|
|
@@ -571,9 +571,6 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW4) { |
|
|
|
checker.exec({{1, 4, 2, 2, 4}, {16, 4, 3, 3, 4}, {1, 4, 1, 1, 4}, {}, {}}); |
|
|
|
} |
|
|
|
|
|
|
|
//! FIXME: conv kernel of cudnn for NCHW4_NCHW tensor format causes illegal |
|
|
|
//! memory access errors, so we have to disable this test here. |
|
|
|
#if 0 |
|
|
|
TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW4_NCHW) { |
|
|
|
require_compute_capability(6, 1); |
|
|
|
using namespace conv_bias; |
|
|
@@ -600,8 +597,9 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW4_NCHW) { |
|
|
|
auto run = [&](const TensorShapeArray& shapes) { |
|
|
|
opr->param() = param; |
|
|
|
TensorLayout dst_layout; |
|
|
|
opr->deduce_layout({shapes[0], dtype::Float32()}, |
|
|
|
{shapes[1], dtype::Float32()}, {}, {}, dst_layout); |
|
|
|
opr->deduce_layout( |
|
|
|
{shapes[0], dtype::Float32()}, {shapes[1], dtype::Float32()}, {}, {}, |
|
|
|
dst_layout); |
|
|
|
checker.execs({shapes[0], shapes[1], shapes[2], dst_layout, {}}); |
|
|
|
}; |
|
|
|
|
|
|
@@ -631,8 +629,6 @@ TEST_F(CUDA, CONV_BIAS_FORWARD_NCHW4_NCHW) { |
|
|
|
} |
|
|
|
#endif |
|
|
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
TEST_F(CUDA, CONV_BIAS_FORWARD_CHANWISE) { |
|
|
|
Checker<ConvBiasForward> checker(handle_cuda()); |
|
|
|
std::vector<TestArg> args = get_chanwise_args(); |
|
|
|