GitOrigin-RevId: e108133282
release-1.7
@@ -1345,22 +1345,23 @@ protected: | |||
*/ | |||
class CheckNonFinite : public OperatorBase { | |||
DEF_OPR_PARAM(Empty); | |||
DEF_OPR_IMPL(CheckNonFinite, OperatorBase, 1, 1); | |||
DEF_OPR_IMPL(CheckNonFinite, OperatorBase, -1, 1); | |||
size_t m_size = 0; | |||
public: | |||
virtual size_t get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& dst) = 0; | |||
const TensorNDArray& srcs, const TensorLayout& dst) = 0; | |||
void deduce_layout(const TensorLayout& src, TensorLayout& dst); | |||
void deduce_layout(const TensorLayoutArray& srcs, TensorLayout& dst); | |||
virtual void exec( | |||
_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) = 0; | |||
protected: | |||
void check_exec( | |||
const TensorLayout& src, const TensorLayout& dst, | |||
size_t workspace_in_bytes); | |||
const TensorNDArray& srcs, const TensorND& dst, size_t workspace_in_bytes); | |||
virtual size_t _get_workspace_in_bytes() = 0; | |||
}; | |||
/*! | |||
@@ -15,16 +15,15 @@ | |||
namespace megdnn { | |||
void CheckNonFinite::check_exec( | |||
const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes) { | |||
megdnn_assert_contiguous(src); | |||
megdnn_assert_contiguous(dst); | |||
megdnn_assert(src.ndim == 1); | |||
megdnn_assert(src.dtype == dtype::Float32()); | |||
auto required_workspace_in_bytes = get_workspace_in_bytes(src, dst); | |||
const TensorNDArray& srcs, const TensorND& dst, size_t workspace_in_bytes) { | |||
megdnn_assert_contiguous(dst.layout); | |||
megdnn_assert(srcs.size() > 0); | |||
megdnn_assert(srcs.begin()->layout.dtype == dtype::Float32()); | |||
auto required_workspace_in_bytes = _get_workspace_in_bytes(); | |||
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | |||
} | |||
void CheckNonFinite::deduce_layout(const TensorLayout&, TensorLayout& dst) { | |||
void CheckNonFinite::deduce_layout(const TensorLayoutArray&, TensorLayout& dst) { | |||
dst.shape[0] = 1; | |||
dst.ndim = 1; | |||
dst.dtype = dtype::Int32(); | |||
@@ -156,21 +156,35 @@ struct MaxOp<src_ctype, dst_ctype, dt_float32> { | |||
: INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {} | |||
}; | |||
template <typename src_ctype, typename dst_ctype, typename wtype_> | |||
template <typename src_ctype, typename index_ctype, typename dst_ctype, typename wtype_> | |||
struct CheckNonFiniteOp { | |||
typedef wtype_ wtype; | |||
const wtype INIT; | |||
RefPtr src; | |||
RefPtr* srcs; | |||
RefPtr srcs_total_nr_elems; | |||
RefPtr dst; | |||
const size_t B; | |||
wtype read(uint32_t idx) { return !std::isfinite(src.ptr<src_ctype>()[idx]); } | |||
wtype read(uint32_t idx) { | |||
size_t x = idx / B; | |||
size_t y = idx % B; | |||
if (y < srcs_total_nr_elems.ptr<index_ctype>()[x]) { | |||
RefPtr src = srcs[x]; | |||
return !std::isfinite(src.ptr<src_ctype>()[y]); | |||
} | |||
return 0; | |||
} | |||
void write(uint32_t idx, wtype val) { dst.ptr<dst_ctype>()[idx] = val; } | |||
static wtype apply(wtype lhs, wtype rhs) { return lhs | rhs; } | |||
MEGDNN_HOST MEGDNN_DEVICE | |||
CheckNonFiniteOp(const RefPtr& src, const RefPtr& dst, size_t B) | |||
: INIT(wtype(0)), src(src), dst(dst), B(B) {} | |||
CheckNonFiniteOp( | |||
RefPtr* srcs, const RefPtr& srcs_total_nr_elems, const RefPtr& dst, | |||
size_t B) | |||
: INIT(wtype(0)), | |||
srcs(srcs), | |||
srcs_total_nr_elems(srcs_total_nr_elems), | |||
dst(dst), | |||
B(B) {} | |||
}; | |||
void get_ABC(const TensorShape& shape, size_t& A, size_t& B, size_t& C, size_t axis); | |||
@@ -185,28 +185,41 @@ struct MaxOp<src_ctype, dst_ctype, dt_float32> { | |||
: INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {} | |||
}; | |||
template <typename src_ctype, typename dst_ctype, typename wtype_> | |||
template <typename src_ctype, typename index_ctype, typename dst_ctype, typename wtype_> | |||
struct CheckNonFiniteOp { | |||
typedef wtype_ wtype; | |||
const wtype INIT; | |||
src_ctype* src; | |||
src_ctype** srcs; | |||
index_ctype* srcs_total_nr_elems; | |||
dst_ctype* dst; | |||
const size_t B; | |||
MEGDNN_HOST MEGDNN_DEVICE wtype read(uint32_t idx) { | |||
size_t x = idx / B; | |||
size_t y = idx % B; | |||
if (y < srcs_total_nr_elems[x]) { | |||
#if defined(__CUDA_ARCH__) | |||
return !isfinite(src[idx]); | |||
wtype val = isfinite(srcs[x][y]); | |||
#else | |||
return !std::isfinite(src[idx]); | |||
wtype val = std::isfinite(srcs[x][y]); | |||
#endif | |||
return !val; | |||
} | |||
return 0; | |||
} | |||
MEGDNN_HOST MEGDNN_DEVICE void write(uint32_t idx, wtype val) { dst[idx] = val; } | |||
static MEGDNN_HOST MEGDNN_DEVICE wtype apply(wtype lhs, wtype rhs) { | |||
return lhs | rhs; | |||
} | |||
MEGDNN_HOST MEGDNN_DEVICE CheckNonFiniteOp(src_ctype* src, dst_ctype* dst, size_t B) | |||
: INIT(wtype(0)), src(src), dst(dst), B(B) {} | |||
MEGDNN_HOST MEGDNN_DEVICE CheckNonFiniteOp( | |||
src_ctype** srcs, index_ctype* srcs_total_nr_elems, dst_ctype* dst, | |||
size_t B) | |||
: INIT(wtype(0)), | |||
srcs(srcs), | |||
srcs_total_nr_elems(srcs_total_nr_elems), | |||
dst(dst), | |||
B(B) {} | |||
}; | |||
} // namespace device_reduce | |||
@@ -19,7 +19,8 @@ namespace cuda { | |||
#define COMMA , | |||
INST_REDUCE( | |||
device_reduce::CheckNonFiniteOp<dt_float32 COMMA dt_int32 COMMA dt_int32>, | |||
device_reduce::CheckNonFiniteOp< | |||
dt_float32 COMMA size_t COMMA dt_int32 COMMA dt_int32>, | |||
false); | |||
#undef COMMA | |||
@@ -21,22 +21,83 @@ namespace megdnn { | |||
namespace cuda { | |||
using device_reduce::CheckNonFiniteOp; | |||
#define total_nr_elems_max 2048 | |||
size_t CheckNonFiniteImpl::_get_workspace_in_bytes() { | |||
// Call the _get_workspace_in_bytes to reduce the loop fetch workspace bytes | |||
typedef CheckNonFiniteOp<dt_float32, size_t, dt_int32, dt_int32> Op; | |||
megdnn_assert(m_size > 0); | |||
WorkspaceBundle bundle( | |||
nullptr, { | |||
sizeof(dt_float32*) * m_size, | |||
sizeof(size_t) * m_size, | |||
}); | |||
return get_reduce_workspace_in_bytes<Op>(1, m_size * total_nr_elems_max, 1) + | |||
bundle.total_size_in_bytes(); | |||
} | |||
size_t CheckNonFiniteImpl::get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& dst) { | |||
typedef CheckNonFiniteOp<dt_float32, dt_int32, dt_int32> Op; | |||
return get_reduce_workspace_in_bytes<Op>(1, src.total_nr_elems(), 1); | |||
const TensorNDArray& srcs, const TensorLayout&) { | |||
m_size = 0; | |||
for (const auto& src : srcs) { | |||
m_size += DIVUP(src.layout.total_nr_elems(), total_nr_elems_max); | |||
} | |||
return _get_workspace_in_bytes(); | |||
} | |||
void CheckNonFiniteImpl::exec( | |||
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) { | |||
check_exec(src.layout, dst.layout, workspace.size); | |||
typedef CheckNonFiniteOp<dt_float32, dt_int32, dt_int32> Op; | |||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) { | |||
check_exec(srcs, dst, workspace.size); | |||
typedef CheckNonFiniteOp<dt_float32, size_t, dt_int32, dt_int32> Op; | |||
auto stream = cuda_stream(this->handle()); | |||
auto B = src.layout.total_nr_elems(); | |||
SmallVector<size_t> workspace_sizes{ | |||
sizeof(dt_float32*) * m_size, | |||
sizeof(size_t) * m_size, | |||
}; | |||
WorkspaceBundle workspace_cpu(nullptr, workspace_sizes), | |||
workspace_gpu(nullptr, workspace_sizes); | |||
auto total_workspace_size = workspace_cpu.total_size_in_bytes(); | |||
void* workspace_cpu_raw = malloc(total_workspace_size); | |||
megdnn_assert_internal(workspace_cpu_raw); | |||
void* workspace_gpu_raw = workspace.raw_ptr; | |||
workspace_cpu = WorkspaceBundle(workspace_cpu_raw, workspace_sizes); | |||
workspace_gpu = WorkspaceBundle(workspace_gpu_raw, workspace_sizes); | |||
auto srcs_cpu = static_cast<dt_float32**>(workspace_cpu.get(0)); | |||
auto srcs_gpu = static_cast<dt_float32**>(workspace_gpu.get(0)); | |||
auto srcs_total_nr_elems_cpu = static_cast<size_t*>(workspace_cpu.get(1)); | |||
auto srcs_total_nr_elems_gpu = static_cast<size_t*>(workspace_gpu.get(1)); | |||
// srcs | |||
// cut the tensor to a fixed length of total_nr_elems_max | |||
size_t i = 0; | |||
for (const auto& src : srcs) { | |||
size_t src_nr_elems = src.layout.total_nr_elems(); | |||
size_t nr_elems = DIVUP(src_nr_elems, total_nr_elems_max); | |||
for (size_t j = 0; j < nr_elems; ++j, ++i) { | |||
srcs_cpu[i] = src.ptr<dt_float32>() + j * total_nr_elems_max; | |||
if (j + 1 == nr_elems && src_nr_elems % total_nr_elems_max) { | |||
srcs_total_nr_elems_cpu[i] = src_nr_elems % total_nr_elems_max; | |||
} else { | |||
srcs_total_nr_elems_cpu[i] = total_nr_elems_max; | |||
} | |||
} | |||
} | |||
for (size_t i = 0; i < workspace_cpu.nr_workspace(); ++i) { | |||
cuda_check(cudaMemcpyAsync( | |||
workspace_gpu.get(i), workspace_cpu.get(i), workspace_cpu.get_size(i), | |||
cudaMemcpyHostToDevice, stream)); | |||
} | |||
cuda_check(cudaStreamAddCallback( | |||
stream, callback_free, static_cast<void*>(workspace_cpu_raw), 0)); | |||
return run_reduce<Op, false>( | |||
workspace.ptr<dt_int32>(), 1, B, 1, stream, | |||
Op(src.ptr<dt_float32>(), dst.ptr<dt_int32>(), B)); | |||
static_cast<dt_int32*>( | |||
(void*)((char*)workspace_gpu_raw + | |||
workspace_gpu.total_size_in_bytes())), | |||
1, m_size * total_nr_elems_max, 1, stream, | |||
Op(srcs_gpu, srcs_total_nr_elems_gpu, dst.ptr<dt_int32>(), | |||
total_nr_elems_max)); | |||
} | |||
} // namespace cuda | |||
@@ -18,16 +18,18 @@ namespace megdnn { | |||
namespace cuda { | |||
class CheckNonFiniteImpl final : public CheckNonFinite { | |||
size_t _get_workspace_in_bytes() override; | |||
public: | |||
using CheckNonFinite::CheckNonFinite; | |||
size_t get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& dst) override; | |||
const TensorNDArray& srcs, const TensorLayout& dst) override; | |||
bool is_thread_safe() const override { return true; } | |||
void exec( | |||
_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) override; | |||
}; | |||
@@ -17,21 +17,25 @@ | |||
namespace { | |||
using namespace megdnn; | |||
#define src_ctype dt_float32 | |||
#define wtype dt_int32 | |||
void reduce_fwd(const src_ctype* sptr, wtype* dptr, size_t size) { | |||
std::function<wtype(size_t, size_t)> func; | |||
func = [&](size_t l, size_t r) -> wtype { | |||
if (l + 1 < r) { | |||
size_t mid = l + (r - l) / 2; | |||
return func(l, mid) | func(mid, r); | |||
} else { | |||
return static_cast<wtype>(!std::isfinite(sptr[l])); | |||
} | |||
}; | |||
dptr[0] = func(0, size); | |||
#define wtype dt_int32 | |||
void reduce_fwd(const TensorNDArray& srcs, wtype* dptr) { | |||
dptr[0] = 0; | |||
for (auto src : srcs) { | |||
auto sptr = src.ptr<dt_float32>(); | |||
size_t size = src.layout.total_nr_elems(); | |||
std::function<wtype(wtype, wtype)> func; | |||
func = [&](wtype l, wtype r) -> wtype { | |||
if (l + 1 < r) { | |||
wtype mid = l + (r - l) / 2; | |||
return func(l, mid) | func(mid, r); | |||
} else { | |||
auto val = std::isfinite(sptr[l]); | |||
return static_cast<wtype>(!val); | |||
} | |||
}; | |||
dptr[0] |= func(0, size); | |||
} | |||
} | |||
} // namespace | |||
@@ -39,20 +43,13 @@ void reduce_fwd(const src_ctype* sptr, wtype* dptr, size_t size) { | |||
namespace megdnn { | |||
namespace naive { | |||
size_t CheckNonFiniteImpl::get_workspace_in_bytes( | |||
const TensorLayout&, const TensorLayout&) { | |||
return 0; | |||
} | |||
void CheckNonFiniteImpl::exec( | |||
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) { | |||
check_exec(src.layout, dst.layout, workspace.size); | |||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) { | |||
check_exec(srcs, dst, workspace.size); | |||
auto handle = static_cast<HandleImpl*>(this->handle()); | |||
MEGDNN_DISPATCH_CPU_KERN( | |||
handle, reduce_fwd( | |||
src.ptr<dt_float32>(), dst.ptr<dt_int32>(), | |||
src.layout.total_nr_elems())); | |||
MEGDNN_DISPATCH_CPU_KERN(handle, reduce_fwd(srcs, dst.ptr<dt_int32>())); | |||
} | |||
} // namespace naive | |||
} // namespace megdnn | |||
@@ -17,16 +17,20 @@ namespace megdnn { | |||
namespace naive { | |||
class CheckNonFiniteImpl final : public CheckNonFinite { | |||
size_t _get_workspace_in_bytes() override { return 0; } | |||
public: | |||
using CheckNonFinite::CheckNonFinite; | |||
bool is_thread_safe() const override { return true; } | |||
size_t get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& dst) override; | |||
size_t get_workspace_in_bytes(const TensorNDArray&, const TensorLayout&) override { | |||
m_size = 0; | |||
return _get_workspace_in_bytes(); | |||
} | |||
void exec( | |||
_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) override; | |||
}; | |||
@@ -203,6 +203,27 @@ struct OprProxy<ConcatForward> { | |||
}; | |||
template <> | |||
struct OprProxy<CheckNonFinite> { | |||
static void deduce_layout(CheckNonFinite* opr, TensorLayoutArray& layouts) { | |||
megdnn_assert(layouts.size() >= 2); | |||
auto inp = layouts; | |||
inp.pop_back(); | |||
opr->deduce_layout(inp, layouts.back()); | |||
} | |||
static void exec(CheckNonFinite* opr, const TensorNDArray& tensors) { | |||
megdnn_assert(tensors.size() >= 2); | |||
auto inps = tensors; | |||
inps.pop_back(); | |||
WorkspaceWrapper W( | |||
opr->handle(), | |||
opr->get_workspace_in_bytes(inps, tensors.back().layout)); | |||
opr->exec(inps, tensors.back(), W.workspace()); | |||
} | |||
}; | |||
template <> | |||
struct OprProxy<SplitForward> : DeduceLayoutProxy<SplitForward, 0, false> { | |||
WorkspaceWrapper W; | |||
void exec(SplitForward* opr, const TensorNDArray& tensors) { | |||
@@ -22,13 +22,16 @@ TEST_F(CUDA, CHECK_NON_FINITE_BASIC) { | |||
const auto nan = std::numeric_limits<float>::quiet_NaN(); | |||
UniformFloatWithValueRNG rng(-1.0f, 1.0f, 0.1f, inf); | |||
checker.set_rng(0, &rng); | |||
checker.execs({{512 * 16}, {1}}); | |||
checker.execs({{512 * 4}, {4}, {1}}); | |||
rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 1.f, inf); | |||
checker.set_rng(0, &rng); | |||
checker.execs({{512 * 16}, {1}}); | |||
checker.execs({{4}, {512 * 4}, {1}}); | |||
rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 1.f, nan); | |||
checker.set_rng(0, &rng); | |||
checker.execs({{512 * 16}, {1}}); | |||
checker.execs({{32}, {256}, {1}}); | |||
rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 0.f, nan); | |||
checker.set_rng(0, &rng); | |||
checker.execs({{16}, {16}, {2}, {1}}); | |||
} | |||
} // namespace test | |||
@@ -20,23 +20,28 @@ namespace test { | |||
TEST_F(NAIVE, CHECK_NON_FINITE_BASIC) { | |||
Checker<CheckNonFinite> checker(handle(), false); | |||
checker.exect( | |||
Testcase{TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), {}}, | |||
Testcase{{}, TensorValue({1}, dtype::Int32(), {0})}); | |||
Testcase{ | |||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||
{}}, | |||
Testcase{{}, {}, TensorValue({1}, dtype::Int32(), {0})}); | |||
checker.exect( | |||
Testcase{ | |||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||
TensorValue( | |||
{4}, dtype::Float32(), | |||
{1.1f, 2.2f, 3.3f, std::numeric_limits<float>::infinity()}), | |||
{}}, | |||
Testcase{{}, TensorValue({1}, dtype::Int32(), {1})}); | |||
Testcase{{}, {}, TensorValue({1}, dtype::Int32(), {1})}); | |||
checker.exect( | |||
Testcase{ | |||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||
TensorValue( | |||
{4}, dtype::Float32(), | |||
{1.1f, 2.2f, 3.3f, | |||
std::numeric_limits<float>::quiet_NaN()}), | |||
{}}, | |||
Testcase{{}, TensorValue({1}, dtype::Int32(), {1})}); | |||
Testcase{{}, {}, TensorValue({1}, dtype::Int32(), {1})}); | |||
} | |||
} // namespace test | |||
@@ -128,21 +128,22 @@ class GradScaler: | |||
grad_tensors: Tensors needed to unscale grads. Should be all tensors | |||
that are affected by ``target`` tensor in GradManager's backward. | |||
""" | |||
# use float64 for better precision | |||
inv_scale = Tensor(1.0 / self.scale_factor) | |||
for tensor in grad_tensors: | |||
if tensor is None or getattr(tensor, "grad", None) is None: | |||
continue | |||
# to support tracing, _check_gradients should be applied to every grad. | |||
if self._check_gradients(tensor.grad): | |||
self._found_non_finite = True | |||
tensor.grad *= inv_scale | |||
# to support tracing, _check_gradients should be applied to every grad. | |||
if self._check_gradients([x.grad for x in grad_tensors]): | |||
self._found_non_finite = True | |||
if self._found_non_finite: | |||
for tensor in grad_tensors: | |||
if tensor is None or getattr(tensor, "grad", None) is None: | |||
continue | |||
tensor.grad = None | |||
else: | |||
# use float64 for better precision | |||
inv_scale = Tensor(1.0 / self.scale_factor) | |||
for tensor in grad_tensors: | |||
if tensor is None or getattr(tensor, "grad", None) is None: | |||
continue | |||
tensor.grad *= inv_scale | |||
return self | |||
def _check_gradients(self, grad): | |||
@@ -9,7 +9,7 @@ | |||
import collections | |||
import math | |||
from functools import lru_cache | |||
from typing import Optional, Sequence, Tuple, Union | |||
from typing import Iterable, Optional, Sequence, Tuple, Union | |||
from ..core import _config | |||
from ..core._imperative_rt.core2 import apply, dtype_promotion | |||
@@ -1183,7 +1183,7 @@ def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||
return U, sigma, V | |||
def _check_non_finite(inp: Tensor) -> Tensor: | |||
def _check_non_finite(inps: Iterable[Tensor]) -> Tensor: | |||
r"""Check whether input contains infinite or nan value. | |||
Args: | |||
@@ -1193,6 +1193,6 @@ def _check_non_finite(inp: Tensor) -> Tensor: | |||
a int32 scalar tensor, 0 for False and 1 for True. | |||
""" | |||
op = builtin.CheckNonFinite() | |||
(oup,) = apply(op, inp.reshape(-1).astype("float32")) | |||
(oup,) = apply(op, *inps) | |||
oup._setscalar() | |||
return oup |
@@ -10,21 +10,26 @@ import numpy as np | |||
import megengine as mge | |||
from megengine.amp import GradScaler | |||
from megengine.autodiff import GradManager | |||
from megengine.jit import trace | |||
def test_grad_scaler(): | |||
gm = GradManager() | |||
scaler = GradScaler() | |||
def f(): | |||
gm = GradManager() | |||
scaler = GradScaler() | |||
x = mge.tensor(1.0) | |||
for _ in range(3): | |||
with gm: | |||
y = x + 1 | |||
gm.attach(y) | |||
loss = y + 1 | |||
scaler.backward(gm, loss, unscale_grad=False) | |||
np.testing.assert_equal(y.grad.numpy(), scaler.scale_factor) | |||
x = mge.tensor(1.0) | |||
for _ in range(3): | |||
with gm: | |||
y = x + 1 | |||
gm.attach(y) | |||
loss = y + 1 | |||
scaler.backward(gm, loss, unscale_grad=False) | |||
np.testing.assert_equal(y.grad.numpy(), scaler.scale_factor) | |||
scaler.unscale(gm.attached_tensors()) | |||
np.testing.assert_equal(y.grad.numpy(), 1) | |||
# test handle None elements | |||
scaler.unscale(gm.attached_tensors()) | |||
np.testing.assert_equal(y.grad.numpy(), 1) | |||
# test handle None elements | |||
scaler.unscale(gm.attached_tensors()) | |||
f() | |||
trace(f)() |
@@ -191,16 +191,17 @@ def test_sum_neg_axis(): | |||
def test_non_finite(): | |||
shape = (32, 3, 32, 32) | |||
data = np.random.random(shape).astype(np.float32) | |||
rst = F.math._check_non_finite(tensor(data)) | |||
data1 = np.random.random(shape).astype(np.float32) | |||
data2 = np.random.random(shape).astype(np.float32) | |||
rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) | |||
np.testing.assert_equal(rst.numpy(), [0]) | |||
data[0][0][0][0] = float("inf") | |||
rst = F.math._check_non_finite(tensor(data)) | |||
data2[0][0][0][0] = float("inf") | |||
rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) | |||
np.testing.assert_equal(rst.numpy(), [1]) | |||
data[0][0][0][0] = float("nan") | |||
rst = F.math._check_non_finite(tensor(data)) | |||
data2[0][0][0][0] = float("nan") | |||
rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) | |||
np.testing.assert_equal(rst.numpy(), [1]) | |||
@@ -17,14 +17,56 @@ namespace mgb { | |||
namespace imperative { | |||
namespace check_non_finite { | |||
auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||
SymbolVar apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||
auto&& op = def.cast_final_safe<CheckNonFinite>(); | |||
mgb_assert(inputs.size() == 1); | |||
OperatorNodeConfig config{op.make_name()}; | |||
return opr::CheckNonFinite::make(inputs[0], {}, config); | |||
return opr::CheckNonFinite::make(inputs, {}, config); | |||
} | |||
SmallVector<TensorPtr> apply_on_physical_tensor( | |||
const OpDef& def, const SmallVector<TensorPtr>& inputs) { | |||
size_t size = inputs.size(); | |||
auto dest = Tensor::make( | |||
TensorLayout(TensorShape({1}), dtype::Int32()), inputs[0]->comp_node()); | |||
auto cn = dest->comp_node(); | |||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::CheckNonFinite>(cn); | |||
size_t wk_size = 0; | |||
SmallVector<megdnn::TensorND> srcs(size); | |||
for (size_t i = 0; i < size; ++i) { | |||
srcs[i] = inputs[i]->dev_tensor().as_megdnn(); | |||
} | |||
wk_size = dnn_opr->get_workspace_in_bytes(srcs, dest->layout()); | |||
auto wk = Blob::make(cn, wk_size); | |||
megdnn::Workspace dnn_wk(wk->storage().get(), wk_size); | |||
dnn_opr->exec(srcs, dest->dev_tensor().as_megdnn(), dnn_wk); | |||
return {dest}; | |||
} | |||
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) { | |||
SmallVector<LogicalTensorDesc> dests(1); | |||
dests[0].comp_node = inputs[0].comp_node; | |||
dests[0].layout = TensorLayout(TensorShape({1}), dtype::Int32()); | |||
return {dests, true}; | |||
} | |||
SmallVector<LogicalTensorDesc> infer_output_attrs( | |||
const OpDef& def, const SmallVector<TensorPtr>& inputs) { | |||
SmallVector<LogicalTensorDesc> dests(1); | |||
dests[0].comp_node = inputs[0]->comp_node(); | |||
dests[0].layout = TensorLayout(TensorShape({1}), dtype::Int32()); | |||
return dests; | |||
} | |||
std::tuple<SmallVector<MemoryDesc>, SmallVector<MemoryDesc>> infer_output_mem_desc( | |||
const OpDef& def, const SmallVector<TensorPtr>& inputs_tensors, | |||
const SmallVector<MemoryDesc>& inputs_mems) { | |||
return {{}, {}}; | |||
} | |||
OP_TRAIT_REG(CheckNonFinite, CheckNonFinite) | |||
.apply_on_var_node(apply_on_var_node) | |||
.apply_on_physical_tensor(apply_on_physical_tensor) | |||
.infer_output_attrs_fallible(infer_output_attrs_fallible) | |||
.infer_output_mem_desc(infer_output_mem_desc) | |||
.fallback(); | |||
} // namespace check_non_finite | |||
@@ -482,18 +482,74 @@ MGB_IMPL_OPR_GRAD(TopK) { | |||
#endif | |||
/* ================= CheckNonFinite ================= */ | |||
namespace mgb { | |||
namespace opr { | |||
namespace intl { | |||
template <> | |||
struct MegDNNOprInitPostCtor<CheckNonFinite> { | |||
static void apply(cg::OperatorNodeBase& opr) { | |||
opr.output(0)->dtype(dtype::Int32()); | |||
} | |||
}; | |||
} // namespace intl | |||
} // namespace opr | |||
} // namespace mgb | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(CheckNonFinite); | |||
MEGDNN_OPR_INIT1(CheckNonFinite, "check_non_finite") | |||
CheckNonFinite::CheckNonFinite( | |||
const VarNodeArrayView& inp, const Param& param, | |||
const OperatorNodeConfig& config) | |||
: Super(OperatorNodeBaseCtorParam{ | |||
inp[0]->owner_graph(), config, "check_non_finite", inp}) { | |||
mgb_assert(!inp.empty()); | |||
for (auto&& i : inp) { | |||
add_input({i}); | |||
} | |||
add_output(None)->dtype(dtype::Int32()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE); | |||
cg::add_workspace_output(this); | |||
} | |||
SymbolVar CheckNonFinite::make( | |||
const VarNodeArrayView& inp, const Param& param, | |||
const OperatorNodeConfig& config) { | |||
mgb_assert(!inp.empty()); | |||
intl::BatchedDTypePromotion dtp{inp}; | |||
return SymbolVar{inp[0]}.insert_single_output_opr<CheckNonFinite>( | |||
dtp.get_vars(), param, config); | |||
} | |||
void CheckNonFinite::scn_do_execute() { | |||
megdnn::TensorNDArray inp_arr(input().size()); | |||
for (size_t i = 0; i < input().size(); ++i) { | |||
inp_arr[i] = input()[i]->dev_tensor().as_megdnn(); | |||
} | |||
megdnn_opr()->exec( | |||
inp_arr, output(0)->dev_tensor().as_megdnn(), | |||
intl::get_megdnn_workspace_from_var(output(1))); | |||
} | |||
void CheckNonFinite::init_output_static_infer_desc() { | |||
using namespace cg::static_infer; | |||
auto&& mgr = owner_graph()->static_infer_manager(); | |||
auto infer_oshp = [](TensorShape& dest, const InpVal& iv) { | |||
TensorLayout dst; | |||
dst.shape[0] = 1; | |||
dst.ndim = 1; | |||
dst.dtype = dtype::Int32(); | |||
dst.init_contiguous_stride(); | |||
dest = dst; | |||
return true; | |||
}; | |||
DepVal deps; | |||
for (auto i : input()) | |||
deps.push_back({i, DepType::SHAPE}); | |||
mgr.register_shape_infer(output(0), {SourceType::DEP, deps, infer_oshp}); | |||
auto infer_wk = [this](TensorShape& dest, const InpVal& inp) { | |||
dest.ndim = 1; | |||
megdnn::TensorNDArray inp_arr(input().size()); | |||
for (size_t i = 0; i < input().size(); ++i) { | |||
inp_arr[i] = {NULL, {inp.val.at(i).shape(), input(0)->dtype()}}; | |||
} | |||
dest.shape[0] = megdnn_opr()->get_workspace_in_bytes( | |||
inp_arr, {output(0)->shape(), output(0)->dtype()}); | |||
return true; | |||
}; | |||
mgr.register_shape_infer(output(1), {SourceType::DEP, deps, infer_wk}); | |||
} | |||
void CheckNonFinite::add_input_layout_constraint() { | |||
for (auto i : input()) { | |||
i->add_layout_constraint_contiguous(); | |||
} | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -55,6 +55,10 @@ struct OprMaker<opr::TopK, 2> { | |||
} | |||
}; | |||
template <> | |||
struct OprMaker<opr::CheckNonFinite, 0> : public OprMakerVariadic<opr::CheckNonFinite> { | |||
}; | |||
} // namespace serialization | |||
namespace opr { | |||
@@ -72,7 +76,7 @@ MGB_SEREG_OPR(CumsumV1, 1); | |||
#if MGB_CUDA | |||
MGB_SEREG_OPR(NvOf, 1); | |||
#endif | |||
MGB_SEREG_OPR(CheckNonFinite, 1); | |||
MGB_SEREG_OPR(CheckNonFinite, 0); | |||
} // namespace opr | |||
} // namespace mgb | |||
@@ -142,6 +142,8 @@ using CondTakeBase = cg::SingleCNOperatorNode< | |||
cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::CondTake>>; | |||
using TopKBase = cg::SingleCNOperatorNode< | |||
cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::TopK>>; | |||
using CheckNonFiniteBase = cg::SingleCNOperatorNode< | |||
cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::CheckNonFinite>>; | |||
} // namespace intl | |||
/*! | |||
@@ -181,7 +183,19 @@ public: | |||
const OperatorNodeConfig& config = {}); | |||
}; | |||
MGB_DEFINE_MEGDNN_OPR_WRAPPER_FWD1(CheckNonFinite); | |||
MGB_DEFINE_OPR_CLASS(CheckNonFinite, intl::CheckNonFiniteBase) //{ | |||
void scn_do_execute() override; | |||
void init_output_static_infer_desc() override; | |||
void add_input_layout_constraint() override; | |||
public: | |||
MGE_WIN_DECLSPEC_FUC CheckNonFinite( | |||
const VarNodeArrayView& inp, const Param& param, | |||
const OperatorNodeConfig& config); | |||
MGE_WIN_DECLSPEC_FUC static SymbolVar make( | |||
const VarNodeArrayView& inp, const Param& param = {}, | |||
const OperatorNodeConfig& config = {}); | |||
}; | |||
} // namespace opr | |||
} // namespace mgb | |||