -982,15 +923,15 @@ def linspace( | |||
def arange( | |||
start: Union[int, float, Tensor] = 0, | |||
end: Optional[Union[int, float, Tensor]] = None, | |||
stop: Optional[Union[int, float, Tensor]] = None, | |||
step: Union[int, float, Tensor] = 1, | |||
dtype="float32", | |||
device: Optional[CompNode] = None, | |||
) -> Tensor: | |||
r"""Returns a Tensor with values from start to end with adjacent interval step. | |||
r"""Returns a tensor with values from start to stop with adjacent interval step. | |||
:param start: starting value of the squence, shoule be scalar. | |||
:param end: ending value of the squence, shoule be scalar. | |||
:param stop: ending value of the squence, shoule be scalar. | |||
:param step: gap between each pair of adjacent values. Default: 1 | |||
:param dtype: result data type. | |||
:return: generated tensor. | |||
@@ -1004,7 +945,7 @@ def arange( | |||
a = F.arange(5) | |||
print(a.numpy()) | |||
Outputs: | |||
Outputs: | |||
@@ -1014,96 +955,18 @@ def arange( | |||
[0. 1. 2. 3. 4.] | |||
""" | |||
if end is None: | |||
start, end = 0, start | |||
if stop is None: | |||
start, stop = 0, start | |||
if isinstance(start, Tensor): | |||
start = start.astype("float32") | |||
if isinstance(end, Tensor): | |||
end = end.astype("float32") | |||
if isinstance(stop, Tensor): | |||
stop = stop.astype("float32") | |||
if isinstance(step, Tensor): | |||
step = step.astype("float32") | |||
num = ceil(Tensor((end - start) / step, device=device)) | |||
num = ceil(Tensor((stop - start) / step, device=device)) | |||
stop = start + step * (num - 1) | |||
result = linspace(start, stop, num, device=device) | |||
if np.dtype(dtype) == np.int32: | |||
return result.astype(dtype) | |||
return result | |||
def param_pack_split(inp: Tensor, offsets: List, shapes: List) -> Tensor: | |||
r""" | |||
Returns split Tensor to Tensor list as offsets and shapes described, | |||
only used for parampack. | |||
:param inp: input tensor. | |||
:param offsets: offsets of outputs, length of 2 * n, | |||
while n is tensor nums you want to split, | |||
format `[begin0, end0, begin1, end1]`. | |||
:param shapes: tensor shapes of outputs. | |||
:return: split tensors. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
import megengine.functional as F | |||
from megengine import tensor | |||
a = tensor(np.ones((10,), np.int32)) | |||
b, c = F.param_pack_split(a, [0, 1, 1, 10], [(1,), (3, 3)]) | |||
print(b.numpy()) | |||
print(c.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[1] | |||
[[1 1 1] | |||
[1 1 1] | |||
[1 1 1]] | |||
""" | |||
op = builtin.ParamPackSplit() | |||
op.offsets = offsets | |||
op.shapes = shapes | |||
return apply(op, inp) | |||
def param_pack_concat(inps: List, offsets: Tensor, offsets_val: List) -> Tensor: | |||
r""" | |||
Returns concat Tensor, only used for parampack. | |||
:param inps: input tensors. | |||
:param offsets: device value of offsets. | |||
:param offsets_val: offsets of inputs, length of 2 * n, | |||
format [begin0, end0, begin1, end1]. | |||
:return: concat tensors | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
import megengine.functional as F | |||
from megengine import tensor | |||
a = tensor(np.ones((1,), np.int32)) | |||
b = tensor(np.ones((3, 3), np.int32)) | |||
offsets_val = [0, 1, 1, 10] | |||
offsets = tensor(offsets_val, np.int32) | |||
c = F.param_pack_concat([a, b], offsets, offsets_val) | |||
print(c.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[1 1 1 1 1 1 1 1 1 1] | |||
""" | |||
op = builtin.ParamPackConcat() | |||
op.offsets = offsets_val | |||
return apply(op, *inps, offsets)[0] |
@@ -11,18 +11,24 @@ from typing import Iterable, Union | |||
import numpy as np | |||
from ..core.ops.builtin import Copy | |||
from ..core._wrap import device as as_device | |||
from ..core.ops.builtin import Copy, Identity | |||
from ..core.tensor import Tensor | |||
from ..core.tensor.core import apply | |||
from .math import topk as _topk | |||
from .tensor import transpose as _transpose | |||
from .tensor import broadcast_to, transpose | |||
__all__ = [ | |||
"topk_accuracy", | |||
"copy", | |||
] | |||
def accuracy( | |||
def topk_accuracy( | |||
logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1 | |||
) -> Union[Tensor, Iterable[Tensor]]: | |||
r""" | |||
Calculate the classification accuracy given predicted logits and ground-truth labels. | |||
Calculates the classification accuracy given predicted logits and ground-truth labels. | |||
:param logits: model predictions of shape `[batch_size, num_classes]`, | |||
representing the probability (likelyhood) of each class. | |||
@@ -40,7 +46,7 @@ def accuracy( | |||
logits = tensor(np.arange(80, dtype=np.int32).reshape(8,10)) | |||
target = tensor(np.arange(8, dtype=np.int32)) | |||
top1, top5 = F.accuracy(logits, target, (1, 5)) | |||
top1, top5 = F.topk_accuracy(logits, target, (1, 5)) | |||
print(top1.numpy(), top5.numpy()) | |||
Outputs: | |||
@@ -54,8 +60,8 @@ def accuracy( | |||
_, pred = _topk(logits, k=max(topk), descending=True) | |||
accs = [] | |||
for k in topk: | |||
correct = pred[:, :k].detach() == _transpose(target, (0, "x")).broadcast( | |||
target.shape[0], k | |||
correct = pred[:, :k].detach() == broadcast_to( | |||
transpose(target, (0, "x")), (target.shape[0], k) | |||
) | |||
accs.append(correct.astype(np.float32).sum() / target.shape[0]) | |||
if len(topk) == 1: # type: ignore[arg-type] | |||
@@ -63,25 +69,12 @@ def accuracy( | |||
return accs | |||
def zero_grad(inp: Tensor) -> Tensor: | |||
r""" | |||
Returns a tensor which is treated as constant during backward gradient calcuation, | |||
i.e. its gradient is zero. | |||
:param inp: Input tensor. | |||
See implementation of :func:`~.softmax` for example. | |||
""" | |||
print("zero_grad is obsoleted, please use detach instead") | |||
raise NotImplementedError | |||
def copy(inp, cn): | |||
def copy(inp, device=None): | |||
r""" | |||
Copy tensor to another device. | |||
Copies tensor to another device. | |||
:param inp: input tensor. | |||
:param cn: device that you copy to. | |||
:param device: destination device. | |||
Examples: | |||
@@ -101,4 +94,6 @@ def copy(inp, cn): | |||
[1 2 3] | |||
""" | |||
return apply(Copy(comp_node=cn), inp)[0] | |||
if device is None: | |||
return apply(Identity(), inp)[0] | |||
return apply(Copy(comp_node=as_device(device).to_c()), inp)[0] |
@@ -19,12 +19,12 @@ class InvalidGitHost(FetcherError): | |||
class GitPullError(FetcherError): | |||
"""A git pull error occurred""" | |||
"""A git pull error occurred.""" | |||
class GitCheckoutError(FetcherError): | |||
"""A git checkout error occurred""" | |||
"""A git checkout error occurred.""" | |||
class InvalidProtocol(FetcherError): | |||
"""The protocol provided was somehow invalid""" | |||
"""The protocol provided was somehow invalid.""" |
@@ -106,20 +106,20 @@ class GitSSHFetcher(RepoFetcherBase): | |||
:param git_host: | |||
host address of git repo. | |||
example: github.com | |||
Example: github.com | |||
:param repo_info: | |||
a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
tag/branch. The default branch is ``master`` if not specified. | |||
example: ``"brain_sdk/MegBrain[:hub]"`` | |||
Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
:param use_cache: | |||
whether to use locally fetched code or completely re-fetch | |||
whether to use locally fetched code or completely re-fetch. | |||
:param commit: | |||
commit id on github or gitlab | |||
commit id on github or gitlab. | |||
:param silent: | |||
whether to accept the stdout and stderr of the subprocess with PIPE, instead of | |||
displaying on the screen | |||
displaying on the screen. | |||
:return: | |||
directory where the repo code is stored | |||
directory where the repo code is stored. | |||
""" | |||
if not cls._check_git_host(git_host): | |||
raise InvalidGitHost("git_host: '{}' is malformed.".format(git_host)) | |||
@@ -215,24 +215,24 @@ class GitHTTPSFetcher(RepoFetcherBase): | |||
silent: bool = True, | |||
) -> str: | |||
""" | |||
Fetches git repo by HTTPS protocol | |||
Fetches git repo by HTTPS protocol. | |||
:param git_host: | |||
host address of git repo | |||
example: github.com | |||
host address of git repo. | |||
Example: github.com | |||
:param repo_info: | |||
a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
tag/branch. The default branch is ``master`` if not specified. | |||
example: ``"brain_sdk/MegBrain[:hub]"`` | |||
Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
:param use_cache: | |||
whether to use locally cached code or completely re-fetch | |||
whether to use locally cached code or completely re-fetch. | |||
:param commit: | |||
commit id on github or gitlab | |||
commit id on github or gitlab. | |||
:param silent: | |||
whether to accept the stdout and stderr of the subprocess with PIPE, instead of | |||
displaying on the screen | |||
displaying on the screen. | |||
:return: | |||
directory where the repo code is stored | |||
directory where the repo code is stored. | |||
""" | |||
if not cls._check_git_host(git_host): | |||
raise InvalidGitHost("git_host: '{}' is malformed.".format(git_host)) | |||
@@ -94,24 +94,24 @@ def _init_hub( | |||
commit: str = None, | |||
protocol: str = DEFAULT_PROTOCOL, | |||
): | |||
"""Imports hubmodule like python import | |||
"""Imports hubmodule like python import. | |||
:param repo_info: | |||
a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
tag/branch. The default branch is ``master`` if not specified. | |||
Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
:param git_host: | |||
host address of git repo | |||
host address of git repo. | |||
Example: github.com | |||
:param use_cache: | |||
whether to use locally cached code or completely re-fetch | |||
whether to use locally cached code or completely re-fetch. | |||
:param commit: | |||
commit id on github or gitlab | |||
commit id on github or gitlab. | |||
:param protocol: | |||
which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
The value should be one of HTTPS, SSH. | |||
:return: | |||
hubconf.py as a python module | |||
a python module. | |||
""" | |||
cache_dir = os.path.expanduser(os.path.join(_get_megengine_home(), "hub")) | |||
os.makedirs(cache_dir, exist_ok=True) | |||
@@ -137,24 +137,24 @@ def list( | |||
commit: str = None, | |||
protocol: str = DEFAULT_PROTOCOL, | |||
) -> List[str]: | |||
"""Lists all entrypoints available in repo hubconf | |||
"""Lists all entrypoints available in repo hubconf. | |||
:param repo_info: | |||
a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
tag/branch. The default branch is ``master`` if not specified. | |||
Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
:param git_host: | |||
host address of git repo | |||
host address of git repo. | |||
Example: github.com | |||
:param use_cache: | |||
whether to use locally cached code or completely re-fetch | |||
whether to use locally cached code or completely re-fetch. | |||
:param commit: | |||
commit id on github or gitlab | |||
commit id on github or gitlab. | |||
:param protocol: | |||
which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
The value should be one of HTTPS, SSH. | |||
:return: | |||
all entrypoint names of the model | |||
all entrypoint names of the model. | |||
""" | |||
hubmodule = _init_hub(repo_info, git_host, use_cache, commit, protocol) | |||
@@ -182,14 +182,14 @@ def load( | |||
tag/branch. The default branch is ``master`` if not specified. | |||
Example: ``"brain_sdk/MegBrain[:hub]"`` | |||
:param entry: | |||
an entrypoint defined in hubconf | |||
an entrypoint defined in hubconf. | |||
:param git_host: | |||
host address of git repo | |||
host address of git repo. | |||
Example: github.com | |||
:param use_cache: | |||
whether to use locally cached code or completely re-fetch | |||
whether to use locally cached code or completely re-fetch. | |||
:param commit: | |||
commit id on github or gitlab | |||
commit id on github or gitlab. | |||
:param protocol: | |||
which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
The value should be one of HTTPS, SSH. | |||
@@ -217,9 +217,9 @@ def help( | |||
) -> str: | |||
"""This function returns docstring of entrypoint ``entry`` by following steps: | |||
1. Pull the repo code specified by git and repo_info | |||
1. Pull the repo code specified by git and repo_info. | |||
2. Load the entry defined in repo's hubconf.py | |||
3. Return docstring of function entry | |||
3. Return docstring of function entry. | |||
:param repo_info: | |||
a string with format ``"repo_owner/repo_name[:tag_name/:branch_name]"`` with an optional | |||
@@ -228,17 +228,17 @@ def help( | |||
:param entry: | |||
an entrypoint defined in hubconf.py | |||
:param git_host: | |||
host address of git repo | |||
host address of git repo. | |||
Example: github.com | |||
:param use_cache: | |||
whether to use locally cached code or completely re-fetch | |||
whether to use locally cached code or completely re-fetch. | |||
:param commit: | |||
commit id on github or gitlab | |||
commit id on github or gitlab. | |||
:param protocol: | |||
which protocol to use to get the repo, and HTTPS protocol only supports public repo on github. | |||
The value should be one of HTTPS, SSH. | |||
:return: | |||
docstring of entrypoint ``entry`` | |||
docstring of entrypoint ``entry``. | |||
""" | |||
hubmodule = _init_hub(repo_info, git_host, use_cache, commit, protocol) | |||
@@ -255,10 +255,10 @@ def load_serialized_obj_from_url(url: str, model_dir=None) -> Any: | |||
If the object is already present in ``model_dir``, it's deserialized and | |||
returned. If no ``model_dir`` is specified, it will be ``MGE_HOME/serialized``. | |||
:param url: url to serialized object | |||
:param model_dir: dir to cache target serialized file | |||
:param url: url to serialized object. | |||
:param model_dir: dir to cache target serialized file. | |||
:return: loaded object | |||
:return: loaded object. | |||
""" | |||
if model_dir is None: | |||
model_dir = os.path.join(_get_megengine_home(), "serialized") | |||
@@ -15,10 +15,10 @@ from typing import Iterator | |||
def load_module(name: str, path: str) -> types.ModuleType: | |||
""" | |||
Loads module specified by name and path | |||
Loads module specified by name and path. | |||
:param name: module name | |||
:param path: module path | |||
:param name: module name. | |||
:param path: module path. | |||
""" | |||
spec = importlib.util.spec_from_file_location(name, path) | |||
module = importlib.util.module_from_spec(spec) | |||
@@ -27,18 +27,18 @@ def load_module(name: str, path: str) -> types.ModuleType: | |||
def check_module_exists(module: str) -> bool: | |||
"""Checks whether python module exists or not | |||
"""Checks whether python module exists or not. | |||
:param module: name of module | |||
:param module: name of module. | |||
""" | |||
return importlib.util.find_spec(module) is not None | |||
@contextmanager | |||
def cd(target: str) -> Iterator[None]: | |||
"""Changes current directory to target | |||
"""Changes current directory to target. | |||
:param target: target directory | |||
:param target: target directory. | |||
""" | |||
prev = os.getcwd() | |||
os.chdir(os.path.expanduser(target)) | |||
@@ -36,6 +36,13 @@ active_trace = None | |||
skip_tracing = False | |||
def is_tracing(): | |||
if active_trace is None: | |||
return False | |||
else: | |||
return not skip_tracing | |||
@contextlib.contextmanager | |||
def exclude_from_trace(): | |||
global skip_tracing | |||
@@ -125,6 +132,9 @@ class trace: | |||
self._graph_opt_level = opt_level | |||
self._tensor_shape = tensor_shape | |||
self._reset() | |||
def _reset(self): | |||
self._untraced = True | |||
self._tinfo = [] # handle -> TensorInfo | |||
self._seq = [] | |||
@@ -257,77 +267,117 @@ class trace: | |||
def _record_const(self, op, outputs): | |||
pass | |||
@contextlib.contextmanager | |||
def _setup(self): | |||
def _set_active(self, active: bool): | |||
global active_trace | |||
if active_trace: | |||
raise NotImplementedError("sorry, not implemented: nested trace") | |||
active_trace = self | |||
if self._untraced: | |||
apply.enable(apply_with_tracing) | |||
apply.enable(apply_const_with_tracing) | |||
if self._symbolic: | |||
apply.enable(apply_symbolic_mode) | |||
apply.enable(apply_const_symbolic_mode) | |||
self._lazy_eval_graph = G.Graph() | |||
if active: | |||
if active_trace: | |||
raise NotImplementedError("sorry, not implemented: nested trace") | |||
active_trace = self | |||
else: | |||
apply.enable(apply_compiled_mode) | |||
if self._graph is None: | |||
self._compile() | |||
self._graph.execute() | |||
yield | |||
assert active_trace is self | |||
active_trace = None | |||
def _init_trace(self, symbolic: bool): | |||
apply.enable(apply_with_tracing) | |||
apply.enable(apply_const_with_tracing) | |||
if symbolic: | |||
apply.enable(apply_symbolic_mode) | |||
apply.enable(apply_const_symbolic_mode) | |||
self._lazy_eval_graph = G.Graph() | |||
def _take_escaped_tensors(self): | |||
escaped_tensors = tuple(self._active_tensors) | |||
self._active_tensors.clear() | |||
return escaped_tensors | |||
if self._untraced: | |||
for x in escaped_tensors: | |||
info = self._tinfo[x._TraceMixin__handle] | |||
info.data_read = True | |||
x._TraceMixin__restore() | |||
if self._inputs_to_restore: | |||
for x in self._inputs_to_restore: | |||
def _lazy_eval(self, lazy_eval_graph, lazy_eval_tensors): | |||
active_lazy_eval_tensors = [] | |||
visited = set() | |||
readers = [] | |||
for x in lazy_eval_tensors: | |||
x = x() | |||
if x is None or x in visited: | |||
continue | |||
reader = G.OutputNode(x._LazyEvalTensor__varnode).outputs[0] | |||
readers.append(reader) | |||
active_lazy_eval_tensors.append(x) | |||
visited.add(x) | |||
self._apply_graph_options(lazy_eval_graph) | |||
lazy_eval_graph.compile(*readers) | |||
lazy_eval_graph() | |||
for r, x in zip(readers, active_lazy_eval_tensors): | |||
assign_raw_tensor(x, as_raw_tensor(r.op.get_value())) | |||
@contextlib.contextmanager | |||
def _setup(self): | |||
interrupted = False | |||
def do_enter(): | |||
self._set_active(True) | |||
if self._untraced: | |||
self._init_trace(self._symbolic) | |||
else: | |||
apply.enable(apply_compiled_mode) | |||
if self._graph is None: | |||
self._compile() | |||
self._graph.execute() | |||
def do_finalize(): | |||
escaped_tensors = self._take_escaped_tensors() | |||
if self._untraced: | |||
for x in escaped_tensors: | |||
info = self._tinfo[x._TraceMixin__handle] | |||
info.data_read = True | |||
x._TraceMixin__restore() | |||
if self._symbolic: | |||
# eval lazy eval tensors | |||
if self._lazy_eval_tensors: | |||
lazy_eval_tensors = [] | |||
visited = set() | |||
readers = [] | |||
for x in self._lazy_eval_tensors: | |||
x = x() | |||
if x is None or x in visited: | |||
continue | |||
reader = G.OutputNode(x._LazyEvalTensor__varnode).outputs[0] | |||
readers.append(reader) | |||
lazy_eval_tensors.append(x) | |||
visited.add(x) | |||
self._apply_graph_options(self._lazy_eval_graph) | |||
self._lazy_eval_graph.compile(*readers) | |||
self._lazy_eval_graph() | |||
for r, x in zip(readers, lazy_eval_tensors): | |||
assign_raw_tensor(x, as_raw_tensor(r.op.get_value())) | |||
if self._inputs_to_restore: | |||
for x in self._inputs_to_restore: | |||
x._TraceMixin__restore() | |||
if self._symbolic and self._lazy_eval_tensors: | |||
# eval lazy eval tensors | |||
self._lazy_eval(self._lazy_eval_graph, self._lazy_eval_tensors) | |||
self._lazy_eval_graph = None | |||
self._lazy_eval_tensors = None | |||
self._untraced = False | |||
else: | |||
if self._pc != len(self._seq): | |||
raise TraceMismatchError("premature end") | |||
for x in escaped_tensors: | |||
assign_raw_tensor(x, as_raw_tensor(x._dev_tensor())) | |||
self._graph.wait() | |||
self._reset_exec_env() | |||
self._untraced = False | |||
else: | |||
# compiled_tensor leaks | |||
if self._pc == len(self._seq): | |||
for x in escaped_tensors: | |||
try: | |||
assign_raw_tensor(x, as_raw_tensor(x._dev_tensor())) | |||
except TraceMismatchError: | |||
# TraceMismatchError thrown in do_exit | |||
pass | |||
self._graph.wait() | |||
self._reset_exec_env() | |||
# reset status | |||
self._pc = 0 | |||
self._tensor_remaps = None | |||
apply.disable(apply_with_tracing) | |||
apply.disable(apply_const_with_tracing) | |||
apply.disable(apply_symbolic_mode) | |||
apply.disable(apply_const_symbolic_mode) | |||
apply.disable(apply_compiled_mode) | |||
active_trace = None | |||
self._tensor_remaps = None | |||
apply.disable(apply_with_tracing) | |||
apply.disable(apply_const_with_tracing) | |||
apply.disable(apply_symbolic_mode) | |||
apply.disable(apply_const_symbolic_mode) | |||
apply.disable(apply_compiled_mode) | |||
self._set_active(False) | |||
def do_exit(): | |||
if not self._untraced and self._pc != len(self._seq): | |||
raise TraceMismatchError("premature end") | |||
if not self._symbolic or not self._untraced: | |||
for x in self._active_tensors: | |||
x._dev_tensor() | |||
try: | |||
do_enter() | |||
yield | |||
do_exit() | |||
except: | |||
interrupted = True | |||
raise | |||
finally: | |||
do_finalize() | |||
if interrupted: | |||
self._reset() | |||
def _begin_excluded_region(self): | |||
if self._capture_as_const: | |||
@@ -368,6 +418,7 @@ class trace: | |||
def _compile(self): | |||
graph = self._graph = G.Graph() | |||
graph.options.no_force_inplace = True | |||
graph.options.async_exec_level = 0b100 | |||
self._apply_graph_options(graph) | |||
# graph.options.graph_opt_level = 0 | |||
need_reset_nodes = self._need_reset_nodes = [] | |||
@@ -570,7 +621,9 @@ class trace: | |||
if h not in h2v: | |||
assert info.external | |||
assert info.bound_data | |||
h2v[h] = graph.make_const(info.bound_data._dev_tensor()) | |||
h2v[h] = graph.make_const( | |||
info.bound_data.numpy(), dtype=info.dtype, device=info.device | |||
) | |||
ivars.append(h2v[h]) | |||
ovars = apply(op, *ivars) | |||
assert len(ovars) == len(ohandles) | |||
@@ -12,7 +12,7 @@ import os | |||
import sys | |||
_all_loggers = [] | |||
_default_level_name = os.getenv("MEGENGINE_LOGGING_LEVEL", "ERROR") | |||
_default_level_name = os.getenv("MEGENGINE_LOGGING_LEVEL", "INFO") | |||
_default_level = logging.getLevelName(_default_level_name.upper()) | |||
@@ -8,6 +8,7 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from .activation import LeakyReLU, PReLU, ReLU, Sigmoid, Softmax | |||
from .adaptive_pooling import AdaptiveAvgPool2d, AdaptiveMaxPool2d | |||
from .batchnorm import BatchNorm1d, BatchNorm2d, SyncBatchNorm | |||
from .concat import Concat | |||
from .conv import Conv2d, ConvRelu2d, ConvTranspose2d, LocalConv2d | |||
@@ -20,10 +20,10 @@ class Softmax(Module): | |||
.. math:: | |||
\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)} | |||
It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the | |||
n-dimensional output Tensor lie in the range of `[0, 1]` and sum to 1. | |||
It is applied to all elements along axis, and rescales elements so that | |||
they stay in the range `[0, 1]` and sum to 1. | |||
:param axis: An axis along which softmax will be applied. By default, | |||
:param axis: Along which axis softmax will be applied. By default, | |||
softmax will apply along the highest ranked axis. | |||
Examples: | |||
@@ -55,6 +55,9 @@ class Softmax(Module): | |||
def forward(self, inputs): | |||
return softmax(inputs, self.axis) | |||
def _module_info_string(self) -> str: | |||
return "axis={axis}".format(axis=self.axis) | |||
class Sigmoid(Module): | |||
r""" | |||
@@ -138,8 +141,7 @@ class PReLU(Module): | |||
\end{cases} | |||
Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses | |||
a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`, | |||
a seperate :math:`a` is used for each input channle. | |||
a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`, each input channle will has it's own :math:`a`. | |||
:param num_parameters: number of :math:`a` to learn, there is only two | |||
values are legitimate: 1, or the number of channels at input. Default: 1 | |||
@@ -0,0 +1,114 @@ | |||
# -*- coding: utf-8 -*- | |||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
# | |||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
# | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from abc import abstractmethod | |||
from typing import Tuple, Union | |||
from ..functional import adaptive_avg_pool2d, adaptive_max_pool2d | |||
from ..tensor import Parameter, Tensor | |||
from .module import Module | |||
class _AdaptivePoolNd(Module): | |||
def __init__( | |||
self, oshp: Union[Tuple[int, int], int, Tensor], | |||
): | |||
super(_AdaptivePoolNd, self).__init__() | |||
self.oshp = oshp | |||
@abstractmethod | |||
def forward(self, inp): | |||
pass | |||
class AdaptiveMaxPool2d(_AdaptivePoolNd): | |||
r"""Applies a 2D max adaptive pooling over an input. | |||
For instance, given an input of the size :math:`(N, C, H, W)` and | |||
an output shape :math:`(OH, OW)`, this layer generates the output of | |||
the size :math:`(N, C, OH, OW)` through a process described as: | |||
.. math:: | |||
\begin{aligned} | |||
out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, kH-1} \max_{n=0, \ldots, kW-1} | |||
\text{input}(N_i, C_j, \text{stride[0]} \times h + m, | |||
\text{stride[1]} \times w + n) | |||
\end{aligned} | |||
Kernel_size and stride can be inferred from input shape and out shape: | |||
padding: (0, 0) | |||
stride: (floor(IH / OH), floor(IW / OW)) | |||
kernel_size: (IH - (OH - 1) * stride_h, IW - (OW - 1) * stride_w) | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
import megengine as mge | |||
import megengine.module as M | |||
m = M.AdaptiveMaxPool2d((2, 2)) | |||
inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4)) | |||
oup = m(inp) | |||
print(oup.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[5. 7.] | |||
[13. 15.]]]] | |||
""" | |||
def forward(self, inp): | |||
return adaptive_max_pool2d(inp, self.oshp) | |||
class AdaptiveAvgPool2d(_AdaptivePoolNd): | |||
r"""Applies a 2D average pooling over an input. | |||
For instance, given an input of the size :math:`(N, C, H, W)` and | |||
an output shape :math:`(OH, OW)`, this layer generates the output of | |||
the size :math:`(N, C, OH, OW)` through a process described as: | |||
.. math:: | |||
out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} | |||
input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n) | |||
Kernel_size and stride can be inferred from input shape and out shape: | |||
padding: (0, 0) | |||
stride: (floor(IH / OH), floor(IW / OW)) | |||
kernel_size: (IH - (OH - 1) * stride_h, IW - (OW - 1) * stride_w) | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
import megengine as mge | |||
import megengine.module as M | |||
m = M.AdaptiveAvgPool2d((2, 2)) | |||
inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4)) | |||
oup = m(inp) | |||
print(oup.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[2.5 4.5] | |||
[10.5 12.5]]]] | |||
""" | |||
def forward(self, inp): | |||
return adaptive_avg_pool2d(inp, self.oshp) |
@@ -11,7 +11,7 @@ from typing import Optional | |||
import numpy as np | |||
from ..distributed.group import WORLD, Group | |||
from ..functional import batch_norm2d, sync_batch_norm | |||
from ..functional.nn import batch_norm, sync_batch_norm | |||
from ..tensor import Parameter, Tensor | |||
from . import init | |||
from .module import Module | |||
@@ -96,7 +96,7 @@ class _BatchNorm(Module): | |||
else: | |||
exponential_average_factor = 0.0 # useless | |||
output = batch_norm2d( | |||
output = batch_norm( | |||
inp, | |||
self.running_mean if self.track_running_stats else None, | |||
self.running_var if self.track_running_stats else None, | |||
@@ -113,6 +113,13 @@ class _BatchNorm(Module): | |||
return output | |||
def _module_info_string(self) -> str: | |||
s = ( | |||
"{num_features}, eps={eps}, momentum={momentum}, affine={affine}, " | |||
"track_running_stats={track_running_stats}" | |||
) | |||
return s.format(**self.__dict__) | |||
class SyncBatchNorm(_BatchNorm): | |||
r""" | |||
@@ -213,8 +220,8 @@ class BatchNorm2d(_BatchNorm): | |||
of 0.9. | |||
If :attr:`track_running_stats` is set to ``False``, this layer will not | |||
keep running estimates, and batch statistics are instead used during | |||
evaluation time. | |||
keep running estimates, batch statistics is used during | |||
evaluation time instead. | |||
.. note:: | |||
This :attr:`momentum` argument is different from one used in optimizer | |||
@@ -229,15 +236,14 @@ class BatchNorm2d(_BatchNorm): | |||
Spatial Batch Normalization. | |||
:type num_features: int | |||
:param num_features: usually the :math:`C` from an input of size | |||
:math:`(N, C, H, W)` or the highest ranked dimension of an input with | |||
:param num_features: usually :math:`C` from an input of shape | |||
:math:`(N, C, H, W)` or the highest ranked dimension of an input | |||
less than 4D. | |||
:type eps: float | |||
:param eps: a value added to the denominator for numerical stability. | |||
Default: 1e-5 | |||
:type momentum: float | |||
:param momentum: the value used for the `running_mean` and `running_var` | |||
computation. | |||
:param momentum: the value used for the ``running_mean`` and ``running_var`` computation. | |||
Default: 0.9 | |||
:type affine: bool | |||
:param affine: a boolean value that when set to True, this module has | |||
@@ -70,6 +70,21 @@ class _ConvNd(Module): | |||
def _infer_bias_shape(self): | |||
pass | |||
def _module_info_string(self): | |||
s = "{in_channels}, {out_channels}, kernel_size={kernel_size}" | |||
if self.stride != (1,) * len(self.stride): | |||
s += ", stride={stride}" | |||
if self.padding != (0,) * len(self.padding): | |||
s += ", padding={padding}" | |||
if self.dilation != (1,) * len(self.dilation): | |||
s += ", dilation={dilation}" | |||
if self.groups != 1: | |||
s += ", groups={groups}" | |||
if self.bias is None: | |||
s += ", bias=False" | |||
return s.format(**self.__dict__) | |||
class Conv2d(_ConvNd): | |||
r"""Applies a 2D convolution over an input tensor. | |||
@@ -84,8 +99,8 @@ class Conv2d(_ConvNd): | |||
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k) | |||
where :math:`\star` is the valid 2D cross-correlation operator, | |||
:math:`N` is a batch size, :math:`C` denotes a number of channels, | |||
:math:`H` is a height of input planes in pixels, and :math:`W` is | |||
:math:`N` is batch size, :math:`C` denotes number of channels, | |||
:math:`H` is height of input planes in pixels, and :math:`W` is | |||
width in pixels. | |||
When `groups == in_channels` and `out_channels == K * in_channels`, | |||
@@ -105,9 +120,8 @@ class Conv2d(_ConvNd): | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 2D convolution operation. Default: 1 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a "grouped convolution". When groups is not 1, | |||
in_channels and out_channels must be divisible by groups, | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and there would be an extra dimension at the beginning of the weight's | |||
shape. Specifically, the shape of weight would be `(groups, | |||
out_channel // groups, in_channels // groups, *kernel_size)`. | |||
@@ -115,9 +129,9 @@ class Conv2d(_ConvNd): | |||
True | |||
:param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: | |||
`CROSS_CORRELATION` | |||
:param compute_mode: When set to `DEFAULT`, no special requirements will be | |||
placed on the precision of intermediate results. When set to `FLOAT32`, | |||
float32 would be used for accumulator and intermediate result, but only | |||
:param compute_mode: When set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
Examples: | |||
@@ -221,7 +235,7 @@ class ConvTranspose2d(_ConvNd): | |||
r"""Applies a 2D transposed convolution over an input tensor. | |||
This module is also known as a deconvolution or a fractionally-strided convolution. | |||
:class:`ConvTranspose2d` can ben seen as the gradient of :class:`Conv2d` operation | |||
:class:`ConvTranspose2d` can be seen as the gradient of :class:`Conv2d` operation | |||
with respect to its input. | |||
Convolution usually reduces the size of input, while transposed convolution works | |||
@@ -237,8 +251,7 @@ class ConvTranspose2d(_ConvNd): | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 2D convolution operation. Default: 1 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and there would be an extra dimension at the beginning of the weight's | |||
shape. Specifically, the shape of weight would be ``(groups, | |||
@@ -247,9 +260,9 @@ class ConvTranspose2d(_ConvNd): | |||
True | |||
:param conv_mode: Supports `CROSS_CORRELATION` or `CONVOLUTION`. Default: | |||
`CROSS_CORRELATION` | |||
:param compute_mode: When set to `DEFAULT`, no special requirements will be | |||
placed on the precision of intermediate results. When set to `FLOAT32`, | |||
float32 would be used for accumulator and intermediate result, but only | |||
:param compute_mode: When set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
""" | |||
@@ -327,7 +340,7 @@ class ConvTranspose2d(_ConvNd): | |||
class LocalConv2d(Conv2d): | |||
r"""Applies a spatial convolution with untied kernels over an input 4D tensor. | |||
r"""Applies a spatial convolution with untied kernels over an groupped channeled input 4D tensor. | |||
It is also known as the locally connected layer. | |||
:param in_channels: number of input channels. | |||
@@ -340,9 +353,9 @@ class LocalConv2d(Conv2d): | |||
:param stride: stride of the 2D convolution operation. Default: 1 | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a "grouped convolution". When groups is not 1, | |||
in_channels and out_channels must be divisible by groups. | |||
:param groups: number of groups into which the input and output channels are divided, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``. | |||
The shape of weight is `(groups, output_height, output_width, | |||
in_channels // groups, *kernel_size, out_channels // groups)`. | |||
""" | |||
@@ -11,7 +11,7 @@ from .module import Module | |||
class Dropout(Module): | |||
r"""Randomly set input elements to zeros with the probability :math:`drop\_prob` during training. | |||
r"""Randomly sets input elements to zeros with the probability :math:`drop\_prob` during training. | |||
Commonly used in large networks to prevent overfitting. | |||
Note that we perform dropout only during training, we also rescale(multiply) the output tensor | |||
by :math:`\frac{1}{1 - drop\_prob}`. During inference :class:`~.Dropout` is equal to :class:`~.Identity`. | |||
@@ -28,3 +28,6 @@ class Dropout(Module): | |||
return dropout(inputs, self.drop_prob, training=True) | |||
else: | |||
return inputs | |||
def _module_info_string(self) -> str: | |||
return "drop_prob={drop_prob}".format(drop_prob=self.drop_prob) |
@@ -34,7 +34,7 @@ class Elemwise(Module): | |||
* "EXP": exp(x) | |||
* "TANH": tanh(x) | |||
* "FUSE_MUL_ADD3": x * y + z | |||
* "FAST_TANH": fast_tanh(x) | |||
* "FAST_TANH": x * (27. + x * x) / (27. + 9. * x * x) | |||
* "NEGATE": -x | |||
* "ACOS": acos(x) | |||
* "ASIN": asin(x) | |||
@@ -56,9 +56,9 @@ class Elemwise(Module): | |||
* "SIGMOID_GRAD": sigmoid_grad | |||
* "SWITCH_GT0": switch_gt0 | |||
* "TANH_GRAD": tanh_grad | |||
* "LT": lt | |||
* "LT": less | |||
* "LEQ": leq | |||
* "EQ": eq | |||
* "EQ": equal | |||
* "POW": pow | |||
* "LOG_SUM_EXP": log_sum_exp | |||
* "FAST_TANH_GRAD": fast_tanh_grad | |||
@@ -10,7 +10,7 @@ from typing import Optional | |||
import numpy as np | |||
from ..functional import embedding as embedding_func | |||
from ..functional.nn import embedding as embedding_func | |||
from ..tensor import Parameter | |||
from . import init | |||
from .module import Module | |||
@@ -26,9 +26,9 @@ class Embedding(Module): | |||
:param num_embeddings: size of embedding dictionary. | |||
:param embedding_dim: size of each embedding vector. | |||
:param padding_idx: should be set to None, not support now. | |||
:param max_norm: should be set to None, not support now. | |||
:param norm_type: should be set to None, not support now. | |||
:param padding_idx: should be set to None, not supportted now. | |||
:param max_norm: should be set to None, not supportted now. | |||
:param norm_type: should be set to None, not supportted now. | |||
:param initial_weight: the learnable weights of the module of shape (num_embeddings, embedding_dim). | |||
Examples: | |||
@@ -121,8 +121,8 @@ class Embedding(Module): | |||
r""" | |||
Creates Embedding instance from given 2-dimensional FloatTensor. | |||
:param embeddings: Tensor contained weight for the embedding. | |||
:param freeze: If ``True``, the weight does not get updated during the learning process. Default: ``True``. | |||
:param embeddings: tensor contained weight for the embedding. | |||
:param freeze: if ``True``, the weight does not get updated during the learning process. Default: True. | |||
:param padding_idx: should be set to None, not support Now. | |||
:param max_norm: should be set to None, not support Now. | |||
:param norm_type: should be set to None, not support Now. | |||
@@ -6,7 +6,7 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from ..functional import identity | |||
from ..functional import copy | |||
from .module import Module | |||
@@ -14,4 +14,4 @@ class Identity(Module): | |||
r"""A placeholder identity operator that will ignore any argument.""" | |||
def forward(self, x): | |||
return identity(x) | |||
return copy(x) |
@@ -18,48 +18,48 @@ from ..tensor import Tensor | |||
def fill_(tensor: Tensor, val: Union[float, int]) -> None: | |||
"""Fill the given ``tensor`` with value ``val``. | |||
"""Fills the given ``tensor`` with value ``val``. | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param val: The value to be filled throughout the tensor | |||
:param tensor: tensor to be initialized. | |||
:param val: value to be filled throughout the tensor. | |||
""" | |||
tensor._reset(full(shape=tensor.shape, value=val, dtype=tensor.dtype)) | |||
def zeros_(tensor: Tensor) -> None: | |||
"""Fill the given ``tensor`` with scalar value `0`. | |||
"""Fills the given ``tensor`` with scalar value `0`. | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param tensor: tensor to be initialized. | |||
""" | |||
fill_(tensor, 0) | |||
def ones_(tensor: Tensor) -> None: | |||
"""Fill the given ``tensor`` with the scalar value `1`. | |||
"""Fills the given ``tensor`` with the scalar value `1`. | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param tensor: tensor to be initialized. | |||
""" | |||
fill_(tensor, 1) | |||
def uniform_(tensor: Tensor, a: float = 0.0, b: float = 1.0) -> None: | |||
r"""Fill the given ``tensor`` with random value sampled from uniform distribution | |||
r"""Fills the given ``tensor`` with random value sampled from uniform distribution | |||
:math:`\mathcal{U}(\text{a}, \text{b})`. | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param a: Lower bound of the sampling interval | |||
:param b: Upper bound of the sampling interval | |||
:param tensor: tensor to be initialized. | |||
:param a: lower bound of the sampling interval. | |||
:param b: upper bound of the sampling interval. | |||
""" | |||
tensor._reset(uniform(size=tensor.shape, low=a, high=b).astype(tensor.dtype)) | |||
def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | |||
r"""Fill the given ``tensor`` with random value sampled from normal distribution | |||
r"""Fills the given ``tensor`` with random value sampled from normal distribution | |||
:math:`\mathcal{N}(\text{mean}, \text{std}^2)`. | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param mean: The mean of the normal distribution | |||
:param std: The standard deviation of the normal distribution | |||
:param tensor: tensor to be initialized. | |||
:param mean: mean of the normal distribution. | |||
:param std: standard deviation of the normal distribution. | |||
""" | |||
tensor._reset(normal(size=tensor.shape, mean=mean, std=std).astype(tensor.dtype)) | |||
@@ -67,7 +67,7 @@ def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | |||
def calculate_gain( | |||
nonlinearity: str, param: Optional[Union[int, float]] = None | |||
) -> float: | |||
r"""Return a recommended gain value (see the table below) for the given nonlinearity | |||
r"""Returns a recommended gain value (see the table below) for the given nonlinearity | |||
function. | |||
================= ==================================================== | |||
@@ -81,8 +81,8 @@ def calculate_gain( | |||
Leaky Relu :math:`\sqrt{\frac{2}{1 + {\text{negative}_\text{slope}}^2}}` | |||
================= ==================================================== | |||
:param nonlinearity: Name of the non-linear function | |||
:param param: Optional parameter for leaky_relu. Only effective when | |||
:param nonlinearity: name of the non-linear function. | |||
:param param: optional parameter for leaky_relu. Only effective when | |||
``nonlinearity`` is "leaky_relu". | |||
""" | |||
@@ -119,10 +119,10 @@ def calculate_gain( | |||
def calculate_fan_in_and_fan_out(tensor: Tensor) -> Tuple[float, float]: | |||
""" | |||
Calculate fan_in / fan_out value for given weight tensor. This function assumes | |||
input tensor is stored in NCHW format. | |||
Calculates fan_in / fan_out value for given weight tensor. This function assumes | |||
input tensor is stored in ``NCHW`` format. | |||
:param tensor: Weight tensor in NCHW format | |||
:param tensor: weight tensor in ``NCHW`` format. | |||
""" | |||
shape = tensor.shape | |||
ndim = len(shape) | |||
@@ -148,13 +148,13 @@ def calculate_fan_in_and_fan_out(tensor: Tensor) -> Tuple[float, float]: | |||
def calculate_correct_fan(tensor: Tensor, mode: str) -> float: | |||
""" | |||
Calculate fan_in or fan_out value for given weight tensor, depending on given | |||
Calculates fan_in / fan_out value for given weight tensor, depending on given | |||
``mode``. | |||
See :func:`calculate_fan_in_and_fan_out` for details. | |||
:param tensor: Weight tensor in NCHW format | |||
:param mode: ``'fan_in'`` or ``'fan_out'`` | |||
:param tensor: weight tensor in ``NCHW`` format. | |||
:param mode: "fan_in" or "fan_out". | |||
""" | |||
mode = mode.lower() | |||
valid_modes = ["fan_in", "fan_out"] | |||
@@ -168,7 +168,7 @@ def calculate_correct_fan(tensor: Tensor, mode: str) -> float: | |||
def xavier_uniform_(tensor: Tensor, gain: float = 1.0) -> None: | |||
r"""Fill ``tensor`` with random values sampled from :math:`\mathcal{U}(-a, a)` | |||
r"""Fills tensor with random values sampled from :math:`\mathcal{U}(-a, a)` | |||
where | |||
.. math:: | |||
@@ -178,8 +178,8 @@ def xavier_uniform_(tensor: Tensor, gain: float = 1.0) -> None: | |||
`Understanding the difficulty of training deep feedforward neural networks` - | |||
Glorot, X. & Bengio, Y. (2010). | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param gain: Scaling factor for :math:`a`. | |||
:param tensor: tensor to be initialized. | |||
:param gain: scaling factor for :math:`a`. | |||
""" | |||
fan_in, fan_out = calculate_fan_in_and_fan_out(tensor) | |||
std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) | |||
@@ -188,7 +188,7 @@ def xavier_uniform_(tensor: Tensor, gain: float = 1.0) -> None: | |||
def xavier_normal_(tensor: Tensor, gain: float = 1.0) -> None: | |||
r"""Fill ``tensor`` with random values sampled from | |||
r"""Fills tensor with random values sampled from | |||
:math:`\mathcal{N}(0, \text{std}^2)` where | |||
.. math:: | |||
@@ -198,8 +198,8 @@ def xavier_normal_(tensor: Tensor, gain: float = 1.0) -> None: | |||
`Understanding the difficulty of training deep feedforward neural networks` - | |||
Glorot, X. & Bengio, Y. (2010). | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param gain: Scaling factor for :math:`std`. | |||
:param tensor: tensor to be initialized. | |||
:param gain: scaling factor for :math:`std`. | |||
""" | |||
fan_in, fan_out = calculate_fan_in_and_fan_out(tensor) | |||
std = gain * math.sqrt(2.0 / float(fan_in + fan_out)) | |||
@@ -209,7 +209,7 @@ def xavier_normal_(tensor: Tensor, gain: float = 1.0) -> None: | |||
def msra_uniform_( | |||
tensor: Tensor, a: float = 0, mode: str = "fan_in", nonlinearity: str = "leaky_relu" | |||
) -> None: | |||
r"""Fill ``tensor`` wilth random values sampled from | |||
r"""Fills tensor wilth random values sampled from | |||
:math:`\mathcal{U}(-\text{bound}, \text{bound})` where | |||
.. math:: | |||
@@ -219,13 +219,13 @@ def msra_uniform_( | |||
`Delving deep into rectifiers: Surpassing human-level performance on ImageNet | |||
classification` | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param a: Optional parameter for calculating gain for leaky_relu. See | |||
:param tensor: tensor to be initialized. | |||
:param a: optional parameter for calculating gain for leaky_relu. See | |||
:func:`calculate_gain` for details. | |||
:param mode: ``'fan_in'`` or ``'fan_out'``, used to calculate :math:`gain`, the | |||
:param mode: "fan_in" or "fan_out", used to calculate :math:`gain`, the | |||
scaling factor for :math:`bound`. See :func:`calculate_fan_in_and_fan_out` for | |||
details. | |||
:param nonlinearity: Name of the non-linear function used to calculate :math:`gain`. | |||
:param nonlinearity: name of the non-linear function used to calculate :math:`gain`. | |||
See :func:`calculate_gain` for details. | |||
""" | |||
fan = calculate_correct_fan(tensor, mode) | |||
@@ -238,7 +238,7 @@ def msra_uniform_( | |||
def msra_normal_( | |||
tensor: Tensor, a: float = 0, mode: str = "fan_in", nonlinearity: str = "leaky_relu" | |||
) -> None: | |||
r"""Fill ``tensor`` wilth random values sampled from | |||
r"""Fills tensor wilth random values sampled from | |||
:math:`\mathcal{N}(0, \text{std}^2)` where | |||
.. math:: | |||
@@ -248,13 +248,13 @@ def msra_normal_( | |||
`Delving deep into rectifiers: Surpassing human-level performance on ImageNet | |||
classification` | |||
:param tensor: An n-dimentional tensor to be initialized | |||
:param a: Optional parameter for calculating gain for leaky_relu. See | |||
:param tensor: tensor to be initialized | |||
:param a: optional parameter for calculating gain for leaky_relu. See | |||
:func:`calculate_gain` for details. | |||
:param mode: ``'fan_in'`` or ``'fan_out'``, used to calculate :math:`gain`, the | |||
:param mode: "fan_in" or "fan_out", used to calculate :math:`gain`, the | |||
scaling factor for :math:`gain`. See :func:`calculate_fan_in_and_fan_out` for | |||
details. | |||
:param nonlinearity: Name of the non-linear function used to calculate :math:`gain`. | |||
:param nonlinearity: name of the non-linear function used to calculate :math:`gain`. | |||
See :func:`calculate_gain` for details. | |||
""" | |||
fan = calculate_correct_fan(tensor, mode) | |||
@@ -7,7 +7,7 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import numpy as np | |||
from ..functional import linear | |||
from ..functional.nn import linear | |||
from ..tensor import Parameter | |||
from . import init | |||
from .module import Module | |||
@@ -25,7 +25,7 @@ class Linear(Module): | |||
:param in_features: size of each input sample. | |||
:param out_features: size of each output sample. | |||
:param bias: If set to ``False``, the layer will not learn an additive bias. | |||
:param bias: if it's ``False``, the layer will not learn an additional ``bias``. | |||
Default: ``True`` | |||
Examples: | |||
@@ -78,3 +78,8 @@ class Linear(Module): | |||
def forward(self, x): | |||
return self._calc_linear(x, self.weight, self.bias) | |||
def _module_info_string(self) -> str: | |||
return "in_features={}, out_features={}, bias={}".format( | |||
self.in_features, self.out_features, self.bias is not None | |||
) |
@@ -69,14 +69,14 @@ class Module(metaclass=ABCMeta): | |||
self._forward_pre_hooks = OrderedDict() | |||
self._forward_hooks = OrderedDict() | |||
self._modules = [] | |||
@abstractmethod | |||
def forward(self, inputs): | |||
pass | |||
def register_forward_pre_hook(self, hook: Callable) -> HookHandler: | |||
"""Register a hook to handle forward inputs. `hook` should be a function | |||
Note that `inputs` keyword inputs | |||
"""Registers a hook to handle forward inputs. `hook` should be a function. | |||
:param hook: a function that receive `module` and `inputs`, then return | |||
a modified `inputs` or `None`. | |||
@@ -85,7 +85,7 @@ class Module(metaclass=ABCMeta): | |||
return HookHandler(self._forward_pre_hooks, hook) | |||
def register_forward_hook(self, hook: Callable) -> HookHandler: | |||
"""Register a hook to handle forward results. `hook` should be a function that | |||
"""Registers a hook to handle forward results. `hook` should be a function that | |||
receive `module`, `inputs` and `outputs`, then return a modified `outputs` or `None`. | |||
This method return a handler with :meth:`~.HookHandler.remove` interface to delete the hook. | |||
@@ -124,12 +124,12 @@ class Module(metaclass=ABCMeta): | |||
returned iterable is guaranteed to be identical, as long as all the involved | |||
module objects' ``__dict__`` does not change thoughout those calls. | |||
:param recursive: Whether to recursively scan all the submodules. | |||
:param with_key: Whether to yield keys along with yielded objects. | |||
:param with_parent: Whether to yield ``self`` along with yielded objects. | |||
:param prefix: The prefix appended to the yielded keys. | |||
:param predicate: The predicate function applied to scanned objects. | |||
:param seen: A dict that records whether a module has been traversed yet. | |||
:param recursive: whether to recursively scan all the submodules. | |||
:param with_key: whether to yield keys along with yielded objects. | |||
:param with_parent: whether to yield ``self`` along with yielded objects. | |||
:param prefix: prefix appended to the yielded keys. | |||
:param predicate: the predication function applied to scanned objects. | |||
:param seen: a dict that records whether a module has been traversed yet. | |||
""" | |||
if seen is None: | |||
seen = set([id(self)]) | |||
@@ -191,10 +191,10 @@ class Module(metaclass=ABCMeta): | |||
self, prefix: Optional[str] = None, recursive: bool = True, **kwargs | |||
) -> Iterable[Tuple[str, Parameter]]: | |||
"""Returns an iterable for key :class:`~.Parameter` pairs of the module, where | |||
``key`` is the dotted path from this module to the :class:`~.Parameter` . | |||
``key`` is the dotted path from this module to the :class:`~.Parameter`. | |||
:param prefix: The prefix prepended to the keys. | |||
:param recursive: If ``True``, returns all :class:`~.Parameter` within this | |||
:param prefix: prefix prepended to the keys. | |||
:param recursive: if ``True``, returns all :class:`~.Parameter` within this | |||
module, else only returns :class:`~.Parameter` that are direct attributes | |||
of this module. | |||
""" | |||
@@ -223,7 +223,7 @@ class Module(metaclass=ABCMeta): | |||
Buffer is defined to be :class:`~.Tensor` excluding :class:`~.Parameter`. | |||
:param recursive: If ``True``, returns all buffers within this | |||
:param recursive: if ``True``, returns all buffers within this | |||
module, else only returns buffers that are direct attributes | |||
of this module. | |||
""" | |||
@@ -239,8 +239,8 @@ class Module(metaclass=ABCMeta): | |||
Buffer is defined to be :class:`~.Tensor` excluding :class:`~.Parameter`. | |||
:param prefix: The prefix prepended to the keys. | |||
:param recursive: If ``True``, returns all buffers within this | |||
:param prefix: prefix prepended to the keys. | |||
:param recursive: if ``True``, returns all buffers within this | |||
module, else only returns buffers that are direct attributes | |||
of this module. | |||
""" | |||
@@ -285,7 +285,7 @@ class Module(metaclass=ABCMeta): | |||
module, including itself, where 'key' is the dotted path from this module to the | |||
submodules. | |||
:param prefix: The prefix prepended to the path. | |||
:param prefix: prefix prepended to the path. | |||
""" | |||
if "with_parent" in kwargs and kwargs["with_parent"]: | |||
yield ("" if prefix is None else prefix), self, None | |||
@@ -296,24 +296,24 @@ class Module(metaclass=ABCMeta): | |||
) | |||
def apply(self, fn: "Callable[[Module], Any]") -> None: | |||
"""Apply function ``fn`` to all the modules within this module, including | |||
"""Applies function ``fn`` to all the modules within this module, including | |||
itself. | |||
:param fn: The function to be applied on modules. | |||
:param fn: the function to be applied on modules. | |||
""" | |||
for it in self.modules(): | |||
fn(it) | |||
@deprecated(version="1.0") | |||
def zero_grad(self) -> None: | |||
"""Set all parameters' grads to zero | |||
"""Sets all parameters' grads to zero | |||
""" | |||
for param in self.parameters(): | |||
if param.grad is not None: | |||
param.grad.reset_zero() | |||
def train(self, mode: bool = True, recursive: bool = True) -> None: | |||
"""Set training mode of all the modules within this module (including itself) to | |||
"""Sets training mode of all the modules within this module (including itself) to | |||
``mode``. This effectively sets the ``training`` attributes of those modules | |||
to ``mode``, but only has effect on certain modules (e.g. | |||
:class:`~.BatchNorm2d`, :class:`~.Dropout`, :class:`~.Observer`) | |||
@@ -331,14 +331,14 @@ class Module(metaclass=ABCMeta): | |||
self.apply(fn) | |||
def eval(self) -> None: | |||
"""Set training mode of all the modules within this module (including itself) to | |||
"""Sets training mode of all the modules within this module (including itself) to | |||
``False``. See :meth:`~.Module.train` for details. | |||
""" | |||
self.train(False) | |||
def disable_quantize(self, value=True): | |||
r""" | |||
Set ``module``'s ``quantize_disabled`` attribute and return ``module``. | |||
Sets ``module``'s ``quantize_disabled`` attribute and return ``module``. | |||
Could be used as a decorator. | |||
""" | |||
@@ -351,7 +351,7 @@ class Module(metaclass=ABCMeta): | |||
def replace_param( | |||
self, params: dict, start_pos: int, seen: Optional[Set[int]] = None | |||
): | |||
"""Replace module's parameters with `params`, used by :class:`~.ParamPack` to | |||
"""Replaces module's parameters with `params`, used by :class:`~.ParamPack` to | |||
speedup multimachine training. | |||
""" | |||
offset = 0 | |||
@@ -407,7 +407,7 @@ class Module(metaclass=ABCMeta): | |||
state_dict: Union[dict, Callable[[str, Tensor], Optional[np.ndarray]]], | |||
strict=True, | |||
): | |||
r"""Load a given dictionary created by :func:`state_dict` into this module. | |||
r"""Loads a given dictionary created by :func:`state_dict` into this module. | |||
If ``strict`` is ``True``, the keys of :func:`state_dict` must exactly match the keys | |||
returned by :func:`state_dict`. | |||
@@ -518,3 +518,57 @@ class Module(metaclass=ABCMeta): | |||
loaded.append(k) | |||
return set(loaded), set(skipped) | |||
def __setattr__(self, name: str, value): | |||
if _is_module(value): | |||
modules = self.__dict__.get("_modules") | |||
if modules is None: | |||
raise AttributeError( | |||
"cannot assign module before Module.__init__() call" | |||
) | |||
if name not in self.__dict__: | |||
modules.append(name) | |||
super().__setattr__(name, value) | |||
def __delattr__(self, name: str): | |||
if name in self.__dict__ and _is_module(self.__dict__[name]): | |||
modules = self.__dict__.get("_modules") | |||
modules.remove(name) | |||
super().__delattr__(name) | |||
def _module_info_string(self) -> str: | |||
r"""Set the extra representation of the module. | |||
""" | |||
return "" | |||
def __repr__(self): | |||
def add_indent(repr_str, num_spaces): | |||
s = repr_str.split("\n") | |||
# don't do anything for single-line stuff | |||
if len(s) == 1: | |||
return repr_str | |||
first = s.pop(0) | |||
s = [(num_spaces * " ") + line for line in s] | |||
s = "\n".join(s) | |||
s = first + "\n" + s | |||
return s | |||
extra_lines = [] | |||
extra_repr = self._module_info_string() | |||
if extra_repr: | |||
extra_lines = extra_repr.split("\n") | |||
child_lines = [ | |||
"(" + name + "): " + add_indent(repr(self.__dict__[name]), 2) | |||
for name in self._modules | |||
] | |||
lines = extra_lines + child_lines | |||
main_str = self.__class__.__name__ + "(" | |||
if lines: | |||
# simple one-liner info, which most builtin Modules will use | |||
if len(extra_lines) == 1 and not child_lines: | |||
main_str += extra_lines[0] | |||
else: | |||
main_str += "\n " + "\n ".join(lines) + "\n" | |||
main_str += ")" | |||
return main_str |
@@ -29,6 +29,11 @@ class _PoolNd(Module): | |||
def forward(self, inp): | |||
pass | |||
def _module_info_string(self) -> str: | |||
return "kernel_size={kernel_size}, stride={stride}, padding={padding}".format( | |||
**self.__dict__ | |||
) | |||
class MaxPool2d(_PoolNd): | |||
r"""Applies a 2D max pooling over an input. | |||
@@ -5,7 +5,7 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from ...functional import add_update, ones, relu, sqrt, sum, zeros | |||
from ...functional import ones, relu, sqrt, sum, zeros | |||
from ...quantization.utils import fake_quant_bias | |||
from .. import conv_bn as Float | |||
from .module import QATModule | |||
@@ -76,18 +76,10 @@ class _ConvBnActivation2d(Float._ConvBnActivation2d, QATModule): | |||
bn_var.detach() * num_elements_per_channel / (num_elements_per_channel - 1) | |||
) | |||
exponential_average_factor = 1 - self.bn.momentum | |||
add_update( | |||
self.bn.running_mean, | |||
delta=bn_mean, | |||
alpha=1 - exponential_average_factor, | |||
beta=exponential_average_factor, | |||
) | |||
add_update( | |||
self.bn.running_var, | |||
delta=bn_var, | |||
alpha=1 - exponential_average_factor, | |||
beta=exponential_average_factor, | |||
) | |||
self.bn.running_mean *= self.bn.momentum | |||
self.bn.running_mean += exponential_average_factor * bn_mean | |||
self.bn.running_var *= self.bn.momentum | |||
self.bn.running_var += exponential_average_factor * bn_var | |||
def calc_conv_bn_qat(self, inp, approx=True): | |||
if self.training and not approx: | |||
@@ -18,7 +18,7 @@ class Linear(Float.Linear, QATModule): | |||
:param in_features: size of each input sample. | |||
:param out_features: size of each output sample. | |||
:param bias: If set to ``False``, the layer will not learn an additive bias. | |||
Default: ``True`` | |||
Default: True | |||
""" | |||
@@ -52,7 +52,7 @@ class QATModule(Module): | |||
self.weight_fake_quant = safe_call(qconfig.weight_fake_quant) | |||
def _enable_exec(self, with_module, func, enable): | |||
if not with_module: | |||
if not with_module or not func: | |||
return | |||
if enable: | |||
func.enable() | |||
@@ -15,7 +15,7 @@ from .module import QuantizedModule | |||
class Concat(QuantizedModule): | |||
r""" | |||
A :class:`~.QuantizedModule` to do quantized concat, inference only. | |||
A :class:`~.QuantizedModule` to do quantized concat, used for inference only. | |||
""" | |||
def __init__(self, dtype=None): | |||
@@ -29,7 +29,7 @@ class Concat(QuantizedModule): | |||
@classmethod | |||
def from_qat_module(cls, qat_module: QAT.Concat): | |||
r""" | |||
return a :class:`~.QuantizedModule` instance converted from a | |||
Return a :class:`~.QuantizedModule` instance converted from a | |||
:class:`~.QATModule` instance. | |||
""" | |||
return cls(qat_module.get_activation_dtype()) |
@@ -11,17 +11,17 @@ import numpy as np | |||
from ... import module as Float | |||
from ...core.tensor import dtype | |||
from ...functional import conv_bias_activation | |||
from ...functional.nn import conv_bias_activation | |||
from ...tensor import Parameter | |||
from ..qat import conv as QAT | |||
from .module import QuantizedModule | |||
class Conv2d(Float.Conv2d, QuantizedModule): | |||
r"""quantized version of :class:`~.qat.conv.Conv2d`.""" | |||
r"""Applies a 2D convolution over an quantized input tensor, inference only. | |||
r"""Quantized version of :class:`~.qat.conv.Conv2d`.""" | |||
r"""Applies a 2D convolution over a quantized input tensor, used for inference only. | |||
The parameter is same with :class: `~.Conv2d` | |||
The parameter is same with :class: `~.Conv2d`. | |||
""" | |||
def __init__( | |||
@@ -101,7 +101,7 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
class ConvRelu2d(Conv2d): | |||
r"""quantized version of :class:`~.qat.conv.ConvRelu2d`.""" | |||
r"""Quantized version of :class:`~.qat.conv.ConvRelu2d`.""" | |||
def forward(self, inp): | |||
return self.calc_conv_quantized(inp, nonlinear_mode="RELU") |
@@ -11,15 +11,15 @@ from .conv import Conv2d | |||
class _ConvBnActivation2d(Conv2d): | |||
r"""Applies a 2D convolution over an quantized input tensor, inference only. | |||
r"""Applies a 2D convolution over a quantized input tensor, used for inference only. | |||
The parameter is same with :class: `~.Conv2d` | |||
The parameter is same with :class: `~.Conv2d`. | |||
""" | |||
@classmethod | |||
def from_qat_module(cls, qat_module: QAT._ConvBnActivation2d): | |||
r""" | |||
return a :class:`~.QuantizedModule` instance converted from a | |||
Return a :class:`~.QuantizedModule` instance converted from a | |||
:class:`~.QATModule` instance. | |||
""" | |||
output_dtype = qat_module.get_activation_dtype() | |||
@@ -43,14 +43,14 @@ class _ConvBnActivation2d(Conv2d): | |||
class ConvBn2d(_ConvBnActivation2d): | |||
r"""quantized version of :class:`~.qat.conv_bn.ConvBn2d`.""" | |||
r"""Quantized version of :class:`~.qat.conv_bn.ConvBn2d`.""" | |||
def forward(self, inp): | |||
return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY") | |||
class ConvBnRelu2d(_ConvBnActivation2d): | |||
r"""quantized version of :class:`~.qat.conv_bn.ConvBnRelu2d`.""" | |||
r"""Quantized version of :class:`~.qat.conv_bn.ConvBnRelu2d`.""" | |||
def forward(self, inp): | |||
return self.calc_conv_quantized(inp, nonlinear_mode="RELU") |
@@ -13,7 +13,7 @@ from .module import QuantizedModule | |||
class Elemwise(QuantizedModule): | |||
r"""quantized version of :class:`~.qat.elemwise.Elemwise`.""" | |||
r"""Quantized version of :class:`~.qat.elemwise.Elemwise`.""" | |||
_elemwise_multi_type_mode = P.ElemwiseMultiType.Mode | |||
@@ -30,7 +30,7 @@ class Elemwise(QuantizedModule): | |||
@classmethod | |||
def from_qat_module(cls, qat_module: QAT.Elemwise): | |||
r""" | |||
return a :class:`~.QuantizedModule` instance converted from a | |||
Return a :class:`~.QuantizedModule` instance converted from a | |||
:class:`~.QATModule` instance. | |||
""" | |||
return cls(qat_module.method.name, qat_module.get_activation_dtype()) |
@@ -15,7 +15,7 @@ from .module import QuantizedModule | |||
class Linear(QuantizedModule): | |||
r"""quantized version of :class:`~.qat.linear.Linear`.""" | |||
r"""Quantized version of :class:`~.qat.linear.Linear`.""" | |||
def __init__( | |||
self, dtype: np.dtype = None, | |||
@@ -31,7 +31,7 @@ class Linear(QuantizedModule): | |||
inp_scale = dtype.get_scale(inp.dtype) | |||
w_scale = dtype.get_scale(self.weight.dtype) | |||
bias_dtype = dtype.qint32(inp_scale * w_scale) | |||
return F.linear( | |||
return F.nn.linear( | |||
inp, | |||
self.weight, | |||
None if self.bias is None else self.bias.astype(bias_dtype), | |||
@@ -40,7 +40,7 @@ class Linear(QuantizedModule): | |||
@classmethod | |||
def from_qat_module(cls, qat_module: QAT.Linear): | |||
r""" | |||
return a :class:`~.QuantizedModule` instance converted from a | |||
Return a :class:`~.QuantizedModule` instance converted from a | |||
:class:`~.QATModule` instance. | |||
""" | |||
output_dtype = qat_module.get_activation_dtype() | |||
@@ -26,6 +26,6 @@ class QuantizedModule(Module): | |||
@abstractmethod | |||
def from_qat_module(cls, qat_module: QATModule): | |||
r""" | |||
return a :class:`~.QuantizedModule` instance converted from a | |||
Return a :class:`~.QuantizedModule` instance converted from a | |||
:class:`~.QATModule` instance. | |||
""" |
@@ -11,7 +11,7 @@ from .module import QuantizedModule | |||
class QuantStub(QuantizedModule): | |||
r""" | |||
quantized version of :class:`~.qat.quant_dequant.QuantStub`, | |||
Quantized version of :class:`~.qat.quant_dequant.QuantStub`, | |||
will convert input to quantized dtype. | |||
""" | |||
@@ -25,7 +25,7 @@ class QuantStub(QuantizedModule): | |||
@classmethod | |||
def from_qat_module(cls, qat_module: QAT.QuantStub): | |||
r""" | |||
return a :class:`~.QuantizedModule` instance converted from a | |||
Return a :class:`~.QuantizedModule` instance converted from a | |||
:class:`~.QATModule` instance. | |||
""" | |||
return cls(qat_module.get_activation_dtype()) | |||
@@ -33,7 +33,7 @@ class QuantStub(QuantizedModule): | |||
class DequantStub(QuantizedModule): | |||
r""" | |||
quantized version of :class:`~.qat.quant_dequant.DequantStub`, | |||
Quantized version of :class:`~.qat.quant_dequant.DequantStub`, | |||
will restore quantized input to float32 dtype. | |||
""" | |||
@@ -43,7 +43,7 @@ class DequantStub(QuantizedModule): | |||
@classmethod | |||
def from_qat_module(cls, qat_module: QAT.DequantStub): | |||
r""" | |||
return a :class:`~.QuantizedModule` instance converted from a | |||
Return a :class:`~.QuantizedModule` instance converted from a | |||
:class:`~.QATModule` instance. | |||
""" | |||
return cls() |
@@ -26,40 +26,40 @@ class Sequential(Module): | |||
import megengine as mge | |||
import megengine.module as M | |||
import megengine.functional as F | |||
from collections import OrderedDict | |||
batch_size = 64 | |||
data = mge.tensor(np.zeros((batch_size, 1, 28, 28)), dtype=np.float32) | |||
label = mge.tensor(np.zeros(batch_size,), dtype=np.int32) | |||
data = data.reshape(batch_size, -1) | |||
net = M.Sequential( | |||
net0 = M.Sequential( | |||
M.Linear(28 * 28, 320), | |||
M.Linear(320, 500), | |||
M.Linear(500, 320), | |||
M.Linear(320, 10) | |||
) | |||
pred = net(data) | |||
pred0 = net0(data) | |||
loss = F.cross_entropy_with_softmax(pred, label) | |||
modules = OrderedDict() | |||
modules["fc0"] = nn.Linear(28 * 28, 320) | |||
modules["fc1"] = nn.Linear(320, 10) | |||
net1 = nn.Sequential(modules) | |||
pred1 = net1(data) | |||
""" | |||
def __init__(self, *args): | |||
super().__init__() | |||
self.layer_keys = [] | |||
self.layer_values = [] | |||
if len(args) == 1 and isinstance(args[0], OrderedDict): | |||
for key, module in args[0].items(): | |||
# self.add_module(key, module) | |||
setattr(self, key, module) | |||
self.layer_keys.append(key) | |||
self.layer_values.append(module) | |||
else: | |||
for idx, module in enumerate(args): | |||
# self.add_module(str(idx), module) | |||
setattr(self, str(idx), module) | |||
self.layer_keys.append(str(idx)) | |||
self.layer_values.append(module) | |||
def __getitem__(self, idx): | |||
if isinstance(idx, slice): | |||
@@ -67,11 +67,10 @@ class Sequential(Module): | |||
OrderedDict(zip(self.layer_keys[idx], self.layer_values[idx])) | |||
) | |||
else: | |||
return self.layer_values[idx] | |||
return getattr(self, self.layer_keys[idx]) | |||
def __setitem__(self, idx, module): | |||
key = self.layer_keys[idx] | |||
self.layer_values[idx] = module | |||
return setattr(self, key, module) | |||
def __delitem__(self, idx): | |||
@@ -79,11 +78,9 @@ class Sequential(Module): | |||
for key in self.layer_keys[idx]: | |||
delattr(self, key) | |||
del self.layer_keys[idx] | |||
del self.layer_values[idx] | |||
else: | |||
delattr(self, self.layer_keys[idx]) | |||
del self.layer_keys[idx] | |||
del self.layer_values[idx] | |||
def __len__(self): | |||
return len(self.layer_keys) | |||
@@ -91,6 +88,10 @@ class Sequential(Module): | |||
def __iter__(self): | |||
return iter(self.layer_values) | |||
@property | |||
def layer_values(self): | |||
return [getattr(self, key) for key in self.layer_keys] | |||
def forward(self, inp): | |||
for layer in self.layer_values: | |||
inp = layer(inp) | |||
@@ -22,13 +22,13 @@ class Adadelta(Optimizer): | |||
:param params: iterable of parameters to optimize or dicts defining | |||
parameter groups. | |||
:param lr: coefficient that scale delta before it is applied | |||
to the parameters (default: 1.0). | |||
:param lr: coefficient that scales delta before it is applied | |||
to the parameters. Default: 1.0 | |||
:param rho: coefficient used for computing a running average | |||
of squared gradients (default: 0.9). | |||
of squared gradients. Default: 0.9 | |||
:param eps: term added to the denominator to improve | |||
numerical stability (default: 1e-6). | |||
:param weight_decay: weight decay (L2 penalty) (default: 0). | |||
numerical stability. Default: 1e-6 | |||
:param weight_decay: weight decay (L2 penalty). Default: 0 | |||
""" | |||
def __init__( | |||
@@ -23,12 +23,12 @@ class Adagrad(Optimizer): | |||
:param params: iterable of parameters to optimize or dicts defining | |||
parameter groups. | |||
:param lr: coefficient that scale delta before it is applied | |||
to the parameters (default: 1e-2). | |||
:param lr_decay: learning rate decay (default: 0) | |||
:param lr: coefficient that scales delta before it is applied | |||
to the parameters. Default: 1e-2 | |||
:param lr_decay: learning rate decay. Default: 0 | |||
:param eps: term added to the denominator to improve | |||
numerical stability (default: 1e-10). | |||
:param weight_decay: weight decay (L2 penalty) (default: 0). | |||
numerical stability. Default: 1e-10 | |||
:param weight_decay: weight decay (L2 penalty). Default: 0 | |||
""" | |||
def __init__( | |||