- refactor(mge): add support for optimizer.step().clear_grad() idiom
- refactor(mge): rename some methods of GradManager
- refactor(mge): remove tensor_nn and TensorDict
- refactor(mge): remove Buffer
- refactor(mge): remove requires_grad flag
- refactor(mge): add a default grad=None attribute to Tensor
- refactor(mge): deprecation for 1.0
GitOrigin-RevId: 3b723d9387
tags/v1.0.0-rc1
@@ -74,8 +74,7 @@ from .core._imperative_rt.utils import _set_fork_exec_path_for_timed_func | |||||
from .device import * | from .device import * | ||||
from .logger import enable_debug_log, get_logger, set_log_file, set_log_level | from .logger import enable_debug_log, get_logger, set_log_file, set_log_level | ||||
from .serialization import load, save | from .serialization import load, save | ||||
from .tensor import Tensor, tensor | |||||
from .tensor_nn import Buffer, Parameter | |||||
from .tensor import Parameter, Tensor, tensor | |||||
from .version import __version__ | from .version import __version__ | ||||
_set_fork_exec_path_for_timed_func( | _set_fork_exec_path_for_timed_func( | ||||
@@ -22,7 +22,7 @@ class GradManager: | |||||
self._after_backward_callback = [] | self._after_backward_callback = [] | ||||
self._gradients = dict() | self._gradients = dict() | ||||
def register(self, params, callbacks=None): | |||||
def attach(self, params, callbacks=None): | |||||
if callbacks is None: | if callbacks is None: | ||||
callbacks = [] | callbacks = [] | ||||
if isinstance(callbacks, Callable): | if isinstance(callbacks, Callable): | ||||
@@ -62,7 +62,7 @@ class GradManager: | |||||
if isinstance(grad, Future): | if isinstance(grad, Future): | ||||
grad = grad.get() | grad = grad.get() | ||||
param = self._param_dict[p] | param = self._param_dict[p] | ||||
if getattr(param, "grad", None) is None: | |||||
if param.grad is None: | |||||
param.grad = grad | param.grad = grad | ||||
else: | else: | ||||
param.grad += grad | param.grad += grad | ||||
@@ -70,9 +70,9 @@ class GradManager: | |||||
self._stop_record() | self._stop_record() | ||||
backwarding_grad_manager = cache | backwarding_grad_manager = cache | ||||
def __enter__(self): | |||||
def record(self): | |||||
if self._recording: | if self._recording: | ||||
return self | |||||
raise RuntimeError("already recording") | |||||
grad = Grad() | grad = Grad() | ||||
self._recording = True | self._recording = True | ||||
self._grad = grad | self._grad = grad | ||||
@@ -88,16 +88,22 @@ class GradManager: | |||||
grad.wrt(param_wrapper, callback=callback) | grad.wrt(param_wrapper, callback=callback) | ||||
grad.__enter__() | grad.__enter__() | ||||
return self | |||||
def __exit__(self, exc_type, exc_val, exc_tb): | |||||
def release(self): | |||||
if not self._recording: | |||||
raise RuntimeError("not recording") | |||||
self._stop_record() | self._stop_record() | ||||
record = __enter__ | |||||
def _stop_record(self): | def _stop_record(self): | ||||
if self._grad is not None: | if self._grad is not None: | ||||
self._grad.__exit__(None, None, None) | self._grad.__exit__(None, None, None) | ||||
self._recording = False | self._recording = False | ||||
self._grad = None | self._grad = None | ||||
self._gradients = dict() | self._gradients = dict() | ||||
def __enter__(self): | |||||
self.record() | |||||
return self | |||||
def __exit__(self, exc_type, exc_val, exc_tb): | |||||
self._stop_record() |
@@ -70,7 +70,7 @@ class Dimshuffle(PodOpVisitor): | |||||
return bytes(ctypes.c_uint32(0)) + bytes(self) | return bytes(ctypes.c_uint32(0)) + bytes(self) | ||||
def __init__(self, pattern, ndim=0): | def __init__(self, pattern, ndim=0): | ||||
assert isinstance(pattern, collections.Iterable) | |||||
assert isinstance(pattern, collections.abc.Iterable) | |||||
assert len(pattern) <= TensorShape.MAX_NDIM | assert len(pattern) <= TensorShape.MAX_NDIM | ||||
pattern_array = Dimshuffle.Pattern.Pattern_Array() | pattern_array = Dimshuffle.Pattern.Pattern_Array() | ||||
for idx, v in enumerate(pattern): | for idx, v in enumerate(pattern): | ||||
@@ -231,13 +231,13 @@ class OpNode: | |||||
def _wrap(x): | def _wrap(x): | ||||
if isinstance(x, collections.Sequence): | |||||
if isinstance(x, collections.abc.Sequence): | |||||
return type(x)(map(_wrap, x)) | return type(x)(map(_wrap, x)) | ||||
return x.graph._wrap(x) | return x.graph._wrap(x) | ||||
def _unwrap(x): | def _unwrap(x): | ||||
if isinstance(x, collections.Sequence): | |||||
if isinstance(x, collections.abc.Sequence): | |||||
return type(x)(map(_unwrap, x)) | return type(x)(map(_unwrap, x)) | ||||
return x._node | return x._node | ||||
@@ -166,7 +166,7 @@ def _reduce(mode): | |||||
op = builtin.Reduce(mode=mode, axis=0) | op = builtin.Reduce(mode=mode, axis=0) | ||||
(result,) = apply(op, data) | (result,) = apply(op, data) | ||||
elif isinstance(axis, collections.Iterable): | |||||
elif isinstance(axis, collections.abc.Iterable): | |||||
axis = list(axis) | axis = list(axis) | ||||
axis.sort(reverse=True) | axis.sort(reverse=True) | ||||
@@ -204,7 +204,9 @@ def _todo(*_): | |||||
def _expand_args(args): | def _expand_args(args): | ||||
if len(args) == 1: | if len(args) == 1: | ||||
if isinstance(args[0], (collections.Sequence, TensorBase, TensorWrapperBase)): | |||||
if isinstance( | |||||
args[0], (collections.abc.Sequence, TensorBase, TensorWrapperBase) | |||||
): | |||||
args = args[0] | args = args[0] | ||||
return args | return args | ||||
@@ -143,7 +143,7 @@ def astensor1d(x, *reference, dtype=None, device=None): | |||||
(x,) = Const(x, dtype=dtype, device=device)(*reference) | (x,) = Const(x, dtype=dtype, device=device)(*reference) | ||||
return x | return x | ||||
if not isinstance(x, collections.Sequence): | |||||
if not isinstance(x, collections.abc.Sequence): | |||||
raise TypeError | raise TypeError | ||||
if any(isinstance(i, (TensorBase, TensorWrapperBase)) for i in x): | if any(isinstance(i, (TensorBase, TensorWrapperBase)) for i in x): | ||||
@@ -432,7 +432,7 @@ def argmin( | |||||
[0] | [0] | ||||
""" | """ | ||||
if isinstance(axis, collections.Iterable): | |||||
if isinstance(axis, collections.abc.Iterable): | |||||
axis = list(axis) | axis = list(axis) | ||||
axis.sort(reverse=True) | axis.sort(reverse=True) | ||||
@@ -486,7 +486,7 @@ def argmax( | |||||
[5] | [5] | ||||
""" | """ | ||||
if isinstance(axis, collections.Iterable): | |||||
if isinstance(axis, collections.abc.Iterable): | |||||
axis = list(axis) | axis = list(axis) | ||||
axis.sort(reverse=True) | axis.sort(reverse=True) | ||||
@@ -15,7 +15,7 @@ def get_ndtuple(value, *, n, allow_zero=True): | |||||
:type allow_zero: bool | :type allow_zero: bool | ||||
:param allow_zero: whether to allow zero tuple value""" | :param allow_zero: whether to allow zero tuple value""" | ||||
if not isinstance(value, collections.Iterable): | |||||
if not isinstance(value, collections.abc.Iterable): | |||||
value = int(value) | value = int(value) | ||||
value = tuple([value for i in range(n)]) | value = tuple([value for i in range(n)]) | ||||
else: | else: | ||||
@@ -502,7 +502,7 @@ class trace: | |||||
raise TypeError( | raise TypeError( | ||||
"cannot specify output_names when output is already in dict format" | "cannot specify output_names when output is already in dict format" | ||||
) | ) | ||||
if output_names and not isinstance(output_names, collections.Sequence): | |||||
if output_names and not isinstance(output_names, collections.abc.Sequence): | |||||
output_names = (output_names,) | output_names = (output_names,) | ||||
if output_names and len(output_names) != len(self._output_bindings): | if output_names and len(output_names) != len(self._output_bindings): | ||||
raise ValueError( | raise ValueError( | ||||
@@ -510,7 +510,7 @@ class trace: | |||||
len(self._output_bindings) | len(self._output_bindings) | ||||
) | ) | ||||
) | ) | ||||
if arg_names and not isinstance(arg_names, collections.Sequence): | |||||
if arg_names and not isinstance(arg_names, collections.abc.Sequence): | |||||
arg_names = (arg_names,) | arg_names = (arg_names,) | ||||
if arg_names and len(arg_names) != len(self._arg_bindings): | if arg_names and len(arg_names) != len(self._arg_bindings): | ||||
raise ValueError( | raise ValueError( | ||||
@@ -646,9 +646,9 @@ class trace: | |||||
def _process_outputs(self, outputs): | def _process_outputs(self, outputs): | ||||
output_names = None | output_names = None | ||||
if isinstance(outputs, collections.Mapping): | |||||
if isinstance(outputs, collections.abc.Mapping): | |||||
output_names, outputs = zip(*sorted(outputs.items())) | output_names, outputs = zip(*sorted(outputs.items())) | ||||
elif not isinstance(outputs, collections.Sequence): | |||||
elif not isinstance(outputs, collections.abc.Sequence): | |||||
outputs = (outputs,) | outputs = (outputs,) | ||||
if not self._untraced: | if not self._untraced: | ||||
@@ -18,7 +18,6 @@ from .embedding import Embedding | |||||
from .identity import Identity | from .identity import Identity | ||||
from .linear import Linear | from .linear import Linear | ||||
from .module import Module | from .module import Module | ||||
from .parampack import ParamPack | |||||
from .pooling import AvgPool2d, MaxPool2d | from .pooling import AvgPool2d, MaxPool2d | ||||
from .quant_dequant import DequantStub, QuantStub | from .quant_dequant import DequantStub, QuantStub | ||||
from .sequential import Sequential | from .sequential import Sequential |
@@ -9,7 +9,7 @@ | |||||
import numpy as np | import numpy as np | ||||
from ..functional import leaky_relu, prelu, relu, sigmoid, softmax | from ..functional import leaky_relu, prelu, relu, sigmoid, softmax | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from .module import Module | from .module import Module | ||||
@@ -12,7 +12,7 @@ import numpy as np | |||||
from ..distributed.group import WORLD, Group | from ..distributed.group import WORLD, Group | ||||
from ..functional import batch_norm2d, sync_batch_norm | from ..functional import batch_norm2d, sync_batch_norm | ||||
from ..tensor_nn import Buffer, Parameter, Tensor | |||||
from ..tensor import Parameter, Tensor | |||||
from . import init | from . import init | ||||
from .module import Module | from .module import Module | ||||
@@ -45,8 +45,8 @@ class _BatchNorm(Module): | |||||
tshape = (1, self.num_features, 1, 1) | tshape = (1, self.num_features, 1, 1) | ||||
if self.track_running_stats: | if self.track_running_stats: | ||||
self.running_mean = Buffer(np.zeros(tshape, dtype=np.float32)) | |||||
self.running_var = Buffer(np.ones(tshape, dtype=np.float32)) | |||||
self.running_mean = Tensor(np.zeros(tshape, dtype=np.float32)) | |||||
self.running_var = Tensor(np.ones(tshape, dtype=np.float32)) | |||||
else: | else: | ||||
self.running_mean = None | self.running_mean = None | ||||
self.running_var = None | self.running_var = None | ||||
@@ -13,7 +13,7 @@ import numpy as np | |||||
from ..core.ops._internal import param_defs as P | from ..core.ops._internal import param_defs as P | ||||
from ..functional import conv2d, conv_transpose2d, local_conv2d, relu | from ..functional import conv2d, conv_transpose2d, local_conv2d, relu | ||||
from ..functional.types import _pair, _pair_nonzero | from ..functional.types import _pair, _pair_nonzero | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from . import init | from . import init | ||||
from .module import Module | from .module import Module | ||||
@@ -11,7 +11,7 @@ from typing import Optional | |||||
import numpy as np | import numpy as np | ||||
from ..functional import embedding as embedding_func | from ..functional import embedding as embedding_func | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from . import init | from . import init | ||||
from .module import Module | from .module import Module | ||||
@@ -72,6 +72,7 @@ class Embedding(Module): | |||||
max_norm: Optional[float] = None, | max_norm: Optional[float] = None, | ||||
norm_type: Optional[float] = None, | norm_type: Optional[float] = None, | ||||
initial_weight: Parameter = None, | initial_weight: Parameter = None, | ||||
freeze: bool = False, | |||||
): | ): | ||||
super().__init__() | super().__init__() | ||||
if padding_idx is not None: | if padding_idx is not None: | ||||
@@ -83,6 +84,7 @@ class Embedding(Module): | |||||
self.norm_type = norm_type | self.norm_type = norm_type | ||||
self.num_embeddings = num_embeddings | self.num_embeddings = num_embeddings | ||||
self.embedding_dim = embedding_dim | self.embedding_dim = embedding_dim | ||||
self.freeze = freeze | |||||
if initial_weight is None: | if initial_weight is None: | ||||
self.weight = Parameter( | self.weight = Parameter( | ||||
np.random.uniform( | np.random.uniform( | ||||
@@ -101,7 +103,11 @@ class Embedding(Module): | |||||
init.normal_(self.weight) | init.normal_(self.weight) | ||||
def forward(self, inputs): | def forward(self, inputs): | ||||
return embedding_func(inputs, self.weight) | |||||
if self.freeze: | |||||
weight = self.weight.detach() | |||||
else: | |||||
weight = self.weight | |||||
return embedding_func(inputs, weight) | |||||
@classmethod | @classmethod | ||||
def from_pretrained( | def from_pretrained( | ||||
@@ -166,6 +172,6 @@ class Embedding(Module): | |||||
padding_idx=padding_idx, | padding_idx=padding_idx, | ||||
max_norm=max_norm, | max_norm=max_norm, | ||||
norm_type=norm_type, | norm_type=norm_type, | ||||
freeze=freeze, | |||||
) | ) | ||||
embedding.weight.requires_grad = not freeze | |||||
return embedding | return embedding |
@@ -23,7 +23,7 @@ def fill_(tensor: Tensor, val: Union[float, int]) -> None: | |||||
:param tensor: An n-dimentional tensor to be initialized | :param tensor: An n-dimentional tensor to be initialized | ||||
:param val: The value to be filled throughout the tensor | :param val: The value to be filled throughout the tensor | ||||
""" | """ | ||||
tensor.set_value(full(shape=tensor.shape, value=val, dtype=tensor.dtype)) | |||||
tensor._reset(full(shape=tensor.shape, value=val, dtype=tensor.dtype)) | |||||
def zeros_(tensor: Tensor) -> None: | def zeros_(tensor: Tensor) -> None: | ||||
@@ -50,7 +50,7 @@ def uniform_(tensor: Tensor, a: float = 0.0, b: float = 1.0) -> None: | |||||
:param a: Lower bound of the sampling interval | :param a: Lower bound of the sampling interval | ||||
:param b: Upper bound of the sampling interval | :param b: Upper bound of the sampling interval | ||||
""" | """ | ||||
tensor.set_value(uniform(tensor.shape, low=a, high=b).astype(tensor.dtype)) | |||||
tensor._reset(uniform(tensor.shape, low=a, high=b).astype(tensor.dtype)) | |||||
def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | ||||
@@ -61,7 +61,7 @@ def normal_(tensor: Tensor, mean: float = 0.0, std: float = 1.0) -> None: | |||||
:param mean: The mean of the normal distribution | :param mean: The mean of the normal distribution | ||||
:param std: The standard deviation of the normal distribution | :param std: The standard deviation of the normal distribution | ||||
""" | """ | ||||
tensor.set_value(gaussian(tensor.shape, mean=mean, std=std).astype(tensor.dtype)) | |||||
tensor._reset(gaussian(tensor.shape, mean=mean, std=std).astype(tensor.dtype)) | |||||
def calculate_gain( | def calculate_gain( | ||||
@@ -8,7 +8,7 @@ | |||||
import numpy as np | import numpy as np | ||||
from ..functional import linear | from ..functional import linear | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from . import init | from . import init | ||||
from .module import Module | from .module import Module | ||||
@@ -5,6 +5,7 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
import warnings | |||||
from abc import ABCMeta, abstractmethod | from abc import ABCMeta, abstractmethod | ||||
from collections import OrderedDict | from collections import OrderedDict | ||||
from typing import Any, Callable, Iterable, Optional, Set, Tuple, Union | from typing import Any, Callable, Iterable, Optional, Set, Tuple, Union | ||||
@@ -14,8 +15,8 @@ import numpy as np | |||||
from ..core.tensor.dtype import is_quantize | from ..core.tensor.dtype import is_quantize | ||||
from ..core.tensor.utils import make_shape_tuple | from ..core.tensor.utils import make_shape_tuple | ||||
from ..logger import get_logger | from ..logger import get_logger | ||||
from ..tensor import Tensor | |||||
from ..tensor_nn import Buffer, Parameter | |||||
from ..tensor import Parameter, Tensor | |||||
from ..utils.deprecation import deprecated | |||||
from ..utils.hook import HookHandler | from ..utils.hook import HookHandler | ||||
logger = get_logger(__name__) | logger = get_logger(__name__) | ||||
@@ -48,7 +49,7 @@ def _is_parameter(obj): | |||||
def _is_buffer(obj): | def _is_buffer(obj): | ||||
return isinstance(obj, Buffer) | |||||
return isinstance(obj, Tensor) and not isinstance(obj, Parameter) | |||||
def _is_module(obj): | def _is_module(obj): | ||||
@@ -163,49 +164,43 @@ class Module(metaclass=ABCMeta): | |||||
seen=seen, | seen=seen, | ||||
) | ) | ||||
def parameters( | |||||
self, requires_grad: Optional[bool] = None, recursive: bool = True, **kwargs | |||||
) -> Iterable[Parameter]: | |||||
def parameters(self, recursive: bool = True, **kwargs) -> Iterable[Parameter]: | |||||
r"""Returns an iterable for the :class:`~.Parameter` of the module. | r"""Returns an iterable for the :class:`~.Parameter` of the module. | ||||
:param requires_grad: Limitation over the :attr:`~.Parameter.requires_grad` | |||||
attribute of returned :class:`.Parameter`. ``None`` for no limitation. | |||||
:param recursive: If ``True``, returns all :class:`~.Parameter` within this | :param recursive: If ``True``, returns all :class:`~.Parameter` within this | ||||
module, else only returns :class:`~.Parameter` that are direct attributes | module, else only returns :class:`~.Parameter` that are direct attributes | ||||
of this module. | of this module. | ||||
""" | """ | ||||
if "requires_grad" in kwargs: | |||||
del kwargs["requires_grad"] | |||||
warnings.warn("passing requires_grad has no effect currently") | |||||
def predicate(obj) -> bool: | def predicate(obj) -> bool: | ||||
return _is_parameter(obj) and ( | |||||
requires_grad is None or obj.requires_grad == requires_grad | |||||
) | |||||
return _is_parameter(obj) | |||||
yield from self._flatten( | yield from self._flatten( | ||||
with_key=False, predicate=predicate, recursive=recursive, **kwargs | with_key=False, predicate=predicate, recursive=recursive, **kwargs | ||||
) | ) | ||||
def named_parameters( | def named_parameters( | ||||
self, | |||||
requires_grad: Optional[bool] = None, | |||||
prefix: Optional[str] = None, | |||||
recursive: bool = True, | |||||
**kwargs | |||||
self, prefix: Optional[str] = None, recursive: bool = True, **kwargs | |||||
) -> Iterable[Tuple[str, Parameter]]: | ) -> Iterable[Tuple[str, Parameter]]: | ||||
"""Returns an iterable for key :class:`~.Parameter` pairs of the module, where | """Returns an iterable for key :class:`~.Parameter` pairs of the module, where | ||||
``key`` is the dotted path from this module to the :class:`~.Parameter` . | ``key`` is the dotted path from this module to the :class:`~.Parameter` . | ||||
:param requires_grad: Limitation over the :attr:`~.Parameter.requires_grad` | |||||
attribute of returned :class:`~.Parameter` . ``None`` for no limitation. | |||||
:param prefix: The prefix prepended to the keys. | :param prefix: The prefix prepended to the keys. | ||||
:param recursive: If ``True``, returns all :class:`~.Parameter` within this | :param recursive: If ``True``, returns all :class:`~.Parameter` within this | ||||
module, else only returns :class:`~.Parameter` that are direct attributes | module, else only returns :class:`~.Parameter` that are direct attributes | ||||
of this module. | of this module. | ||||
""" | """ | ||||
if "requires_grad" in kwargs: | |||||
del kwargs["requires_grad"] | |||||
warnings.warn("passing requires_grad has no effect currently") | |||||
def predicate(obj) -> bool: | def predicate(obj) -> bool: | ||||
return _is_parameter(obj) and ( | |||||
requires_grad is None or obj.requires_grad == requires_grad | |||||
) | |||||
return _is_parameter(obj) | |||||
yield from self._flatten( | yield from self._flatten( | ||||
with_key=True, | with_key=True, | ||||
@@ -215,11 +210,13 @@ class Module(metaclass=ABCMeta): | |||||
**kwargs, | **kwargs, | ||||
) | ) | ||||
def buffers(self, recursive: bool = True, **kwargs) -> Iterable[Buffer]: | |||||
"""Returns an iterable for the :class:`~.Buffer` of the module. | |||||
def buffers(self, recursive: bool = True, **kwargs) -> Iterable[Tensor]: | |||||
"""Returns an iterable for the buffers of the module. | |||||
:param recursive: If ``True``, returns all :class:`~.Buffer` within this | |||||
module, else only returns :class:`~.Buffer` that are direct attributes | |||||
Buffer is defined to be :class:`~.Tensor` excluding :class:`~.Parameter`. | |||||
:param recursive: If ``True``, returns all buffers within this | |||||
module, else only returns buffers that are direct attributes | |||||
of this module. | of this module. | ||||
""" | """ | ||||
yield from self._flatten( | yield from self._flatten( | ||||
@@ -228,13 +225,15 @@ class Module(metaclass=ABCMeta): | |||||
def named_buffers( | def named_buffers( | ||||
self, prefix: Optional[str] = None, recursive: bool = True, **kwargs | self, prefix: Optional[str] = None, recursive: bool = True, **kwargs | ||||
) -> Iterable[Tuple[str, Buffer]]: | |||||
"""Returns an iterable for key :class:`~.Buffer` pairs of the module, where | |||||
``key`` is the dotted path from this module to the :class:`~.Buffer` . | |||||
) -> Iterable[Tuple[str, Tensor]]: | |||||
"""Returns an iterable for key buffer pairs of the module, where | |||||
``key`` is the dotted path from this module to the buffer. | |||||
Buffer is defined to be :class:`~.Tensor` excluding :class:`~.Parameter`. | |||||
:param prefix: The prefix prepended to the keys. | :param prefix: The prefix prepended to the keys. | ||||
:param recursive: If ``True``, returns all :class:`~.Buffer` within this | |||||
module, else only returns :class:`~.Buffer` that are direct attributes | |||||
:param recursive: If ``True``, returns all buffers within this | |||||
module, else only returns buffers that are direct attributes | |||||
of this module. | of this module. | ||||
""" | """ | ||||
yield from self._flatten( | yield from self._flatten( | ||||
@@ -297,6 +296,7 @@ class Module(metaclass=ABCMeta): | |||||
for it in self.modules(): | for it in self.modules(): | ||||
fn(it) | fn(it) | ||||
@deprecated(version="1.0") | |||||
def zero_grad(self) -> None: | def zero_grad(self) -> None: | ||||
"""Set all parameters' grads to zero | """Set all parameters' grads to zero | ||||
""" | """ | ||||
@@ -505,7 +505,7 @@ class Module(metaclass=ABCMeta): | |||||
# scale/zero_points maybe invalid, use pretrained dtype instead. | # scale/zero_points maybe invalid, use pretrained dtype instead. | ||||
if is_quantize(to_be_load.dtype) and is_quantize(var.dtype): | if is_quantize(to_be_load.dtype) and is_quantize(var.dtype): | ||||
var = var.astype(to_be_load.dtype) | var = var.astype(to_be_load.dtype) | ||||
var.set_value(to_be_load) | |||||
var._reset(to_be_load) | |||||
loaded.append(k) | loaded.append(k) | ||||
return set(loaded), set(skipped) | return set(loaded), set(skipped) |
@@ -1,156 +0,0 @@ | |||||
# -*- coding: utf-8 -*- | |||||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
# | |||||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
# | |||||
# Unless required by applicable law or agreed to in writing, | |||||
# software distributed under the License is distributed on an | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
import collections | |||||
from typing import Callable, Iterable, Optional, Tuple | |||||
import numpy as np | |||||
from ..tensor_nn import Parameter, Tensor | |||||
from .module import Module | |||||
class ParamPack(Module): | |||||
r"""Pack module's parameters by gathering their memory to continuous address. | |||||
Using (device, dtype, requires_grad) as key, for example ('gpu0', float32, True), | |||||
parameters with same key will be packed togather. | |||||
It helps a lot for multimachine training by speeding up allreduce gradients. | |||||
:param model: the module you want to pack parameters. | |||||
:param nr_ignore_first: how many parameters will be unpacked at first. | |||||
:param max_size_per_group: upper bound of packed parameters' size in MB. | |||||
:param max_nr_params_per_group: upper bound of the number of parameters of each group. | |||||
""" | |||||
def __init__( | |||||
self, | |||||
model: Module, | |||||
nr_ignore_first: int = 8, | |||||
max_size_per_group: int = 10, | |||||
max_nr_params_per_group: int = 100, | |||||
group_func: Callable = lambda name, param: 0, | |||||
): | |||||
super().__init__() | |||||
self._model = model | |||||
self._nr_ignore_first = nr_ignore_first | |||||
self._max_size_per_group = max_size_per_group | |||||
self._max_nr_params_per_group = max_nr_params_per_group | |||||
self._group_func = group_func | |||||
self._grouped_params = [] | |||||
self._packed_params = [] | |||||
params = model.named_parameters() | |||||
self._pack_params(params) | |||||
def parameters(self, requires_grad: Optional[bool] = None) -> Iterable[Parameter]: | |||||
for param in self._packed_params: | |||||
if requires_grad is None or param.requires_grad == requires_grad: | |||||
yield param | |||||
def named_parameters( | |||||
self, requires_grad: Optional[bool] = None | |||||
) -> Iterable[Tuple[str, Parameter]]: | |||||
for idx, param in enumerate(self._packed_params): | |||||
if requires_grad is None or param.requires_grad == requires_grad: | |||||
yield "packed_param_" + str(idx), param | |||||
def _pack_params(self, params: Iterable[Tuple[str, Parameter]]): | |||||
groups = collections.defaultdict(list) | |||||
ignored = 0 | |||||
param_id = 0 | |||||
for name, param in params: | |||||
if self._nr_ignore_first > ignored: | |||||
ignored += 1 | |||||
self._grouped_params.append([{"shape": param.shape, "id": param_id}]) | |||||
param.pack_group_key = self._group_func(name, param) | |||||
self._packed_params.append(param) | |||||
else: | |||||
key = ( | |||||
param.dtype, | |||||
param.device, | |||||
param.requires_grad, | |||||
self._group_func(name, param), | |||||
) | |||||
groups[key].append({"tensor": param, "id": param_id}) | |||||
param_id += 1 | |||||
for (dtype, device, requires_grad, group_key) in groups.keys(): | |||||
dtype_sz = np.dtype(dtype).itemsize | |||||
align = device.mem_align | |||||
if align < dtype_sz: | |||||
align = 1 | |||||
else: | |||||
assert align % dtype_sz == 0 | |||||
align //= dtype_sz | |||||
group = groups[(dtype, device, requires_grad, group_key)] | |||||
while group: | |||||
aligned_pos = [] | |||||
offset = 0 | |||||
params = [] | |||||
idx = 0 | |||||
while idx < len(group): | |||||
param = group[idx] | |||||
assert param["tensor"].device == device | |||||
padding = (align - (offset & (align - 1))) & (align - 1) | |||||
offset += padding | |||||
aligned_pos.append(offset) | |||||
params.append(param) | |||||
offset += int(np.prod(param["tensor"].shape)) | |||||
idx += 1 | |||||
if ( | |||||
offset * dtype_sz >= self._max_size_per_group * 1024 * 1024 | |||||
or idx >= self._max_nr_params_per_group | |||||
): | |||||
break | |||||
group = group[idx:] | |||||
if idx == 1: | |||||
# ignore param packs with only one item | |||||
params[0]["tensor"].pack_group_key = group_key | |||||
self._packed_params.append(params[0]["tensor"]) | |||||
self._grouped_params.append( | |||||
[{"shape": params[0]["tensor"].shape, "id": params[0]["id"]}] | |||||
) | |||||
continue | |||||
packed_value = np.zeros((offset,), dtype=dtype) | |||||
for param, pos in zip(params, aligned_pos): | |||||
val = param["tensor"].numpy() | |||||
packed_value[pos : pos + val.size] = val.flatten() | |||||
new_param = Parameter( | |||||
value=packed_value, | |||||
device=device, | |||||
dtype=dtype, | |||||
requires_grad=requires_grad, | |||||
) | |||||
new_param.pack_group_key = group_key | |||||
self._packed_params.append(new_param) | |||||
self._grouped_params.append( | |||||
[{"shape": i["tensor"].shape, "id": i["id"]} for i in params] | |||||
) | |||||
def forward(self, *args, **kwargs): | |||||
replace_param = dict() | |||||
for i in range(len(self._packed_params)): | |||||
packed_param = self._packed_params[i] | |||||
grouped_params = self._grouped_params[i] | |||||
if len(grouped_params) == 1: | |||||
continue | |||||
split = param_pack_split( | |||||
packed_param._symvar, [i["shape"] for i in grouped_params] | |||||
) | |||||
split = [ | |||||
Parameter(Tensor(i, requires_grad=packed_param.requires_grad)) | |||||
for i in split | |||||
] | |||||
for j in range(len(split)): | |||||
replace_param[grouped_params[j]["id"]] = split[j] | |||||
self._model.replace_param(replace_param, 0) | |||||
return self._model.forward(*args, **kwargs) |
@@ -12,7 +12,7 @@ import numpy as np | |||||
from ... import module as Float | from ... import module as Float | ||||
from ...core.tensor import dtype | from ...core.tensor import dtype | ||||
from ...functional import conv_bias_activation | from ...functional import conv_bias_activation | ||||
from ...tensor_nn import Parameter | |||||
from ...tensor import Parameter | |||||
from ..qat import conv as QAT | from ..qat import conv as QAT | ||||
from .module import QuantizedModule | from .module import QuantizedModule | ||||
@@ -5,7 +5,7 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from ...tensor_nn import Parameter | |||||
from ...tensor import Parameter | |||||
from ..qat import conv_bn as QAT | from ..qat import conv_bn as QAT | ||||
from .conv import Conv2d | from .conv import Conv2d | ||||
@@ -9,7 +9,7 @@ import numpy as np | |||||
from ... import functional as F | from ... import functional as F | ||||
from ...core.tensor import dtype | from ...core.tensor import dtype | ||||
from ...tensor_nn import Parameter | |||||
from ...tensor import Parameter | |||||
from ..qat import linear as QAT | from ..qat import linear as QAT | ||||
from .module import QuantizedModule | from .module import QuantizedModule | ||||
@@ -11,7 +11,7 @@ from typing import Iterable, Union | |||||
import numpy as np | import numpy as np | ||||
from ..functional import sqrt | from ..functional import sqrt | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from .optimizer import Optimizer | from .optimizer import Optimizer | ||||
@@ -63,7 +63,7 @@ class Adadelta(Optimizer): | |||||
for param in param_group["params"]: | for param in param_group["params"]: | ||||
if not param.requires_grad or "grad" not in param.__dict__: | |||||
if param.grad is None: | |||||
continue | continue | ||||
states = self._state[param] | states = self._state[param] | ||||
@@ -11,7 +11,7 @@ from typing import Iterable, Union | |||||
import numpy as np | import numpy as np | ||||
from ..functional import sqrt | from ..functional import sqrt | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from .optimizer import Optimizer | from .optimizer import Optimizer | ||||
@@ -62,7 +62,7 @@ class Adagrad(Optimizer): | |||||
for param in param_group["params"]: | for param in param_group["params"]: | ||||
if not param.requires_grad or "grad" not in param.__dict__: | |||||
if param.grad is None: | |||||
continue | continue | ||||
states = self._state[param] | states = self._state[param] | ||||
@@ -8,7 +8,7 @@ | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from typing import Iterable, Tuple, Union | from typing import Iterable, Tuple, Union | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from .optimizer import Optimizer | from .optimizer import Optimizer | ||||
@@ -59,7 +59,7 @@ class Adam(Optimizer): | |||||
for param in param_group["params"]: | for param in param_group["params"]: | ||||
if not param.requires_grad or "grad" not in param.__dict__: | |||||
if param.grad is None: | |||||
continue | continue | ||||
grad = param.grad | grad = param.grad | ||||
@@ -7,7 +7,7 @@ | |||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from abc import ABCMeta, abstractmethod | from abc import ABCMeta, abstractmethod | ||||
from collections import Iterable | |||||
from collections.abc import Iterable | |||||
from contextlib import contextmanager | from contextlib import contextmanager | ||||
from typing import Dict | from typing import Dict | ||||
from typing import Iterable as Iter | from typing import Iterable as Iter | ||||
@@ -15,8 +15,7 @@ from typing import Union | |||||
import numpy as np | import numpy as np | ||||
from ..tensor import Tensor, TensorDict | |||||
from ..tensor_nn import Buffer, Parameter | |||||
from ..tensor import Parameter, Tensor | |||||
class _RequiredParameter: | class _RequiredParameter: | ||||
@@ -37,7 +36,7 @@ class Optimizer(metaclass=ABCMeta): | |||||
def __init__( # pylint: disable=too-many-branches | def __init__( # pylint: disable=too-many-branches | ||||
self, params: Union[Iter[Parameter], dict], defaults: dict, | self, params: Union[Iter[Parameter], dict], defaults: dict, | ||||
): | ): | ||||
self._state = TensorDict() | |||||
self._state = dict() | |||||
self._defaults = defaults | self._defaults = defaults | ||||
if isinstance(params, (Parameter, dict)): | if isinstance(params, (Parameter, dict)): | ||||
@@ -93,10 +92,6 @@ class Optimizer(metaclass=ABCMeta): | |||||
"optimizer can only optimize Parameters, but one of the params is " | "optimizer can only optimize Parameters, but one of the params is " | ||||
+ type(param) | + type(param) | ||||
) | ) | ||||
if not param.requires_grad: | |||||
raise ValueError( | |||||
"optimizer can only optimize Parameters with requires_grad=True" | |||||
) | |||||
for name, default in self._defaults.items(): | for name, default in self._defaults.items(): | ||||
if default is required and name not in param_group: | if default is required and name not in param_group: | ||||
@@ -122,7 +117,7 @@ class Optimizer(metaclass=ABCMeta): | |||||
initializer = np.zeros(param.shape, dtype=np.float32) | initializer = np.zeros(param.shape, dtype=np.float32) | ||||
state_dict = self._state.setdefault(param, {}) | state_dict = self._state.setdefault(param, {}) | ||||
assert state_name not in state_dict | assert state_name not in state_dict | ||||
state = Buffer(initializer) | |||||
state = Tensor(initializer) | |||||
state_dict[state_name] = state | state_dict[state_name] = state | ||||
@abstractmethod | @abstractmethod | ||||
@@ -140,7 +135,7 @@ class Optimizer(metaclass=ABCMeta): | |||||
params.append(param) | params.append(param) | ||||
return params | return params | ||||
def step(self, clear_grad=False): | |||||
def step(self): | |||||
r"""Performs a single optimization step. | r"""Performs a single optimization step. | ||||
""" | """ | ||||
@@ -152,8 +147,7 @@ class Optimizer(metaclass=ABCMeta): | |||||
"Please use a list instead." | "Please use a list instead." | ||||
) | ) | ||||
self._updates(group) | self._updates(group) | ||||
if clear_grad: | |||||
self.clear_grad() | |||||
return self | |||||
def clear_grad(self): | def clear_grad(self): | ||||
r"""Clear the grad buffer. | r"""Clear the grad buffer. | ||||
@@ -161,8 +155,7 @@ class Optimizer(metaclass=ABCMeta): | |||||
""" | """ | ||||
for param_group in self.param_groups: | for param_group in self.param_groups: | ||||
for param in param_group["params"]: | for param in param_group["params"]: | ||||
if getattr(param, "grad", None) is not None: | |||||
param.grad = None | |||||
param.grad = None | |||||
def state_dict(self) -> Dict: | def state_dict(self) -> Dict: | ||||
r"""Export the optimizer state. | r"""Export the optimizer state. | ||||
@@ -171,7 +164,7 @@ class Optimizer(metaclass=ABCMeta): | |||||
""" | """ | ||||
param_groups = [] | param_groups = [] | ||||
state = dict() | state = dict() | ||||
param2id = TensorDict() | |||||
param2id = dict() | |||||
cur_id = 0 | cur_id = 0 | ||||
for group in self.param_groups: | for group in self.param_groups: | ||||
@@ -213,8 +206,9 @@ class Optimizer(metaclass=ABCMeta): | |||||
p = param_new | p = param_new | ||||
self._state[p] = state["state"][param_saved].copy() | self._state[p] = state["state"][param_saved].copy() | ||||
for k, v in self._state[p].items(): | for k, v in self._state[p].items(): | ||||
if isinstance(v, Buffer): | |||||
self._state[p][k] = Buffer(v.numpy()) | |||||
if isinstance(v, Tensor): | |||||
# TODO: maybe a more efficient way? | |||||
self._state[p][k] = Tensor(v.numpy()) | |||||
if set(group_new.keys()) != set(group_saved.keys()): | if set(group_new.keys()) != set(group_saved.keys()): | ||||
raise ValueError( | raise ValueError( | ||||
@@ -8,7 +8,7 @@ | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from typing import Iterable, Union | from typing import Iterable, Union | ||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter | |||||
from .optimizer import Optimizer | from .optimizer import Optimizer | ||||
@@ -52,7 +52,7 @@ class SGD(Optimizer): | |||||
momentum = param_group["momentum"] | momentum = param_group["momentum"] | ||||
for param in param_group["params"]: | for param in param_group["params"]: | ||||
if not param.requires_grad or "grad" not in param.__dict__: | |||||
if param.grad is None: | |||||
continue | continue | ||||
grad = param.grad | grad = param.grad | ||||
@@ -14,8 +14,7 @@ from .. import functional as F | |||||
from ..core.tensor.dtype import _metadata_dict, get_quantized_dtype | from ..core.tensor.dtype import _metadata_dict, get_quantized_dtype | ||||
from ..core.tensor.function import Function | from ..core.tensor.function import Function | ||||
from ..module import Module | from ..module import Module | ||||
from ..tensor import Tensor | |||||
from ..tensor_nn import Parameter | |||||
from ..tensor import Parameter, Tensor | |||||
from .utils import QuantMode, fake_quant_tensor, get_qparam_dict | from .utils import QuantMode, fake_quant_tensor, get_qparam_dict | ||||
@@ -13,7 +13,7 @@ import numpy as np | |||||
from .. import functional as F | from .. import functional as F | ||||
from ..core.tensor.dtype import _metadata_dict, get_quantized_dtype | from ..core.tensor.dtype import _metadata_dict, get_quantized_dtype | ||||
from ..module import Module | from ..module import Module | ||||
from ..tensor_nn import Buffer | |||||
from ..tensor import Tensor | |||||
from .utils import QuantMode, Round, get_qparam_dict | from .utils import QuantMode, Round, get_qparam_dict | ||||
@@ -82,8 +82,8 @@ class MinMaxObserver(Observer): | |||||
): | ): | ||||
super().__init__(dtype, narrow_range) | super().__init__(dtype, narrow_range) | ||||
self.mode = mode | self.mode = mode | ||||
self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32) | |||||
self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32) | |||||
self.min_val = Tensor(np.finfo(np.float32).max, dtype=np.float32) | |||||
self.max_val = Tensor(np.finfo(np.float32).min, dtype=np.float32) | |||||
self.scale_limit = eps | self.scale_limit = eps | ||||
def _calculate_qparams(self, inp_min_val, inp_max_val): | def _calculate_qparams(self, inp_min_val, inp_max_val): | ||||
@@ -118,8 +118,8 @@ class MinMaxObserver(Observer): | |||||
# stop gradient | # stop gradient | ||||
x = x_orig.detach() | x = x_orig.detach() | ||||
# find max and min | # find max and min | ||||
self.min_val.set_value(F.minimum(self.min_val, x.min())) | |||||
self.max_val.set_value(F.maximum(self.max_val, x.max())) | |||||
self.min_val._reset(F.minimum(self.min_val, x.min())) | |||||
self.max_val._reset(F.maximum(self.max_val, x.max())) | |||||
return x_orig | return x_orig | ||||
@@ -133,22 +133,22 @@ class ExponentialMovingAverageObserver(MinMaxObserver): | |||||
narrow_range: bool = False, | narrow_range: bool = False, | ||||
): | ): | ||||
super().__init__(mode, eps, dtype, narrow_range) | super().__init__(mode, eps, dtype, narrow_range) | ||||
self.momentum = Buffer(momentum) | |||||
self.runtime_momentum = Buffer(0.0) | |||||
self.momentum = Tensor(momentum) | |||||
self.runtime_momentum = Tensor(0.0) | |||||
def set_momentum(self, momentum): | def set_momentum(self, momentum): | ||||
self.momentum.set_value(momentum) | |||||
self.momentum._reset(momentum) | |||||
def forward(self, x_orig): | def forward(self, x_orig): | ||||
if self.enabled: | if self.enabled: | ||||
# stop gradient | # stop gradient | ||||
x = x_orig.detach() | x = x_orig.detach() | ||||
# Exponential Moving Average | # Exponential Moving Average | ||||
self.min_val.set_value( | |||||
self.min_val._reset( | |||||
self.min_val * self.runtime_momentum | self.min_val * self.runtime_momentum | ||||
+ (1 - self.runtime_momentum) * x.min() | + (1 - self.runtime_momentum) * x.min() | ||||
) | ) | ||||
self.max_val.set_value( | |||||
self.max_val._reset( | |||||
self.max_val * self.runtime_momentum | self.max_val * self.runtime_momentum | ||||
+ (1 - self.runtime_momentum) * x.max() | + (1 - self.runtime_momentum) * x.max() | ||||
) | ) | ||||
@@ -171,7 +171,7 @@ class HistogramObserver(MinMaxObserver): | |||||
self.bins = bins | self.bins = bins | ||||
self.upsample_rate = upsample_rate | self.upsample_rate = upsample_rate | ||||
self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1 | self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1 | ||||
self.histogram = Buffer([-1] + [0.0] * (bins - 1)) | |||||
self.histogram = Tensor([-1] + [0.0] * (bins - 1)) | |||||
def _non_linear_param_search(self): | def _non_linear_param_search(self): | ||||
r"""Non-linear parameter search. | r"""Non-linear parameter search. | ||||
@@ -395,9 +395,9 @@ class HistogramObserver(MinMaxObserver): | |||||
self.bins, | self.bins, | ||||
) | ) | ||||
self.histogram.set_value(new_histogram) | |||||
self.min_val.set_value(new_min) | |||||
self.max_val.set_value(new_max) | |||||
self.histogram._reset(new_histogram) | |||||
self.min_val._reset(new_min) | |||||
self.max_val._reset(new_max) | |||||
def forward(self, x_orig): | def forward(self, x_orig): | ||||
self.sideeffect_forward(x_orig) | self.sideeffect_forward(x_orig) | ||||
@@ -14,10 +14,11 @@ from .core import Tensor as _Tensor | |||||
from .core.ops.builtin import Copy | from .core.ops.builtin import Copy | ||||
from .core.tensor.core import apply | from .core.tensor.core import apply | ||||
from .device import get_default_device | from .device import get_default_device | ||||
from .utils.deprecation import deprecated | |||||
class Tensor(_Tensor): | class Tensor(_Tensor): | ||||
requires_grad = False | |||||
grad = None | |||||
dmap_callback = None | dmap_callback = None | ||||
def __init__(self, data, dtype=None, device=None): | def __init__(self, data, dtype=None, device=None): | ||||
@@ -26,15 +27,32 @@ class Tensor(_Tensor): | |||||
self.q_dict = {"mode": None, "scale": None, "zero_point": None} | self.q_dict = {"mode": None, "scale": None, "zero_point": None} | ||||
super().__init__(data, dtype=dtype, device=device) | super().__init__(data, dtype=dtype, device=device) | ||||
@deprecated(version="1.0", reason="no need to reuse an existing tensor since 1.0") | |||||
def set_value(self, value): | def set_value(self, value): | ||||
self._reset(value) | self._reset(value) | ||||
@deprecated(version="1.0", reason="use *= 0 instead") | |||||
def reset_zero(self): | def reset_zero(self): | ||||
self *= 0 | self *= 0 | ||||
def to(self, cn): | def to(self, cn): | ||||
return apply(Copy(comp_node=cn), self)[0] | return apply(Copy(comp_node=cn), self)[0] | ||||
@property | |||||
def requires_grad(self): | |||||
raise AttributeError("requires_grad is reserved for future use") | |||||
@requires_grad.setter | |||||
def requires_grad(self, value): | |||||
raise AttributeError("requires_grad is reserved for future use") | |||||
@requires_grad.deleter | |||||
def requires_grad(self): | |||||
raise AttributeError("requires_grad is reserved for future use") | |||||
def __hash__(self): | |||||
return id(self) | |||||
def __getstate__(self): | def __getstate__(self): | ||||
r""" __getstate__ will be called for pickle serialization or deep copy | r""" __getstate__ will be called for pickle serialization or deep copy | ||||
""" | """ | ||||
@@ -73,53 +91,6 @@ class Tensor(_Tensor): | |||||
tensor = Tensor | tensor = Tensor | ||||
class Dict(collections.MutableMapping): | |||||
def __init__(self, *args, key=None, **kwargs): | |||||
self.data = {} | |||||
if key: | |||||
self.keyfn = key | |||||
for i in args: | |||||
self.update(i) | |||||
self.update(**kwargs) | |||||
@staticmethod | |||||
def keyfn(key): # pylint: disable=method-hidden | |||||
return key | |||||
def __getitem__(self, key): | |||||
_, v = self.data[self.keyfn(key)] | |||||
return v | |||||
def __setitem__(self, key, value): | |||||
self.data[self.keyfn(key)] = key, value | |||||
def __delitem__(self, key): | |||||
del self.data[self.keyfn(key)] | |||||
def __iter__(self): | |||||
for _, (k, _) in self.data.items(): | |||||
yield k | |||||
def __len__(self): | |||||
return len(self.data) | |||||
class TensorDict(Dict): # pylint: disable=too-many-ancestors | |||||
class keyfn: | |||||
def __new__(cls, x: Tensor): | |||||
if not isinstance(x, Tensor): | |||||
return x | |||||
return super().__new__(cls) | |||||
def __init__(self, x: Tensor): | |||||
self._data = x # do not save id directly to make pickle work | |||||
def __hash__(self): | |||||
return id(self._data) | |||||
def __eq__(self, other): | |||||
# pylint: disable=undefined-variable | |||||
return isinstance(other, __class__) and id(self._data) == id(other._data) | |||||
def __init__(self, *args): | |||||
super().__init__(*args) | |||||
class Parameter(Tensor): | |||||
r"""A kind of Tensor that is to be considered a module parameter. | |||||
""" |
@@ -1,20 +0,0 @@ | |||||
# -*- coding: utf-8 -*- | |||||
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
# | |||||
# Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
# | |||||
# Unless required by applicable law or agreed to in writing, | |||||
# software distributed under the License is distributed on an | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
from . import Tensor, tensor | |||||
class Buffer(Tensor): | |||||
r"""A kind of Tensor with ``requires_grad=False``. | |||||
""" | |||||
class Parameter(Tensor): | |||||
r"""A kind of Tensor that is to be considered a module parameter. | |||||
""" | |||||
requires_grad = True |
@@ -0,0 +1 @@ | |||||
from deprecated.sphinx import deprecated |
@@ -15,7 +15,7 @@ def get_ndtuple(value, *, n, allow_zero=True): | |||||
:type allow_zero: bool | :type allow_zero: bool | ||||
:param allow_zero: whether to allow zero tuple value""" | :param allow_zero: whether to allow zero tuple value""" | ||||
if not isinstance(value, collections.Iterable): | |||||
if not isinstance(value, collections.abc.Iterable): | |||||
value = int(value) | value = int(value) | ||||
value = tuple([value for i in range(n)]) | value = tuple([value for i in range(n)]) | ||||
else: | else: | ||||
@@ -5,3 +5,4 @@ requests | |||||
tabulate | tabulate | ||||
tqdm | tqdm | ||||
redispy | redispy | ||||
deprecated |
@@ -38,7 +38,7 @@ class Simple2(Module): | |||||
def test_advance_indexing(): | def test_advance_indexing(): | ||||
net = Simple() | net = Simple() | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
@@ -48,7 +48,7 @@ def test_advance_indexing(): | |||||
data = tensor(raw_data) | data = tensor(raw_data) | ||||
mask = tensor(raw_mask) | mask = tensor(raw_mask) | ||||
answer = 1.0 - raw_data[raw_mask].sum() | answer = 1.0 - raw_data[raw_mask].sum() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data, mask).sum() | loss = net(data, mask).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -58,7 +58,7 @@ def test_advance_indexing(): | |||||
def test_advance_indexing_with_subtensor(): | def test_advance_indexing_with_subtensor(): | ||||
net = Simple2() | net = Simple2() | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
@@ -66,7 +66,7 @@ def test_advance_indexing_with_subtensor(): | |||||
raw_data = np.arange(576).reshape(dshape).astype(np.float32) | raw_data = np.arange(576).reshape(dshape).astype(np.float32) | ||||
data = tensor(raw_data) | data = tensor(raw_data) | ||||
answer = 1.0 - raw_data[1, ..., :, 0:4:2, 0:2].sum() | answer = 1.0 - raw_data[1, ..., :, 0:4:2, 0:2].sum() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data).sum() | loss = net(data).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -28,13 +28,13 @@ class Simple(Module): | |||||
def test_ai(): | def test_ai(): | ||||
net = Simple() | net = Simple() | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
dshape = (10, 10) | dshape = (10, 10) | ||||
data = tensor(np.ones(dshape).astype(np.float32)) | data = tensor(np.ones(dshape).astype(np.float32)) | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data).sum() | loss = net(data).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -25,12 +25,12 @@ def test_frozen_bn(): | |||||
saved_wt = m.weight.numpy() | saved_wt = m.weight.numpy() | ||||
saved_bias = m.bias.numpy() | saved_bias = m.bias.numpy() | ||||
gm = ad.GradManager().register(m.parameters()) | |||||
gm = ad.GradManager().attach(m.parameters()) | |||||
optim = optimizer.SGD(m.parameters(), lr=1.0) | optim = optimizer.SGD(m.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
data = np.random.random((6, nchannel, 2, 2)).astype("float32") | data = np.random.random((6, nchannel, 2, 2)).astype("float32") | ||||
with gm.record(): | |||||
with gm: | |||||
loss = m(data).mean() | loss = m(data).mean() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -46,12 +46,12 @@ def test_bn_no_track_stat(): | |||||
nchannel = 3 | nchannel = 3 | ||||
m = BatchNorm2d(nchannel, track_running_stats=False) | m = BatchNorm2d(nchannel, track_running_stats=False) | ||||
gm = ad.GradManager().register(m.parameters()) | |||||
gm = ad.GradManager().attach(m.parameters()) | |||||
optim = optimizer.SGD(m.parameters(), lr=1.0) | optim = optimizer.SGD(m.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
data = np.random.random((6, nchannel, 2, 2)).astype("float32") | data = np.random.random((6, nchannel, 2, 2)).astype("float32") | ||||
with gm.record(): | |||||
with gm: | |||||
loss = m(data).sum() | loss = m(data).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -68,12 +68,12 @@ def test_bn_no_track_stat2(): | |||||
saved_mean = m.running_mean.numpy() | saved_mean = m.running_mean.numpy() | ||||
assert saved_mean is not None | assert saved_mean is not None | ||||
gm = ad.GradManager().register(m.parameters()) | |||||
gm = ad.GradManager().attach(m.parameters()) | |||||
optim = optimizer.SGD(m.parameters(), lr=1.0) | optim = optimizer.SGD(m.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
data = np.random.random((6, nchannel, 2, 2)).astype("float32") | data = np.random.random((6, nchannel, 2, 2)).astype("float32") | ||||
with gm.record(): | |||||
with gm: | |||||
loss = m(data).sum() | loss = m(data).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -74,13 +74,11 @@ class XORNet(Module): | |||||
def test_training_converge(): | def test_training_converge(): | ||||
net = XORNet() | net = XORNet() | ||||
opt = SGD( | |||||
net.parameters(requires_grad=True), lr=0.01, momentum=0.9, weight_decay=5e-4 | |||||
) | |||||
gm = ad.GradManager().register(net.parameters()) | |||||
opt = SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
def train(data, label): | def train(data, label): | ||||
with gm.record(): | |||||
with gm: | |||||
pred = net(data) | pred = net(data) | ||||
loss = F.cross_entropy_with_softmax(pred, label) | loss = F.cross_entropy_with_softmax(pred, label) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -91,7 +91,7 @@ class MnistNet(Module): | |||||
def train(data, label, net, opt, gm): | def train(data, label, net, opt, gm): | ||||
with gm.record(): | |||||
with gm: | |||||
pred = net(data) | pred = net(data) | ||||
loss = F.cross_entropy_with_softmax(pred, label) | loss = F.cross_entropy_with_softmax(pred, label) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -117,7 +117,7 @@ def update_model(model_path): | |||||
net.load_state_dict(checkpoint["net_init"]) | net.load_state_dict(checkpoint["net_init"]) | ||||
lr = checkpoint["sgd_lr"] | lr = checkpoint["sgd_lr"] | ||||
opt = SGD(net.parameters(), lr=lr) | opt = SGD(net.parameters(), lr=lr) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
data = Tensor(checkpoint["data"], dtype=np.float32) | data = Tensor(checkpoint["data"], dtype=np.float32) | ||||
label = Tensor(checkpoint["label"], dtype=np.int32) | label = Tensor(checkpoint["label"], dtype=np.int32) | ||||
@@ -152,7 +152,7 @@ def run_train( | |||||
net.load_state_dict(checkpoint["net_init"]) | net.load_state_dict(checkpoint["net_init"]) | ||||
lr = checkpoint["sgd_lr"] | lr = checkpoint["sgd_lr"] | ||||
opt = SGD(net.parameters(), lr=lr) | opt = SGD(net.parameters(), lr=lr) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
data = Tensor(checkpoint["data"], dtype=np.float32) | data = Tensor(checkpoint["data"], dtype=np.float32) | ||||
label = Tensor(checkpoint["label"], dtype=np.int32) | label = Tensor(checkpoint["label"], dtype=np.int32) | ||||
@@ -32,11 +32,11 @@ def test_detach(): | |||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
dshape = (10, 10) | dshape = (10, 10) | ||||
data = tensor(np.ones(dshape).astype(np.float32)) | data = tensor(np.ones(dshape).astype(np.float32)) | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data).sum() | loss = net(data).sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -97,7 +97,7 @@ class MnistNet(Module): | |||||
def train(data, label, net, opt, gm): | def train(data, label, net, opt, gm): | ||||
opt.clear_grad() | opt.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
pred = net(data) | pred = net(data) | ||||
loss = F.cross_entropy_with_softmax(pred, label) | loss = F.cross_entropy_with_softmax(pred, label) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -125,8 +125,7 @@ def update_model(model_path): | |||||
lr = checkpoint["sgd_lr"] | lr = checkpoint["sgd_lr"] | ||||
opt = SGD(net.parameters(), lr=lr) | opt = SGD(net.parameters(), lr=lr) | ||||
gm = ad.GradManager() | |||||
gm.register( | |||||
gm = ad.GradManager().attach( | |||||
net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] | net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] | ||||
) | ) | ||||
@@ -171,8 +170,7 @@ def run_test( | |||||
lr = checkpoint["sgd_lr"] | lr = checkpoint["sgd_lr"] | ||||
opt = SGD(net.parameters(), lr=lr) | opt = SGD(net.parameters(), lr=lr) | ||||
gm = ad.GradManager() | |||||
gm.register( | |||||
gm = ad.GradManager().attach( | |||||
net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] | net.parameters(), callbacks=[dist.make_allreduce_cb("MEAN", dist.WORLD)] | ||||
) | ) | ||||
@@ -33,10 +33,10 @@ def test_hello_world(): | |||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
data = tensor([2.34]) | data = tensor([2.34]) | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data) | loss = net(data) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -13,7 +13,7 @@ import megengine.functional as F | |||||
from megengine import Parameter, optimizer | from megengine import Parameter, optimizer | ||||
from megengine.jit import trace | from megengine.jit import trace | ||||
from megengine.module import Linear, Module | from megengine.module import Linear, Module | ||||
from megengine.tensor import TensorDict, tensor | |||||
from megengine.tensor import tensor | |||||
class MLP(Module): | class MLP(Module): | ||||
@@ -44,7 +44,7 @@ def _test_optimizer(opt_str, test_case, check_class, update_lr=False): | |||||
net = Simple() | net = Simple() | ||||
opt = getattr(optimizer, opt_str)(net.parameters(), **test_case) | opt = getattr(optimizer, opt_str)(net.parameters(), **test_case) | ||||
check_func = check_class(net, **test_case) | check_func = check_class(net, **test_case) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
step = 0 | step = 0 | ||||
data_shape = (2, 28) | data_shape = (2, 28) | ||||
@@ -57,12 +57,12 @@ def _test_optimizer(opt_str, test_case, check_class, update_lr=False): | |||||
data = tensor(np.random.random(data_shape).astype(np.float32)) | data = tensor(np.random.random(data_shape).astype(np.float32)) | ||||
opt.clear_grad() | opt.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
pred = net(data) | pred = net(data) | ||||
loss = pred.sum() | loss = pred.sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
ori_params = TensorDict() | |||||
ori_params = {} | |||||
for param in net.parameters(): | for param in net.parameters(): | ||||
ori_params[param] = np.copy(param.numpy()) | ori_params[param] = np.copy(param.numpy()) | ||||
opt.step() | opt.step() | ||||
@@ -75,7 +75,7 @@ def _test_optimizer(opt_str, test_case, check_class, update_lr=False): | |||||
@trace(symbolic=symbolic) | @trace(symbolic=symbolic) | ||||
def train_func(data, *, opt=None, gm=None): | def train_func(data, *, opt=None, gm=None): | ||||
opt.clear_grad() | opt.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
pred = net(data) | pred = net(data) | ||||
loss = pred.sum() | loss = pred.sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -84,7 +84,7 @@ def _test_optimizer(opt_str, test_case, check_class, update_lr=False): | |||||
# reset net and opt | # reset net and opt | ||||
net = Simple() | net = Simple() | ||||
opt = getattr(optimizer, opt_str)(net.parameters(), **test_case) | opt = getattr(optimizer, opt_str)(net.parameters(), **test_case) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
check_func = check_class(net, **test_case) | check_func = check_class(net, **test_case) | ||||
step = 0 | step = 0 | ||||
for i in range(iter_num): | for i in range(iter_num): | ||||
@@ -93,7 +93,7 @@ def _test_optimizer(opt_str, test_case, check_class, update_lr=False): | |||||
group["lr"] += 0.01 | group["lr"] += 0.01 | ||||
check_func.lr += 0.01 | check_func.lr += 0.01 | ||||
ori_params = TensorDict() | |||||
ori_params = {} | |||||
for param in net.parameters(): | for param in net.parameters(): | ||||
ori_params[param] = np.copy(param.numpy()) | ori_params[param] = np.copy(param.numpy()) | ||||
@@ -105,7 +105,7 @@ def _test_optimizer(opt_str, test_case, check_class, update_lr=False): | |||||
def test_sgd(): | def test_sgd(): | ||||
class CheckValue: | class CheckValue: | ||||
def __init__(self, net, **kwarg): | def __init__(self, net, **kwarg): | ||||
self.slots = TensorDict() | |||||
self.slots = {} | |||||
for param in net.parameters(): | for param in net.parameters(): | ||||
self.slots[param] = np.zeros(param.shape).astype(np.float32) | self.slots[param] = np.zeros(param.shape).astype(np.float32) | ||||
for k, v in kwarg.items(): | for k, v in kwarg.items(): | ||||
@@ -134,8 +134,8 @@ def test_sgd(): | |||||
def test_adam(): | def test_adam(): | ||||
class CheckValue: | class CheckValue: | ||||
def __init__(self, net, **kwarg): | def __init__(self, net, **kwarg): | ||||
self.m_slots = TensorDict() | |||||
self.v_slots = TensorDict() | |||||
self.m_slots = {} | |||||
self.v_slots = {} | |||||
for param in net.parameters(): | for param in net.parameters(): | ||||
self.m_slots[param] = np.zeros(param.shape).astype(np.float32) | self.m_slots[param] = np.zeros(param.shape).astype(np.float32) | ||||
self.v_slots[param] = np.zeros(param.shape).astype(np.float32) | self.v_slots[param] = np.zeros(param.shape).astype(np.float32) | ||||
@@ -175,7 +175,7 @@ def test_adam(): | |||||
def test_adagrad(): | def test_adagrad(): | ||||
class CheckValue: | class CheckValue: | ||||
def __init__(self, net, **kwarg): | def __init__(self, net, **kwarg): | ||||
self.s_slots = TensorDict() | |||||
self.s_slots = {} | |||||
for param in net.parameters(): | for param in net.parameters(): | ||||
self.s_slots[param] = np.zeros(param.shape).astype(np.float32) | self.s_slots[param] = np.zeros(param.shape).astype(np.float32) | ||||
for k, v in kwarg.items(): | for k, v in kwarg.items(): | ||||
@@ -207,8 +207,8 @@ def test_adagrad(): | |||||
def test_adadelta(): | def test_adadelta(): | ||||
class CheckValue: | class CheckValue: | ||||
def __init__(self, net, **kwarg): | def __init__(self, net, **kwarg): | ||||
self.s_slots = TensorDict() | |||||
self.a_slots = TensorDict() | |||||
self.s_slots = {} | |||||
self.a_slots = {} | |||||
for param in net.parameters(): | for param in net.parameters(): | ||||
self.s_slots[param] = np.zeros(param.shape).astype(np.float32) | self.s_slots[param] = np.zeros(param.shape).astype(np.float32) | ||||
self.a_slots[param] = np.zeros(param.shape).astype(np.float32) | self.a_slots[param] = np.zeros(param.shape).astype(np.float32) | ||||
@@ -23,11 +23,11 @@ def test_save_load(): | |||||
optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) | optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
data = tensor([2.34]) | data = tensor([2.34]) | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data) | loss = net(data) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -55,7 +55,7 @@ def test_save_load(): | |||||
optim.load_state_dict(checkpoint["opt_state"]) | optim.load_state_dict(checkpoint["opt_state"]) | ||||
print("load done") | print("load done") | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net([1.23]) | loss = net([1.23]) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
@@ -31,12 +31,12 @@ def test_sgd_momentum(): | |||||
optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) | optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) | ||||
optim.clear_grad() | optim.clear_grad() | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
data = tensor([2.34]) | data = tensor([2.34]) | ||||
# do a step of train | # do a step of train | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data) | loss = net(data) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -51,7 +51,7 @@ def test_sgd_momentum(): | |||||
# do a step of train | # do a step of train | ||||
optim.clear_grad() | optim.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data) | loss = net(data) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -69,7 +69,7 @@ def test_sgd_momentum_trace(): | |||||
@trace(symbolic=symbolic) | @trace(symbolic=symbolic) | ||||
def train_func(data, *, model=None, optim=None, gm=None): | def train_func(data, *, model=None, optim=None, gm=None): | ||||
optim.clear_grad() | optim.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net(data) | loss = net(data) | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -82,7 +82,7 @@ def test_sgd_momentum_trace(): | |||||
net = Simple() | net = Simple() | ||||
optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) | optim = optimizer.SGD(net.parameters(), lr=1.0, momentum=0.9) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
data = tensor([2.34]) | data = tensor([2.34]) | ||||
train_func(data, model=net, optim=optim, gm=gm) | train_func(data, model=net, optim=optim, gm=gm) | ||||
np.testing.assert_almost_equal( | np.testing.assert_almost_equal( | ||||
@@ -61,15 +61,15 @@ class XORNet(M.Module): | |||||
def test_xornet_trace_dump(): | def test_xornet_trace_dump(): | ||||
net = XORNet() | net = XORNet() | ||||
opt = optim.SGD(net.parameters(requires_grad=True), lr=0.01, momentum=0.9) | |||||
gm = GradManager().register(net.parameters(requires_grad=True)) | |||||
opt = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) | |||||
gm = GradManager().attach(net.parameters()) | |||||
batch_size = 64 | batch_size = 64 | ||||
train_dataset = minibatch_generator(batch_size) | train_dataset = minibatch_generator(batch_size) | ||||
val_dataset = minibatch_generator(batch_size) | val_dataset = minibatch_generator(batch_size) | ||||
@trace | @trace | ||||
def train_fun(data, label): | def train_fun(data, label): | ||||
with gm.record(): | |||||
with gm: | |||||
net.train() | net.train() | ||||
pred = net(data) | pred = net(data) | ||||
loss = F.cross_entropy_with_softmax(pred, label) | loss = F.cross_entropy_with_softmax(pred, label) | ||||
@@ -14,7 +14,7 @@ import pytest | |||||
import megengine.core.ops.builtin as builtin | import megengine.core.ops.builtin as builtin | ||||
import megengine.core.tensor.dtype as dtype | import megengine.core.tensor.dtype as dtype | ||||
import megengine.functional as F | import megengine.functional as F | ||||
from megengine import Buffer, Parameter, is_cuda_available, tensor | |||||
from megengine import Parameter, Tensor, is_cuda_available, tensor | |||||
from megengine.core._trace_option import use_tensor_shape | from megengine.core._trace_option import use_tensor_shape | ||||
from megengine.core.autodiff.grad import Grad | from megengine.core.autodiff.grad import Grad | ||||
from megengine.core.tensor.utils import make_shape_tuple | from megengine.core.tensor.utils import make_shape_tuple | ||||
@@ -330,7 +330,7 @@ def test_roi_pooling(): | |||||
def test_add_update(): | def test_add_update(): | ||||
shape = (2, 3) | shape = (2, 3) | ||||
v = np.random.random(shape).astype(np.float32) | v = np.random.random(shape).astype(np.float32) | ||||
b = Buffer(v) | |||||
b = Tensor(v) | |||||
u = F.add_update(b, 1) | u = F.add_update(b, 1) | ||||
assertTensorClose(u.numpy(), v + 1) | assertTensorClose(u.numpy(), v + 1) | ||||
@@ -347,7 +347,7 @@ def test_add_update(): | |||||
def test_add_update_params(): | def test_add_update_params(): | ||||
b = np.random.random((2, 3)).astype(np.float32) | b = np.random.random((2, 3)).astype(np.float32) | ||||
y = Buffer(b) | |||||
y = Tensor(b) | |||||
# @jit.trace | # @jit.trace | ||||
def f(x): | def f(x): | ||||
@@ -355,7 +355,7 @@ def test_add_update_params(): | |||||
f(np.zeros((2, 3)).astype(np.float32)) | f(np.zeros((2, 3)).astype(np.float32)) | ||||
z = Buffer(np.zeros((2, 3)).astype(np.float32)) | |||||
z = Tensor(np.zeros((2, 3)).astype(np.float32)) | |||||
F.add_update(y, z, beta=0.1) | F.add_update(y, z, beta=0.1) | ||||
res = f(np.ones((2, 3)).astype(np.float32)) | res = f(np.ones((2, 3)).astype(np.float32)) | ||||
@@ -12,7 +12,7 @@ import numpy as np | |||||
import pytest | import pytest | ||||
import megengine.functional as F | import megengine.functional as F | ||||
from megengine import Buffer, Parameter, is_cuda_available, tensor | |||||
from megengine import tensor | |||||
from megengine.core._trace_option import use_tensor_shape | from megengine.core._trace_option import use_tensor_shape | ||||
from megengine.core.tensor.utils import astensor1d | from megengine.core.tensor.utils import astensor1d | ||||
from megengine.distributed.helper import get_device_count_by_fork | from megengine.distributed.helper import get_device_count_by_fork | ||||
@@ -14,10 +14,9 @@ import pytest | |||||
import megengine as mge | import megengine as mge | ||||
import megengine.distributed as dist | import megengine.distributed as dist | ||||
from megengine import tensor | |||||
from megengine import Tensor | |||||
from megengine.core._trace_option import use_tensor_shape | from megengine.core._trace_option import use_tensor_shape | ||||
from megengine.module import BatchNorm1d, BatchNorm2d, SyncBatchNorm | from megengine.module import BatchNorm1d, BatchNorm2d, SyncBatchNorm | ||||
from megengine.tensor import Tensor | |||||
from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
@@ -45,10 +44,8 @@ def test_syncbn(): | |||||
return | return | ||||
dist.init_process_group("localhost", port, nr_ranks, rank, rank) | dist.init_process_group("localhost", port, nr_ranks, rank, rank) | ||||
bn = SyncBatchNorm(nr_chan, momentum=momentum, eps=eps) | bn = SyncBatchNorm(nr_chan, momentum=momentum, eps=eps) | ||||
data_tensor = tensor([]) | |||||
for i in range(steps): | for i in range(steps): | ||||
data_tensor.set_value(data[i]) | |||||
yv = bn(data_tensor) | |||||
yv = bn(Tensor(data[i])) | |||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
assertTensorClose(running_mean, bn.running_mean.numpy(), max_err=5e-6) | assertTensorClose(running_mean, bn.running_mean.numpy(), max_err=5e-6) | ||||
@@ -105,7 +102,6 @@ def test_batchnorm(): | |||||
bn = BatchNorm1d(nr_chan, momentum=momentum) | bn = BatchNorm1d(nr_chan, momentum=momentum) | ||||
running_mean = np.zeros((1, nr_chan, 1), dtype=np.float32) | running_mean = np.zeros((1, nr_chan, 1), dtype=np.float32) | ||||
running_var = np.ones((1, nr_chan, 1), dtype=np.float32) | running_var = np.ones((1, nr_chan, 1), dtype=np.float32) | ||||
data = tensor([]) | |||||
for i in range(3): | for i in range(3): | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True) | mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True) | ||||
@@ -120,8 +116,7 @@ def test_batchnorm(): | |||||
running_mean = running_mean * momentum + mean * (1 - momentum) | running_mean = running_mean * momentum + mean * (1 - momentum) | ||||
running_var = running_var * momentum + var_unbiased * (1 - momentum) | running_var = running_var * momentum + var_unbiased * (1 - momentum) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
@@ -137,7 +132,7 @@ def test_batchnorm(): | |||||
var_backup = bn.running_var.numpy() | var_backup = bn.running_var.numpy() | ||||
bn.training = False | bn.training = False | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
data.set_value(xv) | |||||
data = Tensor(xv) | |||||
yv1 = bn(data) | yv1 = bn(data) | ||||
yv2 = bn(data) | yv2 = bn(data) | ||||
assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | ||||
@@ -161,7 +156,6 @@ def test_syncbn1d(): | |||||
bn = SyncBatchNorm(nr_chan, momentum=momentum) | bn = SyncBatchNorm(nr_chan, momentum=momentum) | ||||
running_mean = np.zeros((1, nr_chan, 1), dtype=np.float32) | running_mean = np.zeros((1, nr_chan, 1), dtype=np.float32) | ||||
running_var = np.ones((1, nr_chan, 1), dtype=np.float32) | running_var = np.ones((1, nr_chan, 1), dtype=np.float32) | ||||
data = tensor([]) | |||||
for i in range(3): | for i in range(3): | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True) | mean = np.mean(np.mean(xv, axis=0, keepdims=True), axis=2, keepdims=True) | ||||
@@ -176,8 +170,7 @@ def test_syncbn1d(): | |||||
running_mean = running_mean * momentum + mean * (1 - momentum) | running_mean = running_mean * momentum + mean * (1 - momentum) | ||||
running_var = running_var * momentum + var_unbiased * (1 - momentum) | running_var = running_var * momentum + var_unbiased * (1 - momentum) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
@@ -193,7 +186,7 @@ def test_syncbn1d(): | |||||
var_backup = bn.running_var.numpy() | var_backup = bn.running_var.numpy() | ||||
bn.training = False | bn.training = False | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
data.set_value(xv) | |||||
data = Tensor(xv) | |||||
yv1 = bn(data) | yv1 = bn(data) | ||||
yv2 = bn(data) | yv2 = bn(data) | ||||
assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | ||||
@@ -210,7 +203,6 @@ def test_batchnorm2d(): | |||||
bn = BatchNorm2d(nr_chan, momentum=momentum) | bn = BatchNorm2d(nr_chan, momentum=momentum) | ||||
running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32) | running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32) | ||||
running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32) | running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32) | ||||
data = tensor([]) | |||||
for i in range(3): | for i in range(3): | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape( | xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape( | ||||
@@ -226,8 +218,7 @@ def test_batchnorm2d(): | |||||
running_mean = running_mean * momentum + mean * (1 - momentum) | running_mean = running_mean * momentum + mean * (1 - momentum) | ||||
running_var = running_var * momentum + var_unbiased * (1 - momentum) | running_var = running_var * momentum + var_unbiased * (1 - momentum) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
@@ -239,7 +230,7 @@ def test_batchnorm2d(): | |||||
var_backup = bn.running_var.numpy() | var_backup = bn.running_var.numpy() | ||||
bn.training = False | bn.training = False | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
data.set_value(xv) | |||||
data = Tensor(xv) | |||||
yv1 = bn(data) | yv1 = bn(data) | ||||
yv2 = bn(data) | yv2 = bn(data) | ||||
assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | ||||
@@ -263,7 +254,6 @@ def test_syncbn2d(): | |||||
bn = SyncBatchNorm(nr_chan, momentum=momentum) | bn = SyncBatchNorm(nr_chan, momentum=momentum) | ||||
running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32) | running_mean = np.zeros((1, nr_chan, 1, 1), dtype=np.float32) | ||||
running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32) | running_var = np.ones((1, nr_chan, 1, 1), dtype=np.float32) | ||||
data = tensor([]) | |||||
for i in range(3): | for i in range(3): | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape( | xv_transposed = np.transpose(xv, [0, 2, 3, 1]).reshape( | ||||
@@ -279,8 +269,7 @@ def test_syncbn2d(): | |||||
running_mean = running_mean * momentum + mean * (1 - momentum) | running_mean = running_mean * momentum + mean * (1 - momentum) | ||||
running_var = running_var * momentum + var_unbiased * (1 - momentum) | running_var = running_var * momentum + var_unbiased * (1 - momentum) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
@@ -292,7 +281,7 @@ def test_syncbn2d(): | |||||
var_backup = bn.running_var.numpy() | var_backup = bn.running_var.numpy() | ||||
bn.training = False | bn.training = False | ||||
xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | xv = np.random.normal(loc=2.3, size=data_shape).astype(np.float32) | ||||
data.set_value(xv) | |||||
data = Tensor(xv) | |||||
yv1 = bn(data) | yv1 = bn(data) | ||||
yv2 = bn(data) | yv2 = bn(data) | ||||
assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | assertTensorClose(yv1.numpy(), yv2.numpy(), max_err=0) | ||||
@@ -306,7 +295,6 @@ def test_batchnorm_no_stats(): | |||||
nr_chan = 8 | nr_chan = 8 | ||||
data_shape = (3, nr_chan, 4) | data_shape = (3, nr_chan, 4) | ||||
bn = BatchNorm1d(8, track_running_stats=False) | bn = BatchNorm1d(8, track_running_stats=False) | ||||
data = tensor([]) | |||||
for i in range(4): | for i in range(4): | ||||
if i == 2: | if i == 2: | ||||
bn.training = False | bn.training = False | ||||
@@ -320,8 +308,7 @@ def test_batchnorm_no_stats(): | |||||
).reshape((1, nr_chan, 1)) | ).reshape((1, nr_chan, 1)) | ||||
sd = np.sqrt(var + bn.eps) | sd = np.sqrt(var + bn.eps) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
@@ -338,7 +325,6 @@ def test_syncbn_no_stats(): | |||||
nr_chan = 8 | nr_chan = 8 | ||||
data_shape = (3, nr_chan, 4) | data_shape = (3, nr_chan, 4) | ||||
bn = SyncBatchNorm(8, track_running_stats=False) | bn = SyncBatchNorm(8, track_running_stats=False) | ||||
data = tensor([]) | |||||
for i in range(4): | for i in range(4): | ||||
if i == 2: | if i == 2: | ||||
bn.training = False | bn.training = False | ||||
@@ -352,8 +338,7 @@ def test_syncbn_no_stats(): | |||||
).reshape((1, nr_chan, 1)) | ).reshape((1, nr_chan, 1)) | ||||
sd = np.sqrt(var + bn.eps) | sd = np.sqrt(var + bn.eps) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
@@ -363,7 +348,6 @@ def test_batchnorm2d_no_stats(): | |||||
nr_chan = 8 | nr_chan = 8 | ||||
data_shape = (3, nr_chan, 16, 16) | data_shape = (3, nr_chan, 16, 16) | ||||
bn = BatchNorm2d(8, track_running_stats=False) | bn = BatchNorm2d(8, track_running_stats=False) | ||||
data = tensor([]) | |||||
for i in range(4): | for i in range(4): | ||||
if i == 2: | if i == 2: | ||||
bn.training = False | bn.training = False | ||||
@@ -376,8 +360,7 @@ def test_batchnorm2d_no_stats(): | |||||
var = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1)) | var = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1)) | ||||
sd = np.sqrt(var + bn.eps) | sd = np.sqrt(var + bn.eps) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | ||||
@@ -394,7 +377,6 @@ def test_syncbn2d_no_stats(): | |||||
nr_chan = 8 | nr_chan = 8 | ||||
data_shape = (3, nr_chan, 16, 16) | data_shape = (3, nr_chan, 16, 16) | ||||
bn = SyncBatchNorm(8, track_running_stats=False) | bn = SyncBatchNorm(8, track_running_stats=False) | ||||
data = tensor([]) | |||||
for i in range(4): | for i in range(4): | ||||
if i == 2: | if i == 2: | ||||
bn.training = False | bn.training = False | ||||
@@ -407,8 +389,7 @@ def test_syncbn2d_no_stats(): | |||||
var = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1)) | var = np.var(xv_transposed, axis=0).reshape((1, nr_chan, 1, 1)) | ||||
sd = np.sqrt(var + bn.eps) | sd = np.sqrt(var + bn.eps) | ||||
data.set_value(xv) | |||||
yv = bn(data) | |||||
yv = bn(Tensor(xv)) | |||||
yv_expect = (xv - mean) / sd | yv_expect = (xv - mean) / sd | ||||
assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) | assertTensorClose(yv_expect, yv.numpy(), max_err=5e-6) |
@@ -12,7 +12,7 @@ import numpy as np | |||||
import pytest | import pytest | ||||
import megengine as mge | import megengine as mge | ||||
from megengine import tensor | |||||
from megengine import Tensor | |||||
from megengine.module import Module | from megengine.module import Module | ||||
@@ -35,12 +35,12 @@ def test_cambricon_module(): | |||||
with open(model, "rb") as f: | with open(model, "rb") as f: | ||||
data = f.read() | data = f.read() | ||||
m = MyModule(data) | m = MyModule(data) | ||||
inputs = [] | |||||
inputs.append(tensor(data=[], dtype=np.float16, device="cambricon0")) | |||||
inputs[0].set_value(np.random.normal(size=(1, 64, 32, 32)).astype(np.float16)) | |||||
inp = Tensor( | |||||
np.random.normal((1, 64, 32, 32)).astype(np.float16), device="cambricon0" | |||||
) | |||||
def inference(inps): | def inference(inps): | ||||
pred = m(inps) | pred = m(inps) | ||||
return pred | return pred | ||||
pred = inference(inputs) | |||||
pred = inference([inp]) |
@@ -16,7 +16,7 @@ import pytest | |||||
import megengine as mge | import megengine as mge | ||||
import megengine.functional as F | import megengine.functional as F | ||||
from megengine import Buffer, Parameter, Tensor, tensor | |||||
from megengine import Parameter, Tensor, tensor | |||||
from megengine.module import ( | from megengine.module import ( | ||||
BatchNorm1d, | BatchNorm1d, | ||||
BatchNorm2d, | BatchNorm2d, | ||||
@@ -196,7 +196,7 @@ class MyModule(Module): | |||||
self.i = self.InnerModule() | self.i = self.InnerModule() | ||||
self.bn = BatchNorm2d(4) | self.bn = BatchNorm2d(4) | ||||
self.param = Parameter(np.ones(1, dtype=np.float32)) | self.param = Parameter(np.ones(1, dtype=np.float32)) | ||||
self.buff = Buffer(np.ones(1, dtype=np.float32)) | |||||
self.buff = Tensor(np.ones(1, dtype=np.float32)) | |||||
def forward(self, x): | def forward(self, x): | ||||
x = self.i(x) | x = self.i(x) | ||||
@@ -464,8 +464,7 @@ def test_sequential_named_children(): | |||||
def test_state_dict(): | def test_state_dict(): | ||||
data_shape = (2, 28) | data_shape = (2, 28) | ||||
data = tensor([]) | |||||
data.set_value(np.random.random(data_shape)) | |||||
data = tensor(np.random.random(data_shape)) | |||||
mlp = MLP() | mlp = MLP() | ||||
pred0 = mlp(data) | pred0 = mlp(data) | ||||
@@ -542,8 +541,7 @@ def test_shared_param(): | |||||
def test_pickle_module(): | def test_pickle_module(): | ||||
data_shape = (2, 28) | data_shape = (2, 28) | ||||
data = tensor([]) | |||||
data.set_value(np.random.random(data_shape)) | |||||
data = tensor(np.random.random(data_shape)) | |||||
mlp = MLP() | mlp = MLP() | ||||
# pickle before forward | # pickle before forward | ||||
with BytesIO() as fout: | with BytesIO() as fout: | ||||
@@ -568,8 +566,7 @@ def test_pickle_module(): | |||||
@pytest.mark.skip(reason="under development") | @pytest.mark.skip(reason="under development") | ||||
def test_dump_model(): | def test_dump_model(): | ||||
data_shape = (2, 28) | data_shape = (2, 28) | ||||
data = tensor([]) | |||||
data.set_value(np.random.random(data_shape)) | |||||
data = Tensor(np.random.random(data_shape)) | |||||
mlp = MLP() | mlp = MLP() | ||||
pred = mlp(data) | pred = mlp(data) | ||||
f = tempfile.NamedTemporaryFile(delete=False) | f = tempfile.NamedTemporaryFile(delete=False) | ||||
@@ -13,7 +13,7 @@ import pytest | |||||
import megengine as mge | import megengine as mge | ||||
import megengine.functional as F | import megengine.functional as F | ||||
from megengine import Buffer, Parameter | |||||
from megengine import Parameter, Tensor | |||||
from megengine.module import Conv2d | from megengine.module import Conv2d | ||||
from megengine.test import assertTensorClose | from megengine.test import assertTensorClose | ||||
@@ -33,7 +33,7 @@ def test_set_value(): | |||||
@pytest.mark.skip(reason="fill unsupported") | @pytest.mark.skip(reason="fill unsupported") | ||||
def test_fill(): | def test_fill(): | ||||
a = Buffer(np.zeros((2, 3), dtype=np.float32)) | |||||
a = Tensor(np.zeros((2, 3), dtype=np.float32)) | |||||
a.fill(3) | a.fill(3) | ||||
assertTensorClose(a.numpy(), np.full((2, 3), 3, dtype=np.float32)) | assertTensorClose(a.numpy(), np.full((2, 3), 3, dtype=np.float32)) | ||||
a.fill(124.568) | a.fill(124.568) | ||||
@@ -80,7 +80,7 @@ def test_fill(): | |||||
# def test_shape_warning(): | # def test_shape_warning(): | ||||
# with Graph() as cg: | # with Graph() as cg: | ||||
# cg.set_option("eager_evaluation", False) | # cg.set_option("eager_evaluation", False) | ||||
# b = Buffer(np.ones((2, 3)).astype(np.float32)) | |||||
# b = Tensor(np.ones((2, 3)).astype(np.float32)) | |||||
# with pytest.warns(None) as record: | # with pytest.warns(None) as record: | ||||
# print(b.shape) | # print(b.shape) | ||||
# if len(record) != 0: | # if len(record) != 0: | ||||
@@ -42,11 +42,11 @@ def test_single_input(): | |||||
return x | return x | ||||
net = Simple(av) | net = Simple(av) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
opt = optimizer.SGD(net.parameters(), lr=1.0) | opt = optimizer.SGD(net.parameters(), lr=1.0) | ||||
opt.clear_grad() | opt.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net() | loss = net() | ||||
gm.backward(loss.sum()) | gm.backward(loss.sum()) | ||||
opt.step() | opt.step() | ||||
@@ -81,11 +81,11 @@ def test_multi_input(): | |||||
return x | return x | ||||
net = Simple(av, bv) | net = Simple(av, bv) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
opt = optimizer.SGD(net.parameters(), lr=1.0) | opt = optimizer.SGD(net.parameters(), lr=1.0) | ||||
opt.clear_grad() | opt.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net() | loss = net() | ||||
gm.backward(loss.sum()) | gm.backward(loss.sum()) | ||||
opt.step() | opt.step() | ||||
@@ -121,11 +121,11 @@ def test_multi_output(): | |||||
return x + y | return x + y | ||||
net = Simple(av, bv) | net = Simple(av, bv) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
opt = optimizer.SGD(net.parameters(), lr=1.0) | opt = optimizer.SGD(net.parameters(), lr=1.0) | ||||
opt.clear_grad() | opt.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net() | loss = net() | ||||
gm.backward(loss.sum()) | gm.backward(loss.sum()) | ||||
opt.step() | opt.step() | ||||
@@ -163,9 +163,9 @@ def test_skip_invalid_grad(): | |||||
net = Simple(av, bv) | net = Simple(av, bv) | ||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
optim.clear_grad() | optim.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net().sum() | loss = net().sum() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -198,10 +198,10 @@ def test_ste(): | |||||
av = np.random.random(data_shape).astype(np.float32) | av = np.random.random(data_shape).astype(np.float32) | ||||
net = Simple(av) | net = Simple(av) | ||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
optim.clear_grad() | optim.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net() | loss = net() | ||||
gm.backward(loss.sum()) | gm.backward(loss.sum()) | ||||
optim.step() | optim.step() | ||||
@@ -256,9 +256,9 @@ def test_none_in_out_grad(): | |||||
b = tensor(np.array([2.0], dtype=np.float32)) | b = tensor(np.array([2.0], dtype=np.float32)) | ||||
net = Simple(a, b) | net = Simple(a, b) | ||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
optim.clear_grad() | optim.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss, _ = net() | loss, _ = net() | ||||
gm.backward(loss) | gm.backward(loss) | ||||
optim.step() | optim.step() | ||||
@@ -293,10 +293,10 @@ def test_zero_grad(): | |||||
a = tensor(np.array([1.0], dtype=np.float32)) | a = tensor(np.array([1.0], dtype=np.float32)) | ||||
net = Simple(a) | net = Simple(a) | ||||
optim = optimizer.SGD(net.parameters(), lr=1.0) | optim = optimizer.SGD(net.parameters(), lr=1.0) | ||||
gm = ad.GradManager().register(net.parameters()) | |||||
gm = ad.GradManager().attach(net.parameters()) | |||||
optim.clear_grad() | optim.clear_grad() | ||||
with gm.record(): | |||||
with gm: | |||||
loss = net() | loss = net() | ||||
gm.backward(loss.sum()) | gm.backward(loss.sum()) | ||||
optim.step() | optim.step() | ||||
@@ -38,7 +38,7 @@ def cvt_to_shape_desc(val, inpvar, config=None): | |||||
if isinstance(val, RawTensor): | if isinstance(val, RawTensor): | ||||
return as_tensor(val, device) | return as_tensor(val, device) | ||||
if not isinstance(val, collections.Iterable): | |||||
if not isinstance(val, collections.abc.Iterable): | |||||
val = [val] | val = [val] | ||||
components = [] | components = [] | ||||
@@ -12,19 +12,18 @@ from tempfile import TemporaryFile | |||||
import numpy as np | import numpy as np | ||||
import megengine as mge | import megengine as mge | ||||
from megengine import Buffer, Parameter, tensor | |||||
from megengine import Parameter, Tensor | |||||
def test_tensor_serialization(): | def test_tensor_serialization(): | ||||
def tensor_eq(a, b): | def tensor_eq(a, b): | ||||
assert a.dtype == b.dtype | assert a.dtype == b.dtype | ||||
assert a.device == b.device | assert a.device == b.device | ||||
assert a.requires_grad == b.requires_grad | |||||
np.testing.assert_equal(a.numpy(), b.numpy()) | np.testing.assert_equal(a.numpy(), b.numpy()) | ||||
with TemporaryFile() as f: | with TemporaryFile() as f: | ||||
data = np.random.randint(low=0, high=7, size=[233]) | data = np.random.randint(low=0, high=7, size=[233]) | ||||
a = tensor(data, device="xpux", dtype=np.int32) | |||||
a = Tensor(data, device="xpux", dtype=np.int32) | |||||
pickle.dump(a, f) | pickle.dump(a, f) | ||||
f.seek(0) | f.seek(0) | ||||
b = pickle.load(f) | b = pickle.load(f) | ||||
@@ -39,19 +38,19 @@ def test_tensor_serialization(): | |||||
np.testing.assert_equal(a.numpy(), b.numpy()) | np.testing.assert_equal(a.numpy(), b.numpy()) | ||||
with TemporaryFile() as f: | with TemporaryFile() as f: | ||||
a = Buffer(np.random.random(size=(2, 233)).astype(np.float32)) | |||||
a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) | |||||
pickle.dump(a, f) | pickle.dump(a, f) | ||||
f.seek(0) | f.seek(0) | ||||
b = pickle.load(f) | b = pickle.load(f) | ||||
assert isinstance(b, Buffer) | |||||
assert type(b) is Tensor | |||||
np.testing.assert_equal(a.numpy(), b.numpy()) | np.testing.assert_equal(a.numpy(), b.numpy()) | ||||
with TemporaryFile() as f: | with TemporaryFile() as f: | ||||
a = Buffer(np.random.random(size=(2, 233)).astype(np.float32)) | |||||
a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) | |||||
mge.save(a, f) | mge.save(a, f) | ||||
f.seek(0) | f.seek(0) | ||||
b = mge.load(f, map_location="cpux") | b = mge.load(f, map_location="cpux") | ||||
assert isinstance(b, Buffer) | |||||
assert type(b) is Tensor | |||||
assert "cpu" in str(b.device) | assert "cpu" in str(b.device) | ||||
np.testing.assert_equal(a.numpy(), b.numpy()) | np.testing.assert_equal(a.numpy(), b.numpy()) | ||||
@@ -59,12 +58,12 @@ def test_tensor_serialization(): | |||||
if mge.is_cuda_available(): | if mge.is_cuda_available(): | ||||
device_org = mge.get_default_device() | device_org = mge.get_default_device() | ||||
mge.set_default_device("gpu0") | mge.set_default_device("gpu0") | ||||
a = Buffer(np.random.random(size=(2, 233)).astype(np.float32)) | |||||
a = Tensor(np.random.random(size=(2, 233)).astype(np.float32)) | |||||
mge.save(a, f) | mge.save(a, f) | ||||
f.seek(0) | f.seek(0) | ||||
mge.set_default_device("cpux") | mge.set_default_device("cpux") | ||||
b = mge.load(f, map_location={"gpu0": "cpu0"}) | b = mge.load(f, map_location={"gpu0": "cpu0"}) | ||||
assert isinstance(b, Buffer) | |||||
assert type(b) is Tensor | |||||
assert "cpu0" in str(b.device) | assert "cpu0" in str(b.device) | ||||
np.testing.assert_equal(a.numpy(), b.numpy()) | np.testing.assert_equal(a.numpy(), b.numpy()) | ||||
mge.set_default_device(device_org) | mge.set_default_device(device_org) |
@@ -66,7 +66,7 @@ def main(): | |||||
mge.set_default_device("cpux") | mge.set_default_device("cpux") | ||||
net = XORNet() | net = XORNet() | ||||
opt = optim.SGD(net.parameters(requires_grad=True), lr=0.01, momentum=0.9) | |||||
opt = optim.SGD(net.parameters(), lr=0.01, momentum=0.9) | |||||
batch_size = 64 | batch_size = 64 | ||||
train_dataset = minibatch_generator(batch_size) | train_dataset = minibatch_generator(batch_size) | ||||
val_dataset = minibatch_generator(batch_size) | val_dataset = minibatch_generator(batch_size) | ||||