GitOrigin-RevId: e108133282
release-1.7
@@ -1345,22 +1345,23 @@ protected: | |||||
*/ | */ | ||||
class CheckNonFinite : public OperatorBase { | class CheckNonFinite : public OperatorBase { | ||||
DEF_OPR_PARAM(Empty); | DEF_OPR_PARAM(Empty); | ||||
DEF_OPR_IMPL(CheckNonFinite, OperatorBase, 1, 1); | |||||
DEF_OPR_IMPL(CheckNonFinite, OperatorBase, -1, 1); | |||||
size_t m_size = 0; | |||||
public: | public: | ||||
virtual size_t get_workspace_in_bytes( | virtual size_t get_workspace_in_bytes( | ||||
const TensorLayout& src, const TensorLayout& dst) = 0; | |||||
const TensorNDArray& srcs, const TensorLayout& dst) = 0; | |||||
void deduce_layout(const TensorLayout& src, TensorLayout& dst); | |||||
void deduce_layout(const TensorLayoutArray& srcs, TensorLayout& dst); | |||||
virtual void exec( | virtual void exec( | ||||
_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||||
_megdnn_workspace workspace) = 0; | _megdnn_workspace workspace) = 0; | ||||
protected: | protected: | ||||
void check_exec( | void check_exec( | ||||
const TensorLayout& src, const TensorLayout& dst, | |||||
size_t workspace_in_bytes); | |||||
const TensorNDArray& srcs, const TensorND& dst, size_t workspace_in_bytes); | |||||
virtual size_t _get_workspace_in_bytes() = 0; | |||||
}; | }; | ||||
/*! | /*! | ||||
@@ -15,16 +15,15 @@ | |||||
namespace megdnn { | namespace megdnn { | ||||
void CheckNonFinite::check_exec( | void CheckNonFinite::check_exec( | ||||
const TensorLayout& src, const TensorLayout& dst, size_t workspace_in_bytes) { | |||||
megdnn_assert_contiguous(src); | |||||
megdnn_assert_contiguous(dst); | |||||
megdnn_assert(src.ndim == 1); | |||||
megdnn_assert(src.dtype == dtype::Float32()); | |||||
auto required_workspace_in_bytes = get_workspace_in_bytes(src, dst); | |||||
const TensorNDArray& srcs, const TensorND& dst, size_t workspace_in_bytes) { | |||||
megdnn_assert_contiguous(dst.layout); | |||||
megdnn_assert(srcs.size() > 0); | |||||
megdnn_assert(srcs.begin()->layout.dtype == dtype::Float32()); | |||||
auto required_workspace_in_bytes = _get_workspace_in_bytes(); | |||||
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | ||||
} | } | ||||
void CheckNonFinite::deduce_layout(const TensorLayout&, TensorLayout& dst) { | |||||
void CheckNonFinite::deduce_layout(const TensorLayoutArray&, TensorLayout& dst) { | |||||
dst.shape[0] = 1; | dst.shape[0] = 1; | ||||
dst.ndim = 1; | dst.ndim = 1; | ||||
dst.dtype = dtype::Int32(); | dst.dtype = dtype::Int32(); | ||||
@@ -156,21 +156,35 @@ struct MaxOp<src_ctype, dst_ctype, dt_float32> { | |||||
: INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {} | : INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {} | ||||
}; | }; | ||||
template <typename src_ctype, typename dst_ctype, typename wtype_> | |||||
template <typename src_ctype, typename index_ctype, typename dst_ctype, typename wtype_> | |||||
struct CheckNonFiniteOp { | struct CheckNonFiniteOp { | ||||
typedef wtype_ wtype; | typedef wtype_ wtype; | ||||
const wtype INIT; | const wtype INIT; | ||||
RefPtr src; | |||||
RefPtr* srcs; | |||||
RefPtr srcs_total_nr_elems; | |||||
RefPtr dst; | RefPtr dst; | ||||
const size_t B; | const size_t B; | ||||
wtype read(uint32_t idx) { return !std::isfinite(src.ptr<src_ctype>()[idx]); } | |||||
wtype read(uint32_t idx) { | |||||
size_t x = idx / B; | |||||
size_t y = idx % B; | |||||
if (y < srcs_total_nr_elems.ptr<index_ctype>()[x]) { | |||||
RefPtr src = srcs[x]; | |||||
return !std::isfinite(src.ptr<src_ctype>()[y]); | |||||
} | |||||
return 0; | |||||
} | |||||
void write(uint32_t idx, wtype val) { dst.ptr<dst_ctype>()[idx] = val; } | void write(uint32_t idx, wtype val) { dst.ptr<dst_ctype>()[idx] = val; } | ||||
static wtype apply(wtype lhs, wtype rhs) { return lhs | rhs; } | static wtype apply(wtype lhs, wtype rhs) { return lhs | rhs; } | ||||
MEGDNN_HOST MEGDNN_DEVICE | |||||
CheckNonFiniteOp(const RefPtr& src, const RefPtr& dst, size_t B) | |||||
: INIT(wtype(0)), src(src), dst(dst), B(B) {} | |||||
CheckNonFiniteOp( | |||||
RefPtr* srcs, const RefPtr& srcs_total_nr_elems, const RefPtr& dst, | |||||
size_t B) | |||||
: INIT(wtype(0)), | |||||
srcs(srcs), | |||||
srcs_total_nr_elems(srcs_total_nr_elems), | |||||
dst(dst), | |||||
B(B) {} | |||||
}; | }; | ||||
void get_ABC(const TensorShape& shape, size_t& A, size_t& B, size_t& C, size_t axis); | void get_ABC(const TensorShape& shape, size_t& A, size_t& B, size_t& C, size_t axis); | ||||
@@ -185,28 +185,41 @@ struct MaxOp<src_ctype, dst_ctype, dt_float32> { | |||||
: INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {} | : INIT(wtype(DTypeTrait<wtype>::min())), src(src), dst(dst), B(B) {} | ||||
}; | }; | ||||
template <typename src_ctype, typename dst_ctype, typename wtype_> | |||||
template <typename src_ctype, typename index_ctype, typename dst_ctype, typename wtype_> | |||||
struct CheckNonFiniteOp { | struct CheckNonFiniteOp { | ||||
typedef wtype_ wtype; | typedef wtype_ wtype; | ||||
const wtype INIT; | const wtype INIT; | ||||
src_ctype* src; | |||||
src_ctype** srcs; | |||||
index_ctype* srcs_total_nr_elems; | |||||
dst_ctype* dst; | dst_ctype* dst; | ||||
const size_t B; | const size_t B; | ||||
MEGDNN_HOST MEGDNN_DEVICE wtype read(uint32_t idx) { | MEGDNN_HOST MEGDNN_DEVICE wtype read(uint32_t idx) { | ||||
size_t x = idx / B; | |||||
size_t y = idx % B; | |||||
if (y < srcs_total_nr_elems[x]) { | |||||
#if defined(__CUDA_ARCH__) | #if defined(__CUDA_ARCH__) | ||||
return !isfinite(src[idx]); | |||||
wtype val = isfinite(srcs[x][y]); | |||||
#else | #else | ||||
return !std::isfinite(src[idx]); | |||||
wtype val = std::isfinite(srcs[x][y]); | |||||
#endif | #endif | ||||
return !val; | |||||
} | |||||
return 0; | |||||
} | } | ||||
MEGDNN_HOST MEGDNN_DEVICE void write(uint32_t idx, wtype val) { dst[idx] = val; } | MEGDNN_HOST MEGDNN_DEVICE void write(uint32_t idx, wtype val) { dst[idx] = val; } | ||||
static MEGDNN_HOST MEGDNN_DEVICE wtype apply(wtype lhs, wtype rhs) { | static MEGDNN_HOST MEGDNN_DEVICE wtype apply(wtype lhs, wtype rhs) { | ||||
return lhs | rhs; | return lhs | rhs; | ||||
} | } | ||||
MEGDNN_HOST MEGDNN_DEVICE CheckNonFiniteOp(src_ctype* src, dst_ctype* dst, size_t B) | |||||
: INIT(wtype(0)), src(src), dst(dst), B(B) {} | |||||
MEGDNN_HOST MEGDNN_DEVICE CheckNonFiniteOp( | |||||
src_ctype** srcs, index_ctype* srcs_total_nr_elems, dst_ctype* dst, | |||||
size_t B) | |||||
: INIT(wtype(0)), | |||||
srcs(srcs), | |||||
srcs_total_nr_elems(srcs_total_nr_elems), | |||||
dst(dst), | |||||
B(B) {} | |||||
}; | }; | ||||
} // namespace device_reduce | } // namespace device_reduce | ||||
@@ -19,7 +19,8 @@ namespace cuda { | |||||
#define COMMA , | #define COMMA , | ||||
INST_REDUCE( | INST_REDUCE( | ||||
device_reduce::CheckNonFiniteOp<dt_float32 COMMA dt_int32 COMMA dt_int32>, | |||||
device_reduce::CheckNonFiniteOp< | |||||
dt_float32 COMMA size_t COMMA dt_int32 COMMA dt_int32>, | |||||
false); | false); | ||||
#undef COMMA | #undef COMMA | ||||
@@ -21,22 +21,83 @@ namespace megdnn { | |||||
namespace cuda { | namespace cuda { | ||||
using device_reduce::CheckNonFiniteOp; | using device_reduce::CheckNonFiniteOp; | ||||
#define total_nr_elems_max 2048 | |||||
size_t CheckNonFiniteImpl::_get_workspace_in_bytes() { | |||||
// Call the _get_workspace_in_bytes to reduce the loop fetch workspace bytes | |||||
typedef CheckNonFiniteOp<dt_float32, size_t, dt_int32, dt_int32> Op; | |||||
megdnn_assert(m_size > 0); | |||||
WorkspaceBundle bundle( | |||||
nullptr, { | |||||
sizeof(dt_float32*) * m_size, | |||||
sizeof(size_t) * m_size, | |||||
}); | |||||
return get_reduce_workspace_in_bytes<Op>(1, m_size * total_nr_elems_max, 1) + | |||||
bundle.total_size_in_bytes(); | |||||
} | |||||
size_t CheckNonFiniteImpl::get_workspace_in_bytes( | size_t CheckNonFiniteImpl::get_workspace_in_bytes( | ||||
const TensorLayout& src, const TensorLayout& dst) { | |||||
typedef CheckNonFiniteOp<dt_float32, dt_int32, dt_int32> Op; | |||||
return get_reduce_workspace_in_bytes<Op>(1, src.total_nr_elems(), 1); | |||||
const TensorNDArray& srcs, const TensorLayout&) { | |||||
m_size = 0; | |||||
for (const auto& src : srcs) { | |||||
m_size += DIVUP(src.layout.total_nr_elems(), total_nr_elems_max); | |||||
} | |||||
return _get_workspace_in_bytes(); | |||||
} | } | ||||
void CheckNonFiniteImpl::exec( | void CheckNonFiniteImpl::exec( | ||||
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) { | |||||
check_exec(src.layout, dst.layout, workspace.size); | |||||
typedef CheckNonFiniteOp<dt_float32, dt_int32, dt_int32> Op; | |||||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||||
_megdnn_workspace workspace) { | |||||
check_exec(srcs, dst, workspace.size); | |||||
typedef CheckNonFiniteOp<dt_float32, size_t, dt_int32, dt_int32> Op; | |||||
auto stream = cuda_stream(this->handle()); | auto stream = cuda_stream(this->handle()); | ||||
auto B = src.layout.total_nr_elems(); | |||||
SmallVector<size_t> workspace_sizes{ | |||||
sizeof(dt_float32*) * m_size, | |||||
sizeof(size_t) * m_size, | |||||
}; | |||||
WorkspaceBundle workspace_cpu(nullptr, workspace_sizes), | |||||
workspace_gpu(nullptr, workspace_sizes); | |||||
auto total_workspace_size = workspace_cpu.total_size_in_bytes(); | |||||
void* workspace_cpu_raw = malloc(total_workspace_size); | |||||
megdnn_assert_internal(workspace_cpu_raw); | |||||
void* workspace_gpu_raw = workspace.raw_ptr; | |||||
workspace_cpu = WorkspaceBundle(workspace_cpu_raw, workspace_sizes); | |||||
workspace_gpu = WorkspaceBundle(workspace_gpu_raw, workspace_sizes); | |||||
auto srcs_cpu = static_cast<dt_float32**>(workspace_cpu.get(0)); | |||||
auto srcs_gpu = static_cast<dt_float32**>(workspace_gpu.get(0)); | |||||
auto srcs_total_nr_elems_cpu = static_cast<size_t*>(workspace_cpu.get(1)); | |||||
auto srcs_total_nr_elems_gpu = static_cast<size_t*>(workspace_gpu.get(1)); | |||||
// srcs | |||||
// cut the tensor to a fixed length of total_nr_elems_max | |||||
size_t i = 0; | |||||
for (const auto& src : srcs) { | |||||
size_t src_nr_elems = src.layout.total_nr_elems(); | |||||
size_t nr_elems = DIVUP(src_nr_elems, total_nr_elems_max); | |||||
for (size_t j = 0; j < nr_elems; ++j, ++i) { | |||||
srcs_cpu[i] = src.ptr<dt_float32>() + j * total_nr_elems_max; | |||||
if (j + 1 == nr_elems && src_nr_elems % total_nr_elems_max) { | |||||
srcs_total_nr_elems_cpu[i] = src_nr_elems % total_nr_elems_max; | |||||
} else { | |||||
srcs_total_nr_elems_cpu[i] = total_nr_elems_max; | |||||
} | |||||
} | |||||
} | |||||
for (size_t i = 0; i < workspace_cpu.nr_workspace(); ++i) { | |||||
cuda_check(cudaMemcpyAsync( | |||||
workspace_gpu.get(i), workspace_cpu.get(i), workspace_cpu.get_size(i), | |||||
cudaMemcpyHostToDevice, stream)); | |||||
} | |||||
cuda_check(cudaStreamAddCallback( | |||||
stream, callback_free, static_cast<void*>(workspace_cpu_raw), 0)); | |||||
return run_reduce<Op, false>( | return run_reduce<Op, false>( | ||||
workspace.ptr<dt_int32>(), 1, B, 1, stream, | |||||
Op(src.ptr<dt_float32>(), dst.ptr<dt_int32>(), B)); | |||||
static_cast<dt_int32*>( | |||||
(void*)((char*)workspace_gpu_raw + | |||||
workspace_gpu.total_size_in_bytes())), | |||||
1, m_size * total_nr_elems_max, 1, stream, | |||||
Op(srcs_gpu, srcs_total_nr_elems_gpu, dst.ptr<dt_int32>(), | |||||
total_nr_elems_max)); | |||||
} | } | ||||
} // namespace cuda | } // namespace cuda | ||||
@@ -18,16 +18,18 @@ namespace megdnn { | |||||
namespace cuda { | namespace cuda { | ||||
class CheckNonFiniteImpl final : public CheckNonFinite { | class CheckNonFiniteImpl final : public CheckNonFinite { | ||||
size_t _get_workspace_in_bytes() override; | |||||
public: | public: | ||||
using CheckNonFinite::CheckNonFinite; | using CheckNonFinite::CheckNonFinite; | ||||
size_t get_workspace_in_bytes( | size_t get_workspace_in_bytes( | ||||
const TensorLayout& src, const TensorLayout& dst) override; | |||||
const TensorNDArray& srcs, const TensorLayout& dst) override; | |||||
bool is_thread_safe() const override { return true; } | bool is_thread_safe() const override { return true; } | ||||
void exec( | void exec( | ||||
_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||||
_megdnn_workspace workspace) override; | _megdnn_workspace workspace) override; | ||||
}; | }; | ||||
@@ -17,21 +17,25 @@ | |||||
namespace { | namespace { | ||||
using namespace megdnn; | using namespace megdnn; | ||||
#define src_ctype dt_float32 | |||||
#define wtype dt_int32 | |||||
void reduce_fwd(const src_ctype* sptr, wtype* dptr, size_t size) { | |||||
std::function<wtype(size_t, size_t)> func; | |||||
func = [&](size_t l, size_t r) -> wtype { | |||||
if (l + 1 < r) { | |||||
size_t mid = l + (r - l) / 2; | |||||
return func(l, mid) | func(mid, r); | |||||
} else { | |||||
return static_cast<wtype>(!std::isfinite(sptr[l])); | |||||
} | |||||
}; | |||||
dptr[0] = func(0, size); | |||||
#define wtype dt_int32 | |||||
void reduce_fwd(const TensorNDArray& srcs, wtype* dptr) { | |||||
dptr[0] = 0; | |||||
for (auto src : srcs) { | |||||
auto sptr = src.ptr<dt_float32>(); | |||||
size_t size = src.layout.total_nr_elems(); | |||||
std::function<wtype(wtype, wtype)> func; | |||||
func = [&](wtype l, wtype r) -> wtype { | |||||
if (l + 1 < r) { | |||||
wtype mid = l + (r - l) / 2; | |||||
return func(l, mid) | func(mid, r); | |||||
} else { | |||||
auto val = std::isfinite(sptr[l]); | |||||
return static_cast<wtype>(!val); | |||||
} | |||||
}; | |||||
dptr[0] |= func(0, size); | |||||
} | |||||
} | } | ||||
} // namespace | } // namespace | ||||
@@ -39,20 +43,13 @@ void reduce_fwd(const src_ctype* sptr, wtype* dptr, size_t size) { | |||||
namespace megdnn { | namespace megdnn { | ||||
namespace naive { | namespace naive { | ||||
size_t CheckNonFiniteImpl::get_workspace_in_bytes( | |||||
const TensorLayout&, const TensorLayout&) { | |||||
return 0; | |||||
} | |||||
void CheckNonFiniteImpl::exec( | void CheckNonFiniteImpl::exec( | ||||
_megdnn_tensor_in src, _megdnn_tensor_out dst, _megdnn_workspace workspace) { | |||||
check_exec(src.layout, dst.layout, workspace.size); | |||||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||||
_megdnn_workspace workspace) { | |||||
check_exec(srcs, dst, workspace.size); | |||||
auto handle = static_cast<HandleImpl*>(this->handle()); | auto handle = static_cast<HandleImpl*>(this->handle()); | ||||
MEGDNN_DISPATCH_CPU_KERN( | |||||
handle, reduce_fwd( | |||||
src.ptr<dt_float32>(), dst.ptr<dt_int32>(), | |||||
src.layout.total_nr_elems())); | |||||
MEGDNN_DISPATCH_CPU_KERN(handle, reduce_fwd(srcs, dst.ptr<dt_int32>())); | |||||
} | } | ||||
} // namespace naive | } // namespace naive | ||||
} // namespace megdnn | } // namespace megdnn | ||||
@@ -17,16 +17,20 @@ namespace megdnn { | |||||
namespace naive { | namespace naive { | ||||
class CheckNonFiniteImpl final : public CheckNonFinite { | class CheckNonFiniteImpl final : public CheckNonFinite { | ||||
size_t _get_workspace_in_bytes() override { return 0; } | |||||
public: | public: | ||||
using CheckNonFinite::CheckNonFinite; | using CheckNonFinite::CheckNonFinite; | ||||
bool is_thread_safe() const override { return true; } | bool is_thread_safe() const override { return true; } | ||||
size_t get_workspace_in_bytes( | |||||
const TensorLayout& src, const TensorLayout& dst) override; | |||||
size_t get_workspace_in_bytes(const TensorNDArray&, const TensorLayout&) override { | |||||
m_size = 0; | |||||
return _get_workspace_in_bytes(); | |||||
} | |||||
void exec( | void exec( | ||||
_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||||
_megdnn_in const TensorNDArray& srcs, _megdnn_tensor_out dst, | |||||
_megdnn_workspace workspace) override; | _megdnn_workspace workspace) override; | ||||
}; | }; | ||||
@@ -203,6 +203,27 @@ struct OprProxy<ConcatForward> { | |||||
}; | }; | ||||
template <> | template <> | ||||
struct OprProxy<CheckNonFinite> { | |||||
static void deduce_layout(CheckNonFinite* opr, TensorLayoutArray& layouts) { | |||||
megdnn_assert(layouts.size() >= 2); | |||||
auto inp = layouts; | |||||
inp.pop_back(); | |||||
opr->deduce_layout(inp, layouts.back()); | |||||
} | |||||
static void exec(CheckNonFinite* opr, const TensorNDArray& tensors) { | |||||
megdnn_assert(tensors.size() >= 2); | |||||
auto inps = tensors; | |||||
inps.pop_back(); | |||||
WorkspaceWrapper W( | |||||
opr->handle(), | |||||
opr->get_workspace_in_bytes(inps, tensors.back().layout)); | |||||
opr->exec(inps, tensors.back(), W.workspace()); | |||||
} | |||||
}; | |||||
template <> | |||||
struct OprProxy<SplitForward> : DeduceLayoutProxy<SplitForward, 0, false> { | struct OprProxy<SplitForward> : DeduceLayoutProxy<SplitForward, 0, false> { | ||||
WorkspaceWrapper W; | WorkspaceWrapper W; | ||||
void exec(SplitForward* opr, const TensorNDArray& tensors) { | void exec(SplitForward* opr, const TensorNDArray& tensors) { | ||||
@@ -22,13 +22,16 @@ TEST_F(CUDA, CHECK_NON_FINITE_BASIC) { | |||||
const auto nan = std::numeric_limits<float>::quiet_NaN(); | const auto nan = std::numeric_limits<float>::quiet_NaN(); | ||||
UniformFloatWithValueRNG rng(-1.0f, 1.0f, 0.1f, inf); | UniformFloatWithValueRNG rng(-1.0f, 1.0f, 0.1f, inf); | ||||
checker.set_rng(0, &rng); | checker.set_rng(0, &rng); | ||||
checker.execs({{512 * 16}, {1}}); | |||||
checker.execs({{512 * 4}, {4}, {1}}); | |||||
rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 1.f, inf); | rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 1.f, inf); | ||||
checker.set_rng(0, &rng); | checker.set_rng(0, &rng); | ||||
checker.execs({{512 * 16}, {1}}); | |||||
checker.execs({{4}, {512 * 4}, {1}}); | |||||
rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 1.f, nan); | rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 1.f, nan); | ||||
checker.set_rng(0, &rng); | checker.set_rng(0, &rng); | ||||
checker.execs({{512 * 16}, {1}}); | |||||
checker.execs({{32}, {256}, {1}}); | |||||
rng = UniformFloatWithValueRNG(-1.0f, 1.0f, 0.f, nan); | |||||
checker.set_rng(0, &rng); | |||||
checker.execs({{16}, {16}, {2}, {1}}); | |||||
} | } | ||||
} // namespace test | } // namespace test | ||||
@@ -20,23 +20,28 @@ namespace test { | |||||
TEST_F(NAIVE, CHECK_NON_FINITE_BASIC) { | TEST_F(NAIVE, CHECK_NON_FINITE_BASIC) { | ||||
Checker<CheckNonFinite> checker(handle(), false); | Checker<CheckNonFinite> checker(handle(), false); | ||||
checker.exect( | checker.exect( | ||||
Testcase{TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), {}}, | |||||
Testcase{{}, TensorValue({1}, dtype::Int32(), {0})}); | |||||
Testcase{ | |||||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||||
{}}, | |||||
Testcase{{}, {}, TensorValue({1}, dtype::Int32(), {0})}); | |||||
checker.exect( | checker.exect( | ||||
Testcase{ | Testcase{ | ||||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||||
TensorValue( | TensorValue( | ||||
{4}, dtype::Float32(), | {4}, dtype::Float32(), | ||||
{1.1f, 2.2f, 3.3f, std::numeric_limits<float>::infinity()}), | {1.1f, 2.2f, 3.3f, std::numeric_limits<float>::infinity()}), | ||||
{}}, | {}}, | ||||
Testcase{{}, TensorValue({1}, dtype::Int32(), {1})}); | |||||
Testcase{{}, {}, TensorValue({1}, dtype::Int32(), {1})}); | |||||
checker.exect( | checker.exect( | ||||
Testcase{ | Testcase{ | ||||
TensorValue({4}, dtype::Float32(), {1.1, 2.2, 3.3, 4.3}), | |||||
TensorValue( | TensorValue( | ||||
{4}, dtype::Float32(), | {4}, dtype::Float32(), | ||||
{1.1f, 2.2f, 3.3f, | {1.1f, 2.2f, 3.3f, | ||||
std::numeric_limits<float>::quiet_NaN()}), | std::numeric_limits<float>::quiet_NaN()}), | ||||
{}}, | {}}, | ||||
Testcase{{}, TensorValue({1}, dtype::Int32(), {1})}); | |||||
Testcase{{}, {}, TensorValue({1}, dtype::Int32(), {1})}); | |||||
} | } | ||||
} // namespace test | } // namespace test | ||||
@@ -128,21 +128,22 @@ class GradScaler: | |||||
grad_tensors: Tensors needed to unscale grads. Should be all tensors | grad_tensors: Tensors needed to unscale grads. Should be all tensors | ||||
that are affected by ``target`` tensor in GradManager's backward. | that are affected by ``target`` tensor in GradManager's backward. | ||||
""" | """ | ||||
# use float64 for better precision | |||||
inv_scale = Tensor(1.0 / self.scale_factor) | |||||
for tensor in grad_tensors: | |||||
if tensor is None or getattr(tensor, "grad", None) is None: | |||||
continue | |||||
# to support tracing, _check_gradients should be applied to every grad. | |||||
if self._check_gradients(tensor.grad): | |||||
self._found_non_finite = True | |||||
tensor.grad *= inv_scale | |||||
# to support tracing, _check_gradients should be applied to every grad. | |||||
if self._check_gradients([x.grad for x in grad_tensors]): | |||||
self._found_non_finite = True | |||||
if self._found_non_finite: | if self._found_non_finite: | ||||
for tensor in grad_tensors: | for tensor in grad_tensors: | ||||
if tensor is None or getattr(tensor, "grad", None) is None: | if tensor is None or getattr(tensor, "grad", None) is None: | ||||
continue | continue | ||||
tensor.grad = None | tensor.grad = None | ||||
else: | |||||
# use float64 for better precision | |||||
inv_scale = Tensor(1.0 / self.scale_factor) | |||||
for tensor in grad_tensors: | |||||
if tensor is None or getattr(tensor, "grad", None) is None: | |||||
continue | |||||
tensor.grad *= inv_scale | |||||
return self | return self | ||||
def _check_gradients(self, grad): | def _check_gradients(self, grad): | ||||
@@ -9,7 +9,7 @@ | |||||
import collections | import collections | ||||
import math | import math | ||||
from functools import lru_cache | from functools import lru_cache | ||||
from typing import Optional, Sequence, Tuple, Union | |||||
from typing import Iterable, Optional, Sequence, Tuple, Union | |||||
from ..core import _config | from ..core import _config | ||||
from ..core._imperative_rt.core2 import apply, dtype_promotion | from ..core._imperative_rt.core2 import apply, dtype_promotion | ||||
@@ -1183,7 +1183,7 @@ def svd(inp: Tensor, full_matrices=False, compute_uv=True) -> Tensor: | |||||
return U, sigma, V | return U, sigma, V | ||||
def _check_non_finite(inp: Tensor) -> Tensor: | |||||
def _check_non_finite(inps: Iterable[Tensor]) -> Tensor: | |||||
r"""Check whether input contains infinite or nan value. | r"""Check whether input contains infinite or nan value. | ||||
Args: | Args: | ||||
@@ -1193,6 +1193,6 @@ def _check_non_finite(inp: Tensor) -> Tensor: | |||||
a int32 scalar tensor, 0 for False and 1 for True. | a int32 scalar tensor, 0 for False and 1 for True. | ||||
""" | """ | ||||
op = builtin.CheckNonFinite() | op = builtin.CheckNonFinite() | ||||
(oup,) = apply(op, inp.reshape(-1).astype("float32")) | |||||
(oup,) = apply(op, *inps) | |||||
oup._setscalar() | oup._setscalar() | ||||
return oup | return oup |
@@ -10,21 +10,26 @@ import numpy as np | |||||
import megengine as mge | import megengine as mge | ||||
from megengine.amp import GradScaler | from megengine.amp import GradScaler | ||||
from megengine.autodiff import GradManager | from megengine.autodiff import GradManager | ||||
from megengine.jit import trace | |||||
def test_grad_scaler(): | def test_grad_scaler(): | ||||
gm = GradManager() | |||||
scaler = GradScaler() | |||||
def f(): | |||||
gm = GradManager() | |||||
scaler = GradScaler() | |||||
x = mge.tensor(1.0) | |||||
for _ in range(3): | |||||
with gm: | |||||
y = x + 1 | |||||
gm.attach(y) | |||||
loss = y + 1 | |||||
scaler.backward(gm, loss, unscale_grad=False) | |||||
np.testing.assert_equal(y.grad.numpy(), scaler.scale_factor) | |||||
x = mge.tensor(1.0) | |||||
for _ in range(3): | |||||
with gm: | |||||
y = x + 1 | |||||
gm.attach(y) | |||||
loss = y + 1 | |||||
scaler.backward(gm, loss, unscale_grad=False) | |||||
np.testing.assert_equal(y.grad.numpy(), scaler.scale_factor) | |||||
scaler.unscale(gm.attached_tensors()) | |||||
np.testing.assert_equal(y.grad.numpy(), 1) | |||||
# test handle None elements | |||||
scaler.unscale(gm.attached_tensors()) | scaler.unscale(gm.attached_tensors()) | ||||
np.testing.assert_equal(y.grad.numpy(), 1) | |||||
# test handle None elements | |||||
scaler.unscale(gm.attached_tensors()) | |||||
f() | |||||
trace(f)() |
@@ -191,16 +191,17 @@ def test_sum_neg_axis(): | |||||
def test_non_finite(): | def test_non_finite(): | ||||
shape = (32, 3, 32, 32) | shape = (32, 3, 32, 32) | ||||
data = np.random.random(shape).astype(np.float32) | |||||
rst = F.math._check_non_finite(tensor(data)) | |||||
data1 = np.random.random(shape).astype(np.float32) | |||||
data2 = np.random.random(shape).astype(np.float32) | |||||
rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) | |||||
np.testing.assert_equal(rst.numpy(), [0]) | np.testing.assert_equal(rst.numpy(), [0]) | ||||
data[0][0][0][0] = float("inf") | |||||
rst = F.math._check_non_finite(tensor(data)) | |||||
data2[0][0][0][0] = float("inf") | |||||
rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) | |||||
np.testing.assert_equal(rst.numpy(), [1]) | np.testing.assert_equal(rst.numpy(), [1]) | ||||
data[0][0][0][0] = float("nan") | |||||
rst = F.math._check_non_finite(tensor(data)) | |||||
data2[0][0][0][0] = float("nan") | |||||
rst = F.math._check_non_finite([tensor(data1), tensor(data2)]) | |||||
np.testing.assert_equal(rst.numpy(), [1]) | np.testing.assert_equal(rst.numpy(), [1]) | ||||
@@ -17,14 +17,56 @@ namespace mgb { | |||||
namespace imperative { | namespace imperative { | ||||
namespace check_non_finite { | namespace check_non_finite { | ||||
auto apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||||
SymbolVar apply_on_var_node(const OpDef& def, const VarNodeArray& inputs) { | |||||
auto&& op = def.cast_final_safe<CheckNonFinite>(); | auto&& op = def.cast_final_safe<CheckNonFinite>(); | ||||
mgb_assert(inputs.size() == 1); | |||||
OperatorNodeConfig config{op.make_name()}; | OperatorNodeConfig config{op.make_name()}; | ||||
return opr::CheckNonFinite::make(inputs[0], {}, config); | |||||
return opr::CheckNonFinite::make(inputs, {}, config); | |||||
} | |||||
SmallVector<TensorPtr> apply_on_physical_tensor( | |||||
const OpDef& def, const SmallVector<TensorPtr>& inputs) { | |||||
size_t size = inputs.size(); | |||||
auto dest = Tensor::make( | |||||
TensorLayout(TensorShape({1}), dtype::Int32()), inputs[0]->comp_node()); | |||||
auto cn = dest->comp_node(); | |||||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::CheckNonFinite>(cn); | |||||
size_t wk_size = 0; | |||||
SmallVector<megdnn::TensorND> srcs(size); | |||||
for (size_t i = 0; i < size; ++i) { | |||||
srcs[i] = inputs[i]->dev_tensor().as_megdnn(); | |||||
} | |||||
wk_size = dnn_opr->get_workspace_in_bytes(srcs, dest->layout()); | |||||
auto wk = Blob::make(cn, wk_size); | |||||
megdnn::Workspace dnn_wk(wk->storage().get(), wk_size); | |||||
dnn_opr->exec(srcs, dest->dev_tensor().as_megdnn(), dnn_wk); | |||||
return {dest}; | |||||
} | |||||
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||||
const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) { | |||||
SmallVector<LogicalTensorDesc> dests(1); | |||||
dests[0].comp_node = inputs[0].comp_node; | |||||
dests[0].layout = TensorLayout(TensorShape({1}), dtype::Int32()); | |||||
return {dests, true}; | |||||
} | |||||
SmallVector<LogicalTensorDesc> infer_output_attrs( | |||||
const OpDef& def, const SmallVector<TensorPtr>& inputs) { | |||||
SmallVector<LogicalTensorDesc> dests(1); | |||||
dests[0].comp_node = inputs[0]->comp_node(); | |||||
dests[0].layout = TensorLayout(TensorShape({1}), dtype::Int32()); | |||||
return dests; | |||||
} | |||||
std::tuple<SmallVector<MemoryDesc>, SmallVector<MemoryDesc>> infer_output_mem_desc( | |||||
const OpDef& def, const SmallVector<TensorPtr>& inputs_tensors, | |||||
const SmallVector<MemoryDesc>& inputs_mems) { | |||||
return {{}, {}}; | |||||
} | } | ||||
OP_TRAIT_REG(CheckNonFinite, CheckNonFinite) | OP_TRAIT_REG(CheckNonFinite, CheckNonFinite) | ||||
.apply_on_var_node(apply_on_var_node) | .apply_on_var_node(apply_on_var_node) | ||||
.apply_on_physical_tensor(apply_on_physical_tensor) | |||||
.infer_output_attrs_fallible(infer_output_attrs_fallible) | |||||
.infer_output_mem_desc(infer_output_mem_desc) | |||||
.fallback(); | .fallback(); | ||||
} // namespace check_non_finite | } // namespace check_non_finite | ||||
@@ -482,18 +482,74 @@ MGB_IMPL_OPR_GRAD(TopK) { | |||||
#endif | #endif | ||||
/* ================= CheckNonFinite ================= */ | /* ================= CheckNonFinite ================= */ | ||||
namespace mgb { | |||||
namespace opr { | |||||
namespace intl { | |||||
template <> | |||||
struct MegDNNOprInitPostCtor<CheckNonFinite> { | |||||
static void apply(cg::OperatorNodeBase& opr) { | |||||
opr.output(0)->dtype(dtype::Int32()); | |||||
} | |||||
}; | |||||
} // namespace intl | |||||
} // namespace opr | |||||
} // namespace mgb | |||||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(CheckNonFinite); | MGB_DYN_TYPE_OBJ_FINAL_IMPL(CheckNonFinite); | ||||
MEGDNN_OPR_INIT1(CheckNonFinite, "check_non_finite") | |||||
CheckNonFinite::CheckNonFinite( | |||||
const VarNodeArrayView& inp, const Param& param, | |||||
const OperatorNodeConfig& config) | |||||
: Super(OperatorNodeBaseCtorParam{ | |||||
inp[0]->owner_graph(), config, "check_non_finite", inp}) { | |||||
mgb_assert(!inp.empty()); | |||||
for (auto&& i : inp) { | |||||
add_input({i}); | |||||
} | |||||
add_output(None)->dtype(dtype::Int32()).add_flag(VarNode::Flag::ALLOW_EMPTY_SHAPE); | |||||
cg::add_workspace_output(this); | |||||
} | |||||
SymbolVar CheckNonFinite::make( | |||||
const VarNodeArrayView& inp, const Param& param, | |||||
const OperatorNodeConfig& config) { | |||||
mgb_assert(!inp.empty()); | |||||
intl::BatchedDTypePromotion dtp{inp}; | |||||
return SymbolVar{inp[0]}.insert_single_output_opr<CheckNonFinite>( | |||||
dtp.get_vars(), param, config); | |||||
} | |||||
void CheckNonFinite::scn_do_execute() { | |||||
megdnn::TensorNDArray inp_arr(input().size()); | |||||
for (size_t i = 0; i < input().size(); ++i) { | |||||
inp_arr[i] = input()[i]->dev_tensor().as_megdnn(); | |||||
} | |||||
megdnn_opr()->exec( | |||||
inp_arr, output(0)->dev_tensor().as_megdnn(), | |||||
intl::get_megdnn_workspace_from_var(output(1))); | |||||
} | |||||
void CheckNonFinite::init_output_static_infer_desc() { | |||||
using namespace cg::static_infer; | |||||
auto&& mgr = owner_graph()->static_infer_manager(); | |||||
auto infer_oshp = [](TensorShape& dest, const InpVal& iv) { | |||||
TensorLayout dst; | |||||
dst.shape[0] = 1; | |||||
dst.ndim = 1; | |||||
dst.dtype = dtype::Int32(); | |||||
dst.init_contiguous_stride(); | |||||
dest = dst; | |||||
return true; | |||||
}; | |||||
DepVal deps; | |||||
for (auto i : input()) | |||||
deps.push_back({i, DepType::SHAPE}); | |||||
mgr.register_shape_infer(output(0), {SourceType::DEP, deps, infer_oshp}); | |||||
auto infer_wk = [this](TensorShape& dest, const InpVal& inp) { | |||||
dest.ndim = 1; | |||||
megdnn::TensorNDArray inp_arr(input().size()); | |||||
for (size_t i = 0; i < input().size(); ++i) { | |||||
inp_arr[i] = {NULL, {inp.val.at(i).shape(), input(0)->dtype()}}; | |||||
} | |||||
dest.shape[0] = megdnn_opr()->get_workspace_in_bytes( | |||||
inp_arr, {output(0)->shape(), output(0)->dtype()}); | |||||
return true; | |||||
}; | |||||
mgr.register_shape_infer(output(1), {SourceType::DEP, deps, infer_wk}); | |||||
} | |||||
void CheckNonFinite::add_input_layout_constraint() { | |||||
for (auto i : input()) { | |||||
i->add_layout_constraint_contiguous(); | |||||
} | |||||
} | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -55,6 +55,10 @@ struct OprMaker<opr::TopK, 2> { | |||||
} | } | ||||
}; | }; | ||||
template <> | |||||
struct OprMaker<opr::CheckNonFinite, 0> : public OprMakerVariadic<opr::CheckNonFinite> { | |||||
}; | |||||
} // namespace serialization | } // namespace serialization | ||||
namespace opr { | namespace opr { | ||||
@@ -72,7 +76,7 @@ MGB_SEREG_OPR(CumsumV1, 1); | |||||
#if MGB_CUDA | #if MGB_CUDA | ||||
MGB_SEREG_OPR(NvOf, 1); | MGB_SEREG_OPR(NvOf, 1); | ||||
#endif | #endif | ||||
MGB_SEREG_OPR(CheckNonFinite, 1); | |||||
MGB_SEREG_OPR(CheckNonFinite, 0); | |||||
} // namespace opr | } // namespace opr | ||||
} // namespace mgb | } // namespace mgb | ||||
@@ -142,6 +142,8 @@ using CondTakeBase = cg::SingleCNOperatorNode< | |||||
cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::CondTake>>; | cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::CondTake>>; | ||||
using TopKBase = cg::SingleCNOperatorNode< | using TopKBase = cg::SingleCNOperatorNode< | ||||
cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::TopK>>; | cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::TopK>>; | ||||
using CheckNonFiniteBase = cg::SingleCNOperatorNode< | |||||
cg::OperatorNodeBase, mixin::MegDNNOprHolderImpl<megdnn::CheckNonFinite>>; | |||||
} // namespace intl | } // namespace intl | ||||
/*! | /*! | ||||
@@ -181,7 +183,19 @@ public: | |||||
const OperatorNodeConfig& config = {}); | const OperatorNodeConfig& config = {}); | ||||
}; | }; | ||||
MGB_DEFINE_MEGDNN_OPR_WRAPPER_FWD1(CheckNonFinite); | |||||
MGB_DEFINE_OPR_CLASS(CheckNonFinite, intl::CheckNonFiniteBase) //{ | |||||
void scn_do_execute() override; | |||||
void init_output_static_infer_desc() override; | |||||
void add_input_layout_constraint() override; | |||||
public: | |||||
MGE_WIN_DECLSPEC_FUC CheckNonFinite( | |||||
const VarNodeArrayView& inp, const Param& param, | |||||
const OperatorNodeConfig& config); | |||||
MGE_WIN_DECLSPEC_FUC static SymbolVar make( | |||||
const VarNodeArrayView& inp, const Param& param = {}, | |||||
const OperatorNodeConfig& config = {}); | |||||
}; | |||||
} // namespace opr | } // namespace opr | ||||
} // namespace mgb | } // namespace mgb | ||||