@@ -1066,7 +1066,31 @@ py::object _adaptive_pool2d_cpp( | |||
py::handle inp_hdl, py::handle shape_val_hdl, py::handle pool_mode_hdl) { | |||
py::object shape_hdl = py::reinterpret_borrow<py::object>(shape_val_hdl); | |||
py::list shps(0); | |||
if (!PyTuple_Check(shape_val_hdl.ptr())) { | |||
auto mode_string = pool_mode_hdl.cast<std::string>(); | |||
::megdnn::param::AdaptivePooling::Mode pool_mode = | |||
::megdnn::param::AdaptivePooling::Mode::MAX; | |||
if (mode_string.compare(std::string("AVERAGE")) == 0) { | |||
pool_mode = ::megdnn::param::AdaptivePooling::Mode::AVERAGE; | |||
} | |||
std::shared_ptr<OpDef> op; | |||
std::vector<PyObject*> p; | |||
auto pool_format = ::megdnn::param::AdaptivePooling::Format::NCHW; | |||
auto inp_format = getattr(inp_hdl, "format").cast<std::string>(); | |||
if (inp_format == "nhwc") { | |||
pool_format = ::megdnn::param::AdaptivePooling::Format::NHWC; | |||
} | |||
if (TensorWrapper::try_cast(shape_val_hdl.ptr())) { | |||
std::vector<int32_t> shp; | |||
op = AdaptivePooling::make(pool_mode, pool_format, shp); | |||
py::object Op = py::cast(op); | |||
p.resize(3); | |||
p[0] = Op.ptr(); | |||
p[1] = inp_hdl.ptr(); | |||
p[2] = shape_val_hdl.ptr(); | |||
py::tuple ret = | |||
py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size())); | |||
return ret[0]; | |||
} else if (!PyTuple_Check(shape_val_hdl.ptr())) { | |||
shps.append(PyLong_AsLong(shape_val_hdl.ptr())); | |||
shps.append(PyLong_AsLong(shape_val_hdl.ptr())); | |||
@@ -1078,19 +1102,11 @@ py::object _adaptive_pool2d_cpp( | |||
} catch (py::error_already_set& err) { | |||
shape_tuple = py::reinterpret_borrow<py::object>(shape_hdl); | |||
} | |||
auto mode_string = pool_mode_hdl.cast<std::string>(); | |||
::megdnn::param::AdaptivePooling::Mode pool_mode = | |||
::megdnn::param::AdaptivePooling::Mode::MAX; | |||
if (mode_string.compare(std::string("AVERAGE")) == 0) { | |||
pool_mode = ::megdnn::param::AdaptivePooling::Mode::AVERAGE; | |||
} | |||
auto [shape, fastpath] = tuple2vector(shape_tuple); | |||
fastpath &= enable_fastpath(inp_hdl); | |||
std::shared_ptr<OpDef> op; | |||
std::vector<PyObject*> p; | |||
py::object shape_tensor; | |||
op = AdaptivePooling::make( | |||
pool_mode, ::megdnn::param::AdaptivePooling::Format::NCHW, shape); | |||
op = AdaptivePooling::make(pool_mode, pool_format, shape); | |||
if (fastpath) { | |||
p.resize(2); | |||
} else { | |||
@@ -39,6 +39,7 @@ std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
const dt_int32* oshp2d = nullptr; | |||
dst_layout.ndim = 4u; | |||
bool tshp1n = false; | |||
if (nr_inp == 1) { | |||
oshp2d = pool.shape.data(); | |||
} else { | |||
@@ -51,17 +52,18 @@ std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
"target shape of AdaptivePooling expects ndim=1; got ndim=%lu actually", | |||
tshp.layout.ndim); | |||
oshp2d = tshp.value.ptr<dt_int32>(); | |||
tshp1n = tshp.layout.total_nr_elems() == 1; | |||
} | |||
auto param_format = pool.param().format; | |||
if (param_format == opr::AdaptivePooling::Param::Format::NCHW) { | |||
dst_layout[0] = src.layout[0]; | |||
dst_layout[1] = src.layout[1]; | |||
dst_layout[2] = oshp2d[0]; | |||
dst_layout[3] = oshp2d[1]; | |||
dst_layout[3] = tshp1n ? oshp2d[0] : oshp2d[1]; | |||
} else if (param_format == opr::AdaptivePooling::Param::Format::NHWC) { | |||
dst_layout[0] = src.layout[0]; | |||
dst_layout[1] = oshp2d[0]; | |||
dst_layout[2] = oshp2d[1]; | |||
dst_layout[2] = tshp1n ? oshp2d[0] : oshp2d[1]; | |||
dst_layout[3] = src.layout[3]; | |||
} else { | |||
mgb_throw(MegBrainError, "AdaptivePooling only support NCHW or NHWC format"); | |||
@@ -83,8 +85,10 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
if (!validated) { | |||
dst_layout.ndim = src_layout.ndim; | |||
const dt_int32* oshp2d = nullptr; | |||
bool tshp1n = false; | |||
if (inputs.size() == 2) { | |||
auto&& tshp_nd = inputs[1]; | |||
tshp1n = inputs[1]->layout().total_nr_elems() == 1; | |||
oshp2d = tshp_nd->get_value().proxy_to_default_cpu().ptr<dt_int32>(); | |||
} else { | |||
oshp2d = pool.shape.data(); | |||
@@ -93,11 +97,11 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
dst_layout[0] = src_layout[0]; | |||
dst_layout[1] = src_layout[1]; | |||
dst_layout[2] = oshp2d[0]; | |||
dst_layout[3] = oshp2d[1]; | |||
dst_layout[3] = tshp1n ? oshp2d[0] : oshp2d[1]; | |||
} else if (param_format == opr::AdaptivePooling::Param::Format::NHWC) { | |||
dst_layout[0] = src_layout[0]; | |||
dst_layout[1] = oshp2d[0]; | |||
dst_layout[2] = oshp2d[1]; | |||
dst_layout[2] = tshp1n ? oshp2d[0] : oshp2d[1]; | |||
dst_layout[3] = src_layout[3]; | |||
} else { | |||
mgb_throw( | |||
@@ -39,22 +39,23 @@ void AdaptivePoolingForward::outshape_by_symvar_do_get_output_shape( | |||
cg::copy_tensor_value_to_shape(oshp2d, *shpinfo.shpval_inp_val.at(0)); | |||
auto src = shpinfo.shape_inp_shp.at(0); | |||
mgb_assert( | |||
src.ndim == 4 && oshp2d.ndim == 2, | |||
src.ndim == 4 && (oshp2d.ndim == 2 || oshp2d.ndim == 1), | |||
"shape mismatch for AdaptivePooling: src=%s, out2d=%s", | |||
src.to_string().c_str(), oshp2d.to_string().c_str()); | |||
auto param_format = param().format; | |||
bool tshp1n = oshp2d.ndim == 1; | |||
if (param_format == Param::Format::NCHW) { | |||
dest.ndim = 4; | |||
dest.shape[0] = src.shape[0]; | |||
dest.shape[1] = src.shape[1]; | |||
dest.shape[2] = oshp2d.shape[0]; | |||
dest.shape[3] = oshp2d.shape[1]; | |||
dest.shape[3] = (tshp1n) ? oshp2d.shape[0] : oshp2d.shape[1]; | |||
} else if (param_format == Param::Format::NHWC) { | |||
dest.ndim = 4; | |||
dest.shape[0] = src.shape[0]; | |||
dest.shape[1] = oshp2d.shape[0]; | |||
dest.shape[2] = oshp2d.shape[1]; | |||
dest.shape[2] = (tshp1n) ? oshp2d.shape[0] : oshp2d.shape[1]; | |||
dest.shape[3] = src.shape[3]; | |||
} else { | |||
mgb_throw(MegBrainError, "AdaptivePooling only support NCHW or NHWC format"); | |||