diff --git a/imperative/python/megengine/functional/tensor.py b/imperative/python/megengine/functional/tensor.py index 46c93814..ac29ae16 100755 --- a/imperative/python/megengine/functional/tensor.py +++ b/imperative/python/megengine/functional/tensor.py @@ -113,7 +113,7 @@ def full( data type must be inferred from ``value``. If the value is an ``int``, the output tensor data type must be the default integer data type. If the value is a ``float``, the output tensor data type must be the default - floating-point data type. If the value is a ``bool``, the output tensor + floating-point data type. If the value is a ``bool``, the output tensor must have boolean data type. Default: ``None``. device: device on which to place the created tensor. Default: ``None``. @@ -222,33 +222,20 @@ def zeros( def zeros_like(inp: Union[Tensor, SymbolVar]) -> Union[Tensor, SymbolVar]: - r"""Returns a zero tensor with the same shape as input tensor. + r"""Returns a tensor filled with zeros with the same shape and data type as input tensor. Args: - inp: input tensor. + inp (Tensor): input tensor. Return: - output tensor. + a tensor containing zeros. Examples: - - .. testcode:: - - import numpy as np - from megengine import tensor - import megengine.functional as F - - inp = tensor(np.arange(1, 7, dtype=np.int32).reshape(2,3)) - out = F.zeros_like(inp) - print(out.numpy()) - - Outputs: - - .. testoutput:: - - [[0 0 0] - [0 0 0]] - + >>> input = F.arange(9, dtype='int32').reshape(3,3) + >>> F.zeros_like(input) + Tensor([[0 0 0] + [0 0 0] + [0 0 0]], dtype=int32, device=xpux:0) """ return full_like(inp, 0.0) @@ -1095,18 +1082,18 @@ def arange( dtype="float32", device: Optional[CompNode] = None, ) -> Tensor: - r"""Returns evenly spaced values within the half-open interval ``[start, stop)`` as a one-dimensional tensor. + r"""Returns evenly spaced values within the half-open interval ``[start, stop)`` as a one-dimensional tensor. Note: - This function cannot guarantee that the interval does not include the stop value in those cases + This function cannot guarantee that the interval does not include the stop value in those cases where step is not an integer and floating-point rounding errors affect the length of the output tensor. Args: - start: if ``stop`` is specified, the start of interval (inclusive); otherwise, - the end of the interval (exclusive). If ``stop`` is not specified, the default starting value is ``0``. + start: if ``stop`` is specified, the start of interval (inclusive); otherwise, + the end of the interval (exclusive). If ``stop`` is not specified, the default starting value is ``0``. stop: the end of the interval. Default: ``None``. - step: the distance between two adjacent elements ( ``out[i+1] - out[i]`` ). Must not be 0 ; - may be negative, this results i an empty tensor if stop >= start . Default: 1 . + step: the distance between two adjacent elements ( ``out[i+1] - out[i]`` ). Must not be 0 ; + may be negative, this results i an empty tensor if stop >= start . Default: 1 . Keyword args: dtype( :attr:`.Tensor.dtype` ): output tensor data type. Default: ``float32``. @@ -1115,7 +1102,7 @@ def arange( Returns: A one-dimensional tensor containing evenly spaced values. - The length of the output tensor must be ``ceil((stop-start)/step)`` + The length of the output tensor must be ``ceil((stop-start)/step)`` if ``stop - start`` and ``step`` have the same sign, and length 0 otherwise. Examples: