GitOrigin-RevId: 229e1eb4be
release-1.6
@@ -19,8 +19,8 @@ class Conv2dOperation: | |||
# | |||
def __init__(self, conv_kind, conv_type, arch, tile_description, src, flt, bias, dst, element_epilogue, \ | |||
epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4, \ | |||
need_load_from_const = True, implicit_gemm_mode = ImplicitGemmMode.GemmNT, without_shared_load = False, \ | |||
required_cuda_ver_major = 9, required_cuda_ver_minor = 2): | |||
special_optimization = SpecialOptimizeDesc.NoneSpecialOpt, implicit_gemm_mode = ImplicitGemmMode.GemmNT, \ | |||
without_shared_load = False, required_cuda_ver_major = 9, required_cuda_ver_minor = 2): | |||
self.operation_kind = OperationKind.Conv2d | |||
self.conv_kind = conv_kind | |||
@@ -34,7 +34,7 @@ class Conv2dOperation: | |||
self.element_epilogue = element_epilogue | |||
self.epilogue_functor = epilogue_functor | |||
self.swizzling_functor = swizzling_functor | |||
self.need_load_from_const = need_load_from_const | |||
self.special_optimization = special_optimization | |||
self.implicit_gemm_mode = implicit_gemm_mode | |||
self.without_shared_load = without_shared_load | |||
self.required_cuda_ver_major = required_cuda_ver_major | |||
@@ -60,16 +60,18 @@ class Conv2dOperation: | |||
else: | |||
inst_shape = '' | |||
unity_kernel = '' | |||
if not self.need_load_from_const: | |||
unity_kernel = '_1x1' | |||
special_opt = '' | |||
if self.special_optimization == SpecialOptimizeDesc.ConvFilterUnity: | |||
special_opt = '_1x1' | |||
elif self.special_optimization == SpecialOptimizeDesc.DeconvDoubleUpsampling: | |||
special_opt = '_s2' | |||
reorder_k = '' | |||
if self.without_shared_load: | |||
reorder_k = '_roc' | |||
return "%s%s%s%s%s%s_%s" % (ShortDataTypeNames[self.accumulator_type()], \ | |||
inst_shape, intermediate_type, ConvKindNames[self.conv_kind], unity_kernel, \ | |||
inst_shape, intermediate_type, ConvKindNames[self.conv_kind], special_opt, \ | |||
reorder_k, ShortEpilogueNames[self.epilogue_functor]) | |||
# | |||
@@ -183,7 +185,7 @@ using Convolution = | |||
${stages}, | |||
${alignment_src}, | |||
${alignment_filter}, | |||
${nonuninity_kernel}, | |||
${special_optimization}, | |||
${math_operator}, | |||
${implicit_gemm_mode}, | |||
${without_shared_load}>; | |||
@@ -226,7 +228,7 @@ using Convolution = | |||
'stages': str(operation.tile_description.stages), | |||
'alignment_src': str(operation.src.alignment), | |||
'alignment_filter': str(operation.flt.alignment), | |||
'nonuninity_kernel': str(operation.need_load_from_const).lower(), | |||
'special_optimization': SpecialOptimizeDescTag[operation.special_optimization], | |||
'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], | |||
'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode], | |||
'without_shared_load': str(operation.without_shared_load).lower() | |||
@@ -266,7 +268,7 @@ using Deconvolution = | |||
${stages}, | |||
${alignment_src}, | |||
${alignment_filter}, | |||
${nonuninity_kernel}, | |||
${special_optimization}, | |||
${math_operator}, | |||
${implicit_gemm_mode}>; | |||
""" | |||
@@ -308,7 +310,7 @@ using Deconvolution = | |||
'stages': str(operation.tile_description.stages), | |||
'alignment_src': str(operation.src.alignment), | |||
'alignment_filter': str(operation.flt.alignment), | |||
'nonuninity_kernel': str(operation.need_load_from_const).lower(), | |||
'special_optimization': SpecialOptimizeDescTag[operation.special_optimization], | |||
'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], | |||
'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode] | |||
} | |||
@@ -323,9 +325,9 @@ using Deconvolution = | |||
################################################################################################### | |||
# | |||
def GenerateConv2d(conv_kind, tile_descriptions, src_layout, flt_layout, dst_layout, dst_type, min_cc, src_align = 32, flt_align = 32, dst_align = 128, \ | |||
skip_unity_kernel = False, implicit_gemm_mode = ImplicitGemmMode.GemmNT, without_shared_load = False, required_cuda_ver_major = 9, \ | |||
required_cuda_ver_minor = 2): | |||
def GenerateConv2d(conv_kind, tile_descriptions, src_layout, flt_layout, dst_layout, dst_type, min_cc, src_align = 32, flt_align = 32, dst_align = 32, \ | |||
use_special_optimization = SpecialOptimizeDesc.NoneSpecialOpt, implicit_gemm_mode = ImplicitGemmMode.GemmNT, without_shared_load = False, \ | |||
required_cuda_ver_major = 9, required_cuda_ver_minor = 2): | |||
operations = [] | |||
element_epilogue = DataType.f32 | |||
@@ -412,10 +414,10 @@ def GenerateConv2d(conv_kind, tile_descriptions, src_layout, flt_layout, dst_lay | |||
bias = TensorDescription(bias_type, dst_layout, max(1, int(32 / DataTypeSize[bias_type]))) | |||
dst = TensorDescription(dst_type, dst_layout, int(dst_align / DataTypeSize[dst_type])) | |||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, True, implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, SpecialOptimizeDesc.NoneSpecialOpt, implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||
operations.append(new_operation) | |||
if not skip_unity_kernel: | |||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, False, implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||
if use_special_optimization != SpecialOptimizeDesc.NoneSpecialOpt: | |||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, use_special_optimization , implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||
operations.append(new_operation) | |||
return operations | |||
@@ -168,10 +168,10 @@ def GenerateConv2d_Simt(args): | |||
for dst_type, dst_layout in zip(dst_types, dst_layouts): | |||
if dst_type == DataType.s4 or dst_type == DataType.u4: | |||
min_cc = 75 | |||
skip_unity_kernel = True | |||
use_special_optimization = SpecialOptimizeDesc.NoneSpecialOpt | |||
else: | |||
min_cc = 61 | |||
skip_unity_kernel = False | |||
use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity | |||
tile_descriptions = [ | |||
TileDescription([128, 128, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||
@@ -182,10 +182,16 @@ def GenerateConv2d_Simt(args): | |||
TileDescription([ 64, 32, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([ 16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([ 16, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
] | |||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, 32, 32, 32, | |||
skip_unity_kernel) | |||
] | |||
for tile in tile_descriptions: | |||
if dst_layout == LayoutType.TensorNC32HW32 and tile.threadblock_shape[0] > 32: | |||
continue | |||
if (dst_layout == LayoutType.TensorNCHW or dst_layout == LayoutType.TensorNHWC) \ | |||
and tile.threadblock_shape[0] > 16: | |||
continue | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, 32, 32, 32, | |||
use_special_optimization) | |||
return operations | |||
@@ -214,6 +220,8 @@ def GenerateConv2d_TensorOp_8816(args): | |||
DataType.s8, | |||
] | |||
use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity | |||
min_cc = 75 | |||
max_cc = 1024 | |||
@@ -232,28 +240,69 @@ def GenerateConv2d_TensorOp_8816(args): | |||
TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 64, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([ 64, 128, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([ 32, 128, 32], 1, [1, 2, 1], math_inst, min_cc, max_cc), | |||
] | |||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, 128, 128, 64, | |||
False, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
else: | |||
assert dst_layout == LayoutType.TensorNC4HW4 | |||
tile_descriptions = [ | |||
TileDescription([128, 256, 64], 2, [2, 4, 1], math_inst, min_cc, max_cc), | |||
TileDescription([256, 128, 64], 2, [4, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 64, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 64, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([ 64, 128, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([ 32, 128, 32], 1, [1, 2, 1], math_inst, min_cc, max_cc), | |||
] | |||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, 128, 128, 64, | |||
False, ImplicitGemmMode.GemmNT, False, cuda_major, cuda_minor) | |||
dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, | |||
ImplicitGemmMode.GemmNT, False, cuda_major, cuda_minor) | |||
layouts_nhwc = [ | |||
(LayoutType.TensorNHWC, LayoutType.TensorNC4HW4, 32), | |||
(LayoutType.TensorNHWC, LayoutType.TensorNC8HW8, 64), | |||
(LayoutType.TensorNHWC, LayoutType.TensorNC16HW16, 128), | |||
] | |||
dst_layouts_nhwc = [ | |||
LayoutType.TensorNHWC, | |||
] | |||
for math_inst in math_instructions: | |||
for layout in layouts_nhwc: | |||
for dst_layout in dst_layouts_nhwc: | |||
dst_type = math_inst.element_b | |||
tile_descriptions = [ | |||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([64, 16, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
] | |||
for tile in tile_descriptions: | |||
dst_align = 32 if tile.threadblock_shape[1] == 16 else 64 | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||
if tile.threadblock_shape[1] == 16 or tile.threadblock_shape[1] == 32: | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
out_dtypes = [DataType.s4, DataType.u4, DataType.f32] | |||
#INT8x8x4 and INT8x8x32 | |||
for math_inst in math_instructions: | |||
for layout in layouts_nhwc: | |||
for dst_layout in dst_layouts_nhwc: | |||
for out_dtype in out_dtypes: | |||
tile_descriptions = [ | |||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([64, 16, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
] | |||
for tile in tile_descriptions: | |||
dst_align = 4 * DataTypeSize[out_dtype] if tile.threadblock_shape[1] == 16 or out_dtype == DataType.f32 \ | |||
else 8 * DataTypeSize[out_dtype] | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
out_dtype, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||
if tile.threadblock_shape[1] == 16 or (tile.threadblock_shape[1] == 32 and out_dtype != DataType.f32): | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
out_dtype, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
return operations | |||
@@ -281,6 +330,8 @@ def GenerateConv2d_TensorOp_8832(args): | |||
LayoutType.TensorNC64HW64, | |||
] | |||
use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity | |||
min_cc = 75 | |||
max_cc = 1024 | |||
@@ -298,8 +349,8 @@ def GenerateConv2d_TensorOp_8832(args): | |||
TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
] | |||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, 128, 128, 64, | |||
False, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
layouts_nhwc = [ | |||
(LayoutType.TensorNHWC, LayoutType.TensorNC8HW8, 32), | |||
@@ -316,18 +367,39 @@ def GenerateConv2d_TensorOp_8832(args): | |||
for dst_layout in dst_layouts_nhwc: | |||
dst_type = math_inst.element_b | |||
tile_descriptions = [ | |||
TileDescription([128, 16, 64], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 32, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
] | |||
for tile in tile_descriptions: | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, layout[2], layout[2], 32, | |||
False, ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||
dst_align = 16 if tile.threadblock_shape[1] == 16 else 32 | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||
if tile.threadblock_shape[1] == 32 or tile.threadblock_shape[1] == 64: | |||
dst_align = 32 if tile.threadblock_shape[1] == 32 else 64 | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, layout[2], layout[2], dst_align, | |||
False, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
# INT4x4x8 | |||
for math_inst in math_instructions: | |||
for layout in layouts_nhwc: | |||
for dst_layout in dst_layouts_nhwc: | |||
tile_descriptions = [ | |||
TileDescription([128, 16, 64], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 32, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||
] | |||
for tile in tile_descriptions: | |||
dst_align = 32 if tile.threadblock_shape[1] == 16 else 64 | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
DataType.s8, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||
if tile.threadblock_shape[1] == 32 or tile.threadblock_shape[1] == 64: | |||
dst_align = 64 if tile.threadblock_shape[1] == 32 else 128 | |||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||
DataType.s8, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||
return operations | |||
@@ -354,6 +426,8 @@ def GenerateDeconv_Simt(args): | |||
DataType.s8, | |||
] | |||
use_special_optimization = SpecialOptimizeDesc.DeconvDoubleUpsampling | |||
min_cc = 61 | |||
max_cc = 1024 | |||
@@ -361,7 +435,6 @@ def GenerateDeconv_Simt(args): | |||
for layout in layouts: | |||
for dst_type, dst_layout in zip(dst_types, dst_layouts): | |||
tile_descriptions = [ | |||
TileDescription([64, 128, 32], 2, [1, 4, 1], math_inst, min_cc, max_cc), | |||
TileDescription([32, 128, 32], 2, [1, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([16, 128, 16], 2, [1, 2, 1], math_inst, min_cc, max_cc), | |||
TileDescription([16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), | |||
@@ -369,7 +442,7 @@ def GenerateDeconv_Simt(args): | |||
] | |||
operations += GenerateConv2d(ConvKind.Dgrad, tile_descriptions, layout[0], layout[1], | |||
dst_layout, dst_type, min_cc, 32, 32, 32, | |||
True) | |||
use_special_optimization) | |||
return operations | |||
################################################################################ | |||
@@ -562,6 +562,24 @@ StrideSupportNames = { | |||
StrideSupport.Unity: 'unity_stride', | |||
} | |||
class SpecialOptimizeDesc(enum.Enum): | |||
NoneSpecialOpt = enum_auto() | |||
ConvFilterUnity = enum_auto() | |||
DeconvDoubleUpsampling = enum_auto() | |||
SpecialOptimizeDescNames = { | |||
SpecialOptimizeDesc.NoneSpecialOpt: 'none', | |||
SpecialOptimizeDesc.ConvFilterUnity: 'conv_filter_unity', | |||
SpecialOptimizeDesc.DeconvDoubleUpsampling: 'deconv_double_upsampling', | |||
} | |||
SpecialOptimizeDescTag = { | |||
SpecialOptimizeDesc.NoneSpecialOpt: 'cutlass::conv::SpecialOptimizeDesc::NONE', | |||
SpecialOptimizeDesc.ConvFilterUnity: 'cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY', | |||
SpecialOptimizeDesc.DeconvDoubleUpsampling: 'cutlass::conv::SpecialOptimizeDesc::DECONV_DOUBLE_UPSAMPLING', | |||
} | |||
class ImplicitGemmMode(enum.Enum): | |||
GemmNT = enum_auto() | |||
GemmTN = enum_auto() | |||
@@ -455,11 +455,14 @@ cutlass_gen_list = [ | |||
"cutlass_simt_sgemv_batched_strided_1x32_32_tt_align1x4.cu", | |||
"cutlass_simt_sgemv_batched_strided_1x32_16_tt_align1x2.cu", | |||
"cutlass_simt_sgemv_batched_strided_1x32_8_tt_align1x1.cu", | |||
"cutlass_simt_s8_idgrad_id_s8_64x128x32_64x32x32_2_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_id_s8_32x128x32_32x64x32_2_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_s2_id_s8_32x128x32_32x64x32_2_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_id_s8_16x128x16_16x64x16_2_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_s2_id_s8_16x128x16_16x64x16_2_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_id_s8_16x128x16_16x128x16_1_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_s2_id_s8_16x128x16_16x128x16_1_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_id_s8_16x64x8_16x64x8_2_nc4hw4_k4rsc4.cu", | |||
"cutlass_simt_s8_idgrad_s2_id_s8_16x64x8_16x64x8_2_nc4hw4_k4rsc4.cu", | |||
"all_deconv_simt_operations.cu", | |||
"cutlass_simt_s8_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4.cu", | |||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4.cu", | |||
@@ -515,30 +518,6 @@ cutlass_gen_list = [ | |||
"cutlass_simt_s8_ifprop_1x1_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | |||
"cutlass_simt_s8_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | |||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | |||
"cutlass_simt_s8_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
@@ -551,108 +530,18 @@ cutlass_gen_list = [ | |||
"cutlass_simt_s8_ifprop_1x1_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_id_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_u4_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_id_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_s4_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_1x1_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | |||
"cutlass_simt_f32_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | |||
@@ -708,72 +597,288 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||
"cutlass_tensorop_s4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||
"all_conv2d_tensorop8816_operations.cu", | |||
"cutlass_tensorop_s4_i8832fprop_roc_id_s4_128x256x128_64x64x128_2_nc64hw64_c64rsk64.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_id_s4_128x256x128_64x64x128_2_nc64hw64_c64rsk64.cu", | |||
@@ -815,6 +920,12 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | |||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | |||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
@@ -839,6 +950,12 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
@@ -863,6 +980,12 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
@@ -887,6 +1010,10 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
@@ -903,6 +1030,10 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
@@ -919,6 +1050,10 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
@@ -935,5 +1070,155 @@ cutlass_gen_list = [ | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||
"all_conv2d_tensorop8832_operations.cu", | |||
] | |||
] |
@@ -553,7 +553,10 @@ void ConvolutionBase<Parameter>::check_or_deduce_dtype_fwd(DType src, | |||
dst.valid() && (dst.enumv() == src.enumv() || | |||
((dst.enumv() == DTypeEnum::QuantizedS4 || | |||
dst.enumv() == DTypeEnum::Quantized4Asymm) && | |||
src.enumv() == DTypeEnum::QuantizedS8)); | |||
src.enumv() == DTypeEnum::QuantizedS8) || | |||
((src.enumv() == DTypeEnum::QuantizedS4 || | |||
src.enumv() == DTypeEnum::Quantized4Asymm) && | |||
dst.enumv() == DTypeEnum::QuantizedS8)); | |||
if (cond_dst) { | |||
supported_dst_dtype.push_back(dst); | |||
} | |||
@@ -71,6 +71,9 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
for (auto&& algo : int8_nchw32_imma) { | |||
all_algos.push_back(&algo); | |||
} | |||
for (auto&& algo : int8_nhwc_imma) { | |||
all_algos.push_back(&algo); | |||
} | |||
for (auto&& algo : int4_int4_nchw64_imma) { | |||
all_algos.push_back(&algo); | |||
} | |||
@@ -236,7 +239,21 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||
int8_nchw32_imma.emplace_back( | |||
AlgoParam{32, 128, 32, 32, 64, 32, 8, 8, 16, 1}); | |||
} | |||
{ | |||
using AlgoParam = AlgoInt8NHWCIMMAImplicitGemm::AlgoParam; | |||
int8_nhwc_imma.emplace_back( | |||
AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 16}); | |||
int8_nhwc_imma.emplace_back( | |||
AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 8}); | |||
int8_nhwc_imma.emplace_back( | |||
AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 4}); | |||
int8_nhwc_imma.emplace_back( | |||
AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 16}); | |||
int8_nhwc_imma.emplace_back( | |||
AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 8}); | |||
int8_nhwc_imma.emplace_back( | |||
AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 4}); | |||
} | |||
{ | |||
using AlgoParam = AlgoInt4Int4NCHW64IMMAImplicitGemm::AlgoParam; | |||
int4_int4_nchw64_imma.emplace_back( | |||
@@ -262,6 +279,12 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||
{ | |||
using AlgoParam = AlgoInt4Int4NHWCIMMAImplicitGemm::AlgoParam; | |||
int4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32}); | |||
int4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16}); | |||
int4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8}); | |||
int4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32}); | |||
int4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16}); | |||
@@ -277,6 +300,12 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||
{ | |||
using AlgoParam = AlgoUInt4Int4NHWCIMMAImplicitGemm::AlgoParam; | |||
uint4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32}); | |||
uint4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16}); | |||
uint4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8}); | |||
uint4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32}); | |||
uint4_int4_nhwc_imma.emplace_back( | |||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16}); | |||
@@ -72,6 +72,7 @@ public: | |||
CUDA_IMPLICIT_GEMM_REORDER_FILTER_CHWN4_IMMA_INT8, | |||
CUDA_IMPLICIT_GEMM_UNROLL_WIDTH_CHWN4_IMMA_INT8, | |||
CUDA_IMPLICIT_GEMM_IMMA_NCHW32_INT8, | |||
CUDA_IMPLICIT_GEMM_IMMA_NHWC_INT8, | |||
CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4, | |||
CUDA_IMPLICIT_GEMM_IMMA_NCHW64_UINT4_INT4, | |||
CUDA_IMPLICIT_GEMM_IMMA_NHWC_INT4_INT4, | |||
@@ -524,6 +525,7 @@ public: | |||
* + | |||
* +--- AlgoInt8NCHW4DotProdImplicitGemm | |||
* +--- AlgoInt8NCHW32IMMAImplicitGemm | |||
* +--- AlgoInt8NHWCIMMAImplicitGemm | |||
* + | |||
* +--- AlgoInt4NCHW64IMMAImplicitGemmBase | |||
* +----+--- AlgoInt4Int4NCHW64IMMAImplicitGemm | |||
@@ -582,7 +584,7 @@ public: | |||
// operation (cutlass kernel) from the global OperationTable | |||
const cutlass::library::Operation* get_cutlass_conv_op( | |||
const SizeArgs& args, ConvOperator conv_op, ConvType conv_type, | |||
bool load_from_const, bool without_shared_load) const; | |||
bool use_conv_filter_unity_opt, bool without_shared_load) const; | |||
// execute the cutlass kernel found by get_cutlass_conv_op. we give | |||
// subclasses full freedom to decide where and how these arguments are | |||
@@ -829,6 +831,47 @@ private: | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm final | |||
: public AlgoCutlassConvolutionBase { | |||
public: | |||
AlgoInt8NHWCIMMAImplicitGemm(AlgoParam algo_param) | |||
: AlgoCutlassConvolutionBase(algo_param) { | |||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||
ssprintf("INT8_NHWC_IMMA_IMPLICIT_GEMM_%s", | |||
to_string(m_algo_param).c_str()), | |||
ConvBias::DirectParam{}); | |||
} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
void exec(const ExecArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { | |||
return AlgoAttribute::REPRODUCIBLE; | |||
} | |||
static std::string to_string(AlgoParam algo_param); | |||
size_t get_preprocess_workspace_in_bytes( | |||
const SizeArgs& args) const override; | |||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const override; | |||
void exec_preprocess(const ExecArgs& args) const override; | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NHWC_INT8) | |||
std::string param() const override { | |||
std::string ret; | |||
serialize_write_pod(m_algo_param, ret); | |||
return ret; | |||
} | |||
private: | |||
std::tuple<float, float, float, float, float> get_constants( | |||
const ExecArgs& args) const; | |||
void reorder_filter(const ExecArgs& args, int interleaved, | |||
void* reordered_filter) const; | |||
std::string m_name; | |||
}; | |||
class ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase | |||
: public AlgoCutlassConvolutionBase { | |||
public: | |||
@@ -1087,6 +1130,7 @@ public: | |||
#endif | |||
#if CUDA_VERSION >= 10020 | |||
std::vector<AlgoInt8NCHW32IMMAImplicitGemm> int8_nchw32_imma; | |||
std::vector<AlgoInt8NHWCIMMAImplicitGemm> int8_nhwc_imma; | |||
std::vector<AlgoInt4Int4NCHW64IMMAImplicitGemm> int4_int4_nchw64_imma; | |||
std::vector<AlgoUInt4Int4NCHW64IMMAImplicitGemm> uint4_int4_nchw64_imma; | |||
std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma; | |||
@@ -140,6 +140,11 @@ LayoutPack get_layout_pack(const param::ConvBias::Format format, | |||
LayoutTypeID::kTensorNC64HW64}; | |||
case Format::NHWC: | |||
switch (access_type) { | |||
case 4: | |||
return {LayoutTypeID::kTensorNHWC, | |||
LayoutTypeID::kTensorNC4HW4, | |||
LayoutTypeID::kTensorNHWC, | |||
LayoutTypeID::kTensorNHWC}; | |||
case 8: | |||
return {LayoutTypeID::kTensorNHWC, | |||
LayoutTypeID::kTensorNC8HW8, | |||
@@ -192,12 +197,18 @@ EpilogueType get_epilogue_type(const param::ConvBias::NonlineMode mode, | |||
const Operation* | |||
ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | |||
const SizeArgs& args, ConvOperator conv_op, ConvType conv_type, | |||
bool load_from_const, bool without_shared_load) const { | |||
using Format = param::ConvBias::Format; | |||
bool use_conv_filter_unity_opt, bool without_shared_load) const { | |||
auto&& param = args.opr->param(); | |||
auto layouts = get_layout_pack(param.format, m_algo_param.access_size); | |||
auto epilogue_type = get_epilogue_type(param.nonlineMode, | |||
param.format != Format::NCHW4_NCHW); | |||
auto epilogue_type = get_epilogue_type( | |||
param.nonlineMode, | |||
args.dst_layout->dtype.enumv() != DTypeEnum::Float32); | |||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||
(use_conv_filter_unity_opt) | |||
? cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY | |||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||
ConvolutionKey key{convert_conv_op(conv_op), | |||
convert_dtype(args.src_layout->dtype.enumv()), | |||
layouts.src, | |||
@@ -219,7 +230,7 @@ ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | |||
m_algo_param.instruction_k, | |||
epilogue_type, | |||
m_algo_param.stage, | |||
load_from_const, | |||
special_optimization, | |||
without_shared_load}; | |||
return Singleton::get().operation_table.find_op(key); | |||
@@ -144,28 +144,48 @@ void megdnn::cuda::cutlass_wrapper::reorder_ncxhwx_imma_filter( | |||
IC, FH, FW, trans_oc); | |||
after_kernel_launch(); | |||
} | |||
template <uint32_t size_bits, uint32_t alignbits> | |||
template <uint32_t size_bits> | |||
void megdnn::cuda::cutlass_wrapper::reorder_nhwc_imma_filter( | |||
int8_t* dst_filter, const int8_t* src_filter, uint32_t OC, uint32_t IC, | |||
uint32_t FH, uint32_t FW, bool trans_oc, uint32_t oc_interleaved, | |||
cudaStream_t stream) { | |||
static constexpr uint32_t elements_per_access = alignbits / size_bits; | |||
uint32_t nr_threads = | |||
query_blocksize_for_kernel(reinterpret_cast<const void*>( | |||
reorder_nhwc_imma_filter_kernel<size_bits, alignbits, 32>)); | |||
uint32_t FH, uint32_t FW, bool trans_oc, uint32_t alignbits, | |||
uint32_t interleaved, cudaStream_t stream) { | |||
const uint32_t elements_per_access = alignbits / size_bits; | |||
void (*kern)(int8_t* __restrict__, const int8_t* __restrict__, uint32_t, | |||
uint32_t, uint32_t, uint32_t, bool); | |||
kern = nullptr; | |||
auto get_kern = [&kern](const uint32_t alignbits, | |||
const uint32_t interleaved) { | |||
#define DISPATCH_KERNEL(alignbits_, interleaved_) \ | |||
if (alignbits == alignbits_ && interleaved == interleaved_) { \ | |||
kern = reorder_nhwc_imma_filter_kernel<size_bits, alignbits_, \ | |||
interleaved_>; \ | |||
return; \ | |||
} | |||
DISPATCH_KERNEL(128, 16); | |||
DISPATCH_KERNEL(64, 16); | |||
DISPATCH_KERNEL(32, 16); | |||
DISPATCH_KERNEL(128, 32); | |||
DISPATCH_KERNEL(64, 32); | |||
DISPATCH_KERNEL(32, 32); | |||
DISPATCH_KERNEL(128, 64); | |||
DISPATCH_KERNEL(64, 64); | |||
DISPATCH_KERNEL(32, 64); | |||
#undef DISPATCH_KERNEL | |||
}; | |||
get_kern(alignbits, interleaved); | |||
uint32_t nr_threads = query_blocksize_for_kernel(kern); | |||
uint32_t vthreads = DIVUP(OC * IC * FH * FW, elements_per_access); | |||
nr_threads = std::min(nr_threads, vthreads); | |||
uint32_t nr_blocks = DIVUP(vthreads, nr_threads); | |||
if (oc_interleaved == 32) { | |||
reorder_nhwc_imma_filter_kernel<size_bits, alignbits, 32> | |||
<<<nr_blocks, nr_threads, 0, stream>>>( | |||
dst_filter, src_filter, OC, IC, FH, FW, trans_oc); | |||
} else { | |||
reorder_nhwc_imma_filter_kernel<size_bits, alignbits, 64> | |||
<<<nr_blocks, nr_threads, 0, stream>>>( | |||
dst_filter, src_filter, OC, IC, FH, FW, trans_oc); | |||
} | |||
kern<<<nr_blocks, nr_threads, 0, stream>>>(dst_filter, src_filter, OC, IC, | |||
FH, FW, trans_oc); | |||
after_kernel_launch(); | |||
} | |||
@@ -180,15 +200,14 @@ INST(8, 32) | |||
INST(4, 64) | |||
#undef INST | |||
#define INST(_size_bits, _alignbits) \ | |||
template void megdnn::cuda::cutlass_wrapper::reorder_nhwc_imma_filter< \ | |||
_size_bits, _alignbits>( \ | |||
int8_t * dst_filter, const int8_t* src_filter, uint32_t OC, \ | |||
uint32_t IC, uint32_t FH, uint32_t FW, bool trans_oc, \ | |||
uint32_t oc_interleaved, cudaStream_t stream); | |||
INST(4, 32) | |||
INST(4, 64) | |||
INST(4, 128) | |||
#define INST(_size_bits) \ | |||
template void \ | |||
megdnn::cuda::cutlass_wrapper::reorder_nhwc_imma_filter<_size_bits>( \ | |||
int8_t * dst_filter, const int8_t* src_filter, uint32_t OC, \ | |||
uint32_t IC, uint32_t FH, uint32_t FW, bool trans_oc, \ | |||
uint32_t alignbits, uint32_t interleaved, cudaStream_t stream); | |||
INST(4) | |||
INST(8) | |||
#undef INST | |||
// vim: syntax=cuda.doxygen |
@@ -23,11 +23,11 @@ void reorder_ncxhwx_imma_filter(int8_t* dst_filter, const int8_t* src_filter, | |||
uint32_t FW, bool trans_oc, | |||
cudaStream_t stream); | |||
template <uint32_t size_bits, uint32_t alignbits> | |||
template <uint32_t size_bits> | |||
void reorder_nhwc_imma_filter(int8_t* dst_filter, const int8_t* src_filter, | |||
uint32_t OC, uint32_t IC, uint32_t FH, | |||
uint32_t FW, bool trans_oc, | |||
uint32_t oc_interleaved, cudaStream_t stream); | |||
uint32_t FW, bool trans_oc, uint32_t alignbits, | |||
uint32_t interleaved, cudaStream_t stream); | |||
} // namespace cutlass_wrapper | |||
} // namespace cuda | |||
} // namespace megdnn |
@@ -68,13 +68,27 @@ ConvBiasForwardImpl::AlgoInt4Int4NHWCIMMAImplicitGemm::get_constants( | |||
args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | |||
bias_scale = | |||
args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
dst_scale; | |||
if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
} else { // DTypeEnum::QuantizedS8 | |||
megdnn_assert(args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8); | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
} | |||
float alpha = src_scale * filter_scale / dst_scale, | |||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, theta = 0.f; | |||
if (args.z_layout->ndim > 0) { | |||
float z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
float z_scale; | |||
if (args.z_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
} else { // DTypeEnum::QuantizedS8 | |||
megdnn_assert(args.z_layout->dtype.enumv() == | |||
DTypeEnum::QuantizedS8); | |||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
} | |||
gamma = z_scale / dst_scale; | |||
} | |||
@@ -76,6 +76,14 @@ bool ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::is_available( | |||
if (fh * fw > kMaxFilterPixels) | |||
return false; | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = true; | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||
use_conv_filter_unity_opt, without_shared_load); | |||
if (op == nullptr) | |||
return false; | |||
return true; | |||
} | |||
@@ -110,7 +118,7 @@ void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::exec( | |||
float dst_scale = 0.f; | |||
float threshold = 0.f; | |||
uint8_t src_zero = 0; | |||
bool load_from_const = !(fh == 1 && fw == 1); | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = true; | |||
if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||
@@ -126,7 +134,7 @@ void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::exec( | |||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | |||
ConvType::kConvolution, | |||
load_from_const, without_shared_load); | |||
use_conv_filter_unity_opt, without_shared_load); | |||
execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | |||
z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | |||
@@ -56,8 +56,11 @@ bool ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::is_available( | |||
if (args.src_layout->dtype.enumv() != src_dtype() || | |||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | |||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||
args.dst_layout->dtype.enumv() != src_dtype()) | |||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32) | |||
return false; | |||
if (!(args.dst_layout->dtype.enumv() == src_dtype() || | |||
args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8)) | |||
return false; | |||
// uint4 do not support H_SWISH activition | |||
@@ -83,6 +86,16 @@ bool ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::is_available( | |||
if ((co % 8 != 0) || (ci % m_algo_param.access_size != 0)) | |||
return false; | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | |||
(m_algo_param.threadblock_n == 32 || | |||
m_algo_param.threadblock_n == 64)); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||
use_conv_filter_unity_opt, without_shared_load); | |||
if (op == nullptr) | |||
return false; | |||
return true; | |||
} | |||
@@ -117,26 +130,31 @@ void ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::exec( | |||
float dst_scale = 0.f; | |||
float threshold = 0.f; | |||
uint8_t src_zero = 0; | |||
bool load_from_const = !(fh == 1 && fw == 1); | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | |||
(m_algo_param.threadblock_n == 32 || | |||
m_algo_param.threadblock_n == 64)); | |||
if (args.src_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||
src_zero = args.src_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
} | |||
if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||
dst_scale = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
src_zero = args.src_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
} else { // DTypeEnum::QuantizedS4 | |||
} else if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
} else { // DTypeEnum::QuantizedS8 | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
} | |||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | |||
ConvType::kConvolution, | |||
load_from_const, without_shared_load); | |||
use_conv_filter_unity_opt, without_shared_load); | |||
execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | |||
z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | |||
@@ -166,29 +184,18 @@ void ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::reorder_filter( | |||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||
// reformat filter from nhwc to ncxhwx and reorder oc | |||
// use trans_oc threadblock_n must be 32 or 64 | |||
// use trans_oc threadblock_n must be 32 or 64 and src dtype == dest dtype | |||
bool trans_oc = ((co % m_algo_param.threadblock_n == 0) && | |||
(m_algo_param.threadblock_n == 32 || | |||
m_algo_param.threadblock_n == 64)); | |||
uint32_t oc_iterleave = (m_algo_param.threadblock_n == 64) ? 64 : 32; | |||
if (iterleaved == 8) { | |||
cutlass_wrapper::reorder_nhwc_imma_filter<4, 32>( | |||
reinterpret_cast<int8_t*>(reordered_filter), | |||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, | |||
fh, fw, trans_oc, oc_iterleave, stream); | |||
} else if (iterleaved == 16) { | |||
cutlass_wrapper::reorder_nhwc_imma_filter<4, 64>( | |||
reinterpret_cast<int8_t*>(reordered_filter), | |||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, | |||
fh, fw, trans_oc, oc_iterleave, stream); | |||
} else { | |||
megdnn_assert(iterleaved == 32); | |||
cutlass_wrapper::reorder_nhwc_imma_filter<4, 128>( | |||
reinterpret_cast<int8_t*>(reordered_filter), | |||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, | |||
fh, fw, trans_oc, oc_iterleave, stream); | |||
} | |||
uint32_t oc_iterleaved = (m_algo_param.threadblock_n == 64) ? 64 : 32; | |||
uint32_t alignbits = iterleaved * 4; | |||
cutlass_wrapper::reorder_nhwc_imma_filter<4>( | |||
reinterpret_cast<int8_t*>(reordered_filter), | |||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, fh, | |||
fw, trans_oc, alignbits, oc_iterleaved, stream); | |||
} | |||
#endif | |||
@@ -77,6 +77,14 @@ bool ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::is_available( | |||
// FIXME: too large filter size is not supported now | |||
size_t kMaxFilterPixels = 848 / (2 * m_algo_param.warp_k / 32) - 2; | |||
available &= fh * fw <= kMaxFilterPixels; | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = (param.format == Format::NCHW32); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||
use_conv_filter_unity_opt, without_shared_load); | |||
available &= (op != nullptr); | |||
return available; | |||
} | |||
@@ -155,12 +163,12 @@ void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec( | |||
gamma = z_scale / dst_scale; | |||
} | |||
float delta = 0.f, theta = 0.f, threshold = 0.f; | |||
bool load_from_const = !(fh == 1 && fw == 1); | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = (param.format == Format::NCHW32); | |||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | |||
ConvType::kConvolution, | |||
load_from_const, without_shared_load); | |||
use_conv_filter_unity_opt, without_shared_load); | |||
execute_cutlass_conv_op( | |||
op, args.src_tensor->raw_ptr, filter_ptr, args.bias_tensor->raw_ptr, | |||
@@ -98,7 +98,14 @@ bool ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::is_available( | |||
// FIXME: too large filter size is not supported now | |||
size_t kMaxFilterPixels = 848 / (2 * m_algo_param.warp_k / 4) - 2; | |||
available &= fh * fw <= kMaxFilterPixels; | |||
; | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = false; | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||
use_conv_filter_unity_opt, without_shared_load); | |||
available &= (op != nullptr); | |||
return available; | |||
} | |||
@@ -213,12 +220,12 @@ void ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec( | |||
} | |||
} | |||
float threshold = 0.f; | |||
bool load_from_const = !(fh == 1 && fw == 1); | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = false; | |||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | |||
ConvType::kConvolution, | |||
load_from_const, without_shared_load); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||
use_conv_filter_unity_opt, without_shared_load); | |||
execute_cutlass_conv_op( | |||
op, args.src_tensor->raw_ptr, filter_ptr, args.bias_tensor->raw_ptr, | |||
@@ -0,0 +1,294 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/implicit_gemm_int8_nhwc_imma.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/conv_bias/cutlass_reorder_filter.cuh" | |||
#include "src/cuda/convolution_helper/parameter.cuh" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
using namespace convolution; | |||
#if CUDA_VERSION >= 10020 | |||
bool ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::is_available( | |||
const SizeArgs& args) const { | |||
if (args.bias_layout->ndim <= 0) | |||
return false; | |||
using Param = param::ConvBias; | |||
using Format = Param::Format; | |||
using Sparse = Param::Sparse; | |||
using Mode = Param::Mode; | |||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||
auto&& param = args.opr->param(); | |||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||
return false; | |||
if (param.format != Format::NHWC || param.sparse != Sparse::DENSE || | |||
param.mode != Mode::CROSS_CORRELATION) | |||
return false; | |||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||
param.nonlineMode != NonlineMode::RELU && | |||
param.nonlineMode != NonlineMode::H_SWISH) | |||
return false; | |||
if (args.src_layout->dtype.enumv() != DTypeEnum::QuantizedS8 || | |||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS8) | |||
return false; | |||
auto dst_dtype = args.dst_layout->dtype.enumv(); | |||
if (!(dst_dtype == DTypeEnum::QuantizedS8 || | |||
dst_dtype == DTypeEnum::QuantizedS4 || | |||
dst_dtype == DTypeEnum::Quantized4Asymm || | |||
dst_dtype == DTypeEnum::Float32)) | |||
return false; | |||
if (!(args.bias_layout->dtype.enumv() == DTypeEnum::QuantizedS32 || | |||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float32 && | |||
dst_dtype == DTypeEnum::Float32))) | |||
return false; | |||
if (!is_compute_capability_required(7, 5)) | |||
return false; | |||
size_t co = args.filter_layout->operator[](0), | |||
ci = args.filter_layout->operator[](3), | |||
fh = args.filter_layout->operator[](1), | |||
fw = args.filter_layout->operator[](2); | |||
// param buffer size is 4K, use 3.4K to store precomputed offset | |||
size_t kMaxFilterPixels = | |||
848 / (m_algo_param.warp_k / m_algo_param.access_size) - 1; | |||
if (fh * fw > kMaxFilterPixels) | |||
return false; | |||
// co should be aligned with 4, and ci should be aligned with | |||
// algo_param.access_size | |||
if ((co % 4 != 0) || (ci % m_algo_param.access_size != 0)) | |||
return false; | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | |||
(m_algo_param.threadblock_n == 16 || | |||
(m_algo_param.threadblock_n == 32 && | |||
dst_dtype != DTypeEnum::Float32))); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||
use_conv_filter_unity_opt, without_shared_load); | |||
if (op == nullptr) | |||
return false; | |||
return true; | |||
} | |||
size_t | |||
ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::get_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
if (args.preprocessed_filter) { | |||
return 0; | |||
} else { | |||
return args.filter_layout->span().dist_byte(); | |||
} | |||
} | |||
size_t ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm:: | |||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||
return 0; | |||
} | |||
SmallVector<TensorLayout> ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm:: | |||
deduce_preprocessed_filter_layout(const SizeArgs& args) const { | |||
return {args.filter_layout->collapse_contiguous()}; | |||
} | |||
void ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::exec_preprocess( | |||
const ExecArgs& args) const { | |||
void* filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||
reorder_filter(args, m_algo_param.access_size, filter_ptr); | |||
} | |||
std::tuple<float, float, float, float, float> | |||
ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::get_constants( | |||
const ExecArgs& args) const { | |||
float src_scale = args.src_layout->dtype.param<dtype::QuantizedS8>().scale, | |||
filter_scale = | |||
args.filter_layout->dtype.param<dtype::QuantizedS8>().scale, | |||
bias_scale = 1.f, dst_scale; | |||
if (args.bias_layout->dtype.enumv() == DTypeEnum::QuantizedS32) { | |||
bias_scale = args.bias_layout->dtype.param<dtype::QuantizedS32>().scale; | |||
} | |||
uint8_t dst_zero = 0; | |||
if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8) { | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
} else if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
} else if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||
dst_scale = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
dst_zero = args.dst_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
} else { // DTypeEnum::Float32 | |||
megdnn_assert(args.dst_layout->dtype.enumv() == DTypeEnum::Float32); | |||
dst_scale = 1.f; | |||
} | |||
float alpha = src_scale * filter_scale / dst_scale, | |||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, | |||
theta = dst_zero; | |||
if (args.z_layout->ndim > 0) { | |||
float z_scale; | |||
if (args.z_layout->dtype.enumv() == DTypeEnum::QuantizedS8) { | |||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
gamma = z_scale / dst_scale; | |||
} else if (args.z_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
gamma = z_scale / dst_scale; | |||
} else if (args.z_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||
z_scale = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
uint8_t z_zero = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
gamma = z_scale / dst_scale; | |||
delta = -z_zero * gamma; | |||
} else { // DTypeEnum::Float32 | |||
megdnn_assert(args.z_layout->dtype.enumv() == DTypeEnum::Float32); | |||
gamma = 1.f; | |||
} | |||
} | |||
if (args.opr->param().nonlineMode == | |||
param::ConvBias::NonlineMode::IDENTITY) { | |||
delta += theta; | |||
theta = 0.f; | |||
} | |||
return {alpha, beta, gamma, delta, theta}; | |||
} | |||
void ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::exec( | |||
const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto&& fm = args.filter_meta; | |||
size_t n = args.src_layout->operator[](0), | |||
ci = args.src_layout->operator[](3), | |||
hi = args.src_layout->operator[](1), | |||
wi = args.src_layout->operator[](2); | |||
size_t co = args.dst_layout->operator[](3), | |||
ho = args.dst_layout->operator[](1), | |||
wo = args.dst_layout->operator[](2); | |||
UNPACK_CONV_PARAMETER(fm, param); | |||
MARK_USED_VAR | |||
void* filter_ptr = nullptr; | |||
void* bias_ptr = nullptr; | |||
void* z_ptr = nullptr; | |||
if (args.preprocessed_filter) { | |||
filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||
} else { | |||
filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | |||
reorder_filter(args, m_algo_param.access_size, filter_ptr); | |||
} | |||
bias_ptr = args.bias_tensor->raw_ptr; | |||
if (args.z_layout->ndim > 0) | |||
z_ptr = args.z_tensor->raw_ptr; | |||
// \note these constants of cutlass epilogue will be passed to method | |||
// `execute_cutlass_conv_op` by pointer and interpreted as ElementCompute*, | |||
// a different dtype here results in undefined epilogue behaviors | |||
float alpha, beta, gamma, delta, theta; | |||
std::tie(alpha, beta, gamma, delta, theta) = get_constants(args); | |||
float dst_scale = 1.f; | |||
float threshold = 0.f; | |||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||
auto dst_dtype = args.dst_layout->dtype.enumv(); | |||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | |||
(m_algo_param.threadblock_n == 16 || | |||
(m_algo_param.threadblock_n == 32 && | |||
dst_dtype != DTypeEnum::Float32))); | |||
if (dst_dtype == DTypeEnum::QuantizedS8) { // DTypeEnum::QuantizedS8 | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
} else if (dst_dtype == DTypeEnum::QuantizedS4) { | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||
} else if (dst_dtype == DTypeEnum::Quantized4Asymm) { | |||
dst_scale = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
} else { // DTypeEnum::Float32 | |||
dst_scale = 1.f; | |||
} | |||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||
const auto* op = get_cutlass_conv_op( | |||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||
use_conv_filter_unity_opt, without_shared_load); | |||
execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | |||
z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | |||
ci, co, fh, fw, ho, wo, ph, pw, sh, sw, dh, dw, | |||
&alpha, &beta, &gamma, &delta, &theta, &threshold, | |||
&dst_scale, stream); | |||
after_kernel_launch(); | |||
} | |||
std::string ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::to_string( | |||
AlgoParam algo_param) { | |||
return ssprintf("%dX%dX%d_%dX%dX%d_%d_%d", algo_param.threadblock_m, | |||
algo_param.threadblock_n, algo_param.threadblock_k, | |||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k, | |||
algo_param.stage, algo_param.access_size); | |||
} | |||
void ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::reorder_filter( | |||
const ExecArgs& args, const int iterleaved, | |||
void* reordered_filter) const { | |||
size_t co = args.filter_layout->operator[](0), | |||
ci = args.filter_layout->operator[](3), | |||
fh = args.filter_layout->operator[](1), | |||
fw = args.filter_layout->operator[](2); | |||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||
// reformat filter from nhwc to ncxhwx and reorder oc | |||
// use trans_oc threadblock_n must be 16 or 32 and src dtype == dest dtype | |||
bool trans_oc = ((co % m_algo_param.threadblock_n == 0) && | |||
(m_algo_param.threadblock_n == 16 || | |||
(m_algo_param.threadblock_n == 32 && | |||
args.dst_layout->dtype.enumv() != DTypeEnum::Float32))); | |||
uint32_t oc_iterleaved = (m_algo_param.threadblock_n == 32) ? 32 : 16; | |||
uint32_t alignbits = iterleaved * 8; | |||
cutlass_wrapper::reorder_nhwc_imma_filter<8>( | |||
reinterpret_cast<int8_t*>(reordered_filter), | |||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, fh, | |||
fw, trans_oc, alignbits, oc_iterleaved, stream); | |||
} | |||
#endif | |||
// vim: syntax=cpp.doxygen |
@@ -102,22 +102,41 @@ ConvBiasForwardImpl::AlgoUInt4Int4NHWCIMMAImplicitGemm::get_constants( | |||
args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | |||
bias_scale = | |||
args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | |||
dst_scale = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
dst_scale; | |||
uint8_t dst_zero = 0; | |||
if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||
dst_scale = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
dst_zero = args.dst_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
} else { // DTypeEnum::QuantizedS8 | |||
megdnn_assert(args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8); | |||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
} | |||
uint8_t dst_zero = | |||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||
float alpha = src_scale * filter_scale / dst_scale, | |||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, | |||
theta = dst_zero; | |||
if (args.z_layout->ndim > 0) { | |||
float z_scale = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
gamma = z_scale / dst_scale; | |||
uint8_t z_zero = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||
delta = -z_zero * gamma; | |||
float z_scale; | |||
if (args.z_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||
z_scale = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||
uint8_t z_zero = | |||
args.z_layout->dtype.param<dtype::Quantized4Asymm>() | |||
.zero_point; | |||
gamma = z_scale / dst_scale; | |||
delta = -z_zero * gamma; | |||
} else { // DTypeEnum::QuantizedS8 | |||
megdnn_assert(args.z_layout->dtype.enumv() == | |||
DTypeEnum::QuantizedS8); | |||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
gamma = z_scale / dst_scale; | |||
} | |||
} | |||
// identity epilogue has no theta: | |||
@@ -65,6 +65,7 @@ public: | |||
class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | |||
class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | |||
class AlgoInt8NCHW32IMMAImplicitGemm; | |||
class AlgoInt8NHWCIMMAImplicitGemm; | |||
class AlgoInt4NCHW64IMMAImplicitGemmBase; | |||
class AlgoInt4Int4NCHW64IMMAImplicitGemm; | |||
class AlgoUInt4Int4NCHW64IMMAImplicitGemm; | |||
@@ -275,6 +275,7 @@ public: | |||
private: | |||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||
const SizeArgs& args) const; | |||
const void* get_available_op(const SizeArgs& args) const; | |||
AlgoParam m_algo_param; | |||
std::string m_name; | |||
}; | |||
@@ -295,6 +296,7 @@ public: | |||
private: | |||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | |||
const SizeArgs& args) const; | |||
const void* get_available_op(const SizeArgs& args) const; | |||
}; | |||
class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | |||
@@ -20,6 +20,43 @@ | |||
using namespace megdnn; | |||
using namespace cuda; | |||
const void* | |||
ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm::get_available_op( | |||
const SizeArgs& args) const { | |||
using namespace cutlass::library; | |||
auto&& fm = args.filter_meta; | |||
size_t sh = fm.stride[0], sw = fm.stride[1]; | |||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||
(sh == 2 && sw == 2) ? cutlass::conv::SpecialOptimizeDesc:: | |||
DECONV_DOUBLE_UPSAMPLING | |||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kDgrad, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorK4RSC4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
cutlass::conv::ConvType::kConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
4, | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
m_algo_param.stage, | |||
special_optimization, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
is_available(const SizeArgs& args) const { | |||
auto&& fm = args.filter_meta; | |||
@@ -51,6 +88,7 @@ bool ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||
// FIXME: too large filter size is not supported now | |||
available &= fm.spatial[0] * fm.spatial[1] <= | |||
(uint32_t)(848 / (2 * m_algo_param.warp_k / 4) - 2); | |||
available &= (get_available_op(args) != nullptr); | |||
// only support sm_61 or later, platform should have fast native int8 | |||
// support | |||
available &= is_compute_capability_required(6, 1); | |||
@@ -105,40 +143,14 @@ void ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec( | |||
args.grad_layout->dtype.param<dtype::QuantizedS8>().scale; | |||
// \note these constants of cutlass epilogue will be passed to struct | |||
// `ConvolutionArguments` by pointer and interpreted as ElementCompute*, a | |||
// different dtype here results in undefined epilogue behaviors | |||
// `ConvolutionArguments` by pointer and interpreted as ElementCompute*, | |||
// a different dtype here results in undefined epilogue behaviors | |||
float alpha = diff_scale * filter_scale / grad_scale, beta = 0.f, | |||
gamma = 0.f, delta = 0.f; | |||
using namespace cutlass::library; | |||
// only use 16x64x8_16x64x8_2stages impl | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kDgrad, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorK4RSC4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
cutlass::conv::ConvType::kConvolution, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
4, | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
m_algo_param.stage, | |||
true, | |||
false}; | |||
const Operation* op = Singleton::get().operation_table.find_op(key); | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
// gcc prints warnings when size_t values are implicitly narrowed to int | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
@@ -167,7 +179,6 @@ void ConvolutionBackwardDataImpl::AlgoPack::fill_int8_dp4a_algos() { | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2}); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -19,6 +19,44 @@ | |||
using namespace megdnn; | |||
using namespace cuda; | |||
const void* | |||
ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::get_available_op( | |||
const SizeArgs& args) const { | |||
using namespace cutlass::library; | |||
auto&& fm = args.filter_meta; | |||
size_t sh = fm.stride[0], sw = fm.stride[1]; | |||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||
(sh == 2 && sw == 2) ? cutlass::conv::SpecialOptimizeDesc:: | |||
DECONV_DOUBLE_UPSAMPLING | |||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||
// only use 16x64x8_16x64x8_2stages impl | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kDgrad, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorK4RSC4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
cutlass::conv::ConvType::kConvolution, | |||
16, | |||
64, | |||
8, | |||
16, | |||
64, | |||
8, | |||
1, | |||
1, | |||
4, | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
2, | |||
special_optimization, | |||
false}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::is_available( | |||
const SizeArgs& args) const { | |||
auto&& fm = args.filter_meta; | |||
@@ -52,6 +90,9 @@ bool ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::is_available( | |||
available &= (fm.dilation[0] == 1 && fm.dilation[1] == 1); | |||
// FIXME: too large filter size is not supported now | |||
available &= fm.spatial[0] * fm.spatial[1] <= (848 / (2 * 8 / 4) - 2); | |||
available &= (get_available_op(args) != nullptr); | |||
// only support sm_61 or later, platform should have fast native int8 | |||
// support | |||
available &= is_compute_capability_required(6, 1); | |||
@@ -138,33 +179,7 @@ void ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::exec( | |||
using namespace cutlass::library; | |||
// only use 16x64x8_16x64x8_2stages impl | |||
ConvolutionKey key{ | |||
cutlass::conv::Operator::kDgrad, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorK4RSC4, | |||
NumericTypeID::kS8, | |||
LayoutTypeID::kTensorNC4HW4, | |||
NumericTypeID::kS32, | |||
LayoutTypeID::kTensorNC4HW4, | |||
cutlass::conv::ConvType::kConvolution, | |||
16, | |||
64, | |||
8, | |||
16, | |||
64, | |||
8, | |||
1, | |||
1, | |||
4, | |||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||
2, | |||
true, | |||
false}; | |||
const Operation* op = Singleton::get().operation_table.find_op(key); | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
// gcc prints warnings when size_t values are implicitly narrowed to int | |||
cutlass::conv::Conv2dProblemSize problem_size{ | |||
@@ -119,8 +119,8 @@ public: | |||
m_description.threadblock_swizzle = ThreadblockSwizzleMap< | |||
typename Operator::ThreadblockSwizzle>::kId; | |||
m_description.need_load_from_const_mem = | |||
Operator::kNeedLoadFromConstMem; | |||
m_description.special_optimization = | |||
Operator::kSpecialOpt; | |||
m_description.gemm_mode = Operator::kGemmMode; | |||
m_description.without_shared_load = Operator::kWithoutSharedLoad; | |||
} | |||
@@ -487,7 +487,7 @@ struct ConvolutionDescription : public OperationDescription { | |||
ThreadblockSwizzleID threadblock_swizzle; | |||
bool need_load_from_const_mem; | |||
conv::SpecialOptimizeDesc special_optimization; | |||
conv::ImplicitGemmMode gemm_mode; | |||
bool without_shared_load; | |||
}; | |||
@@ -124,7 +124,7 @@ ConvolutionKey get_convolution_key_from_desc( | |||
key.epilogue_type = desc.epilogue_type; | |||
key.stages = desc.tile_description.threadblock_stages; | |||
key.need_load_from_const_mem = desc.need_load_from_const_mem; | |||
key.special_optimization = desc.special_optimization; | |||
key.without_shared_load = desc.without_shared_load; | |||
return key; | |||
@@ -156,23 +156,25 @@ void OperationTable::append(Manifest const& manifest) { | |||
///////////////////////////////////////////////////////////////////////////////////////////////// | |||
Operation const* OperationTable::find_op(GemmKey const& key) const { | |||
megdnn_assert(gemm_operations.count(key) > 0, | |||
"key not found in cutlass operation table"); | |||
auto const& ops = gemm_operations.at(key); | |||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||
ops.size()); | |||
return ops[0]; | |||
if (gemm_operations.count(key)) { | |||
auto const& ops = gemm_operations.at(key); | |||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||
ops.size()); | |||
return ops[0]; | |||
} | |||
return nullptr; | |||
} | |||
///////////////////////////////////////////////////////////////////////////////////////////////// | |||
Operation const* OperationTable::find_op(ConvolutionKey const& key) const { | |||
megdnn_assert(convolution_operations.count(key) > 0, | |||
"key not found in cutlass operation table"); | |||
auto const& ops = convolution_operations.at(key); | |||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||
ops.size()); | |||
return ops[0]; | |||
if (convolution_operations.count(key) > 0) { | |||
auto const& ops = convolution_operations.at(key); | |||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||
ops.size()); | |||
return ops[0]; | |||
} | |||
return nullptr; | |||
} | |||
///////////////////////////////////////////////////////////////////////////////////////////////// | |||
@@ -211,7 +211,7 @@ struct ConvolutionKey { | |||
epilogue::EpilogueType epilogue_type; | |||
int stages; | |||
bool need_load_from_const_mem; | |||
conv::SpecialOptimizeDesc special_optimization; | |||
bool without_shared_load; | |||
inline bool operator==(ConvolutionKey const& rhs) const { | |||
@@ -234,7 +234,7 @@ struct ConvolutionKey { | |||
(instruction_shape_n == rhs.instruction_shape_n) && | |||
(instruction_shape_k == rhs.instruction_shape_k) && | |||
(epilogue_type == rhs.epilogue_type) && (stages == rhs.stages) && | |||
(need_load_from_const_mem == rhs.need_load_from_const_mem) && | |||
(special_optimization == rhs.special_optimization) && | |||
(without_shared_load == rhs.without_shared_load); | |||
} | |||
@@ -270,8 +270,8 @@ struct ConvolutionKey { | |||
"\n instruction_shape: " + instruction_shape_str + | |||
"\n epilogue_type: " + to_string(epilogue_type) + | |||
"\n stages: " + std::to_string(stages) + | |||
"\n need_load_from_const_mem: " + | |||
to_string(need_load_from_const_mem) + | |||
"\n special_optimization: " + | |||
to_string(special_optimization) + | |||
"\n without_shared_load: " + to_string(without_shared_load) + | |||
"\n}"; | |||
} | |||
@@ -308,8 +308,8 @@ struct ConvolutionKeyHasher { | |||
sizeof(key.instruction_shape_k)) | |||
.update(&key.epilogue_type, sizeof(key.epilogue_type)) | |||
.update(&key.stages, sizeof(key.stages)) | |||
.update(&key.need_load_from_const_mem, | |||
sizeof(key.need_load_from_const_mem)) | |||
.update(&key.special_optimization, | |||
sizeof(key.special_optimization)) | |||
.update(&key.without_shared_load, | |||
sizeof(key.without_shared_load)) | |||
.digest(); | |||
@@ -1569,6 +1569,35 @@ char const* to_string(MathOperationID math_op, bool pretty) { | |||
static struct { | |||
char const* text; | |||
char const* pretty; | |||
conv::SpecialOptimizeDesc enumerant; | |||
} SpecialOptimizeDesc_enumerants[] = { | |||
{"none_special_opt", "NoneSpecialOpt", conv::SpecialOptimizeDesc::NONE}, | |||
{"conv_filter_unity", "ConvFilterUnity", | |||
conv::SpecialOptimizeDesc::CONV_FILTER_UNITY}, | |||
{"deconv_double_upsampling", "DeconvDoubleUpsampling", | |||
conv::SpecialOptimizeDesc::DECONV_DOUBLE_UPSAMPLING}, | |||
}; | |||
/// Converts an SpecialOptimizeDesc enumerant to a string | |||
char const* to_string(conv::SpecialOptimizeDesc special_opt, bool pretty) { | |||
for (auto const& possible : SpecialOptimizeDesc_enumerants) { | |||
if (special_opt == possible.enumerant) { | |||
if (pretty) { | |||
return possible.pretty; | |||
} else { | |||
return possible.text; | |||
} | |||
} | |||
} | |||
return pretty ? "Invalid" : "invalid"; | |||
} | |||
/////////////////////////////////////////////////////////////////////////////////////////////////// | |||
static struct { | |||
char const* text; | |||
char const* pretty; | |||
conv::ImplicitGemmMode enumerant; | |||
} ImplicitGemmMode_enumerants[] = { | |||
{"gemm_nt", "GemmNT", conv::ImplicitGemmMode::GEMM_NT}, | |||
@@ -207,6 +207,10 @@ char const* to_string(bool val, bool pretty = false); | |||
/// Converts a MathOperationID enumerant to a string | |||
char const* to_string(MathOperationID math_op, bool pretty = false); | |||
/// Converts a SpecialOptimizeDesc enumerant to a string | |||
char const* to_string(conv::SpecialOptimizeDesc special_opt, | |||
bool pretty = false); | |||
/// Converts an ImplicitGemmMode enumerant to a string | |||
char const* to_string(conv::ImplicitGemmMode mode, bool pretty = false); | |||
@@ -235,6 +235,7 @@ public: | |||
m_name{ssprintf("CUTLASS_FLOAT32_SIMT_%s", | |||
m_algo_param.to_string().c_str())} {} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { | |||
@@ -260,6 +261,7 @@ private: | |||
void do_exec(const ExecArgs& args) const override; | |||
int min_alignment_requirement() const override { return 1; } | |||
std::string m_name; | |||
const void* get_available_op(const SizeArgs& args) const; | |||
}; | |||
class MatrixMulForwardImpl::AlgoFloat32SIMTSplitK final | |||
@@ -270,6 +272,7 @@ public: | |||
m_name{ssprintf("CUTLASS_FLOAT32_SIMT_SPLIT_K_%s", | |||
m_algo_param.to_string().c_str())} {} | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||
const char* name() const override { return m_name.c_str(); } | |||
AlgoAttribute attribute() const override { | |||
@@ -297,6 +300,7 @@ private: | |||
void do_exec(const ExecArgs& args) const override; | |||
int min_alignment_requirement() const override { return 1; } | |||
std::string m_name; | |||
const void* get_available_op(const SizeArgs& args) const; | |||
}; | |||
class MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided final | |||
@@ -19,6 +19,39 @@ | |||
using namespace megdnn; | |||
using namespace cuda; | |||
const void* MatrixMulForwardImpl::AlgoFloat32SIMT::get_available_op( | |||
const SizeArgs& args) const { | |||
using namespace cutlass::library; | |||
auto&& param = args.opr->param(); | |||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
int alignment = min_alignment_requirement(); | |||
GemmKey key{NumericTypeID::kF32, | |||
layoutA, | |||
NumericTypeID::kF32, | |||
layoutB, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kRowMajor, | |||
NumericTypeID::kF32, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
1, | |||
2, | |||
alignment, | |||
alignment, | |||
SplitKMode::kNone}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool MatrixMulForwardImpl::AlgoFloat32SIMT::is_available( | |||
const SizeArgs& args) const { | |||
bool available = | |||
@@ -34,6 +67,8 @@ bool MatrixMulForwardImpl::AlgoFloat32SIMT::is_available( | |||
m_algo_param.threadblock_n <= | |||
y_grid_limit); | |||
available &= (get_available_op(args) != nullptr); | |||
return available; | |||
} | |||
@@ -61,34 +96,7 @@ void MatrixMulForwardImpl::AlgoFloat32SIMT::do_exec( | |||
using namespace cutlass::library; | |||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
int alignment = min_alignment_requirement(); | |||
GemmKey key{NumericTypeID::kF32, | |||
layoutA, | |||
NumericTypeID::kF32, | |||
layoutB, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kRowMajor, | |||
NumericTypeID::kF32, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
1, | |||
2, | |||
alignment, | |||
alignment, | |||
SplitKMode::kNone}; | |||
const Operation* op = Singleton::get().operation_table.find_op(key); | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
GemmArguments gemm_args{problem_size, | |||
args.tensor_a.raw_ptr, | |||
@@ -19,6 +19,39 @@ | |||
using namespace megdnn; | |||
using namespace cuda; | |||
const void* MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::get_available_op( | |||
const SizeArgs& args) const { | |||
using namespace cutlass::library; | |||
auto&& param = args.opr->param(); | |||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
int alignment = min_alignment_requirement(); | |||
GemmKey key{NumericTypeID::kF32, | |||
layoutA, | |||
NumericTypeID::kF32, | |||
layoutB, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kRowMajor, | |||
NumericTypeID::kF32, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
1, | |||
2, | |||
alignment, | |||
alignment, | |||
SplitKMode::kParallel}; | |||
return (void*)Singleton::get().operation_table.find_op(key); | |||
} | |||
bool MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::is_available( | |||
const SizeArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
@@ -35,6 +68,8 @@ bool MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::is_available( | |||
available &= ((m + m_algo_param.threadblock_m - 1) / | |||
m_algo_param.threadblock_m <= | |||
y_grid_limit); | |||
available &= (get_available_op(args) != nullptr); | |||
return available; | |||
} | |||
@@ -66,35 +101,7 @@ void MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::do_exec( | |||
float alpha = 1.f, beta = 0.f; | |||
using namespace cutlass::library; | |||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||
: LayoutTypeID::kRowMajor; | |||
int alignment = min_alignment_requirement(); | |||
GemmKey key{NumericTypeID::kF32, | |||
layoutA, | |||
NumericTypeID::kF32, | |||
layoutB, | |||
NumericTypeID::kF32, | |||
LayoutTypeID::kRowMajor, | |||
NumericTypeID::kF32, | |||
m_algo_param.threadblock_m, | |||
m_algo_param.threadblock_n, | |||
m_algo_param.threadblock_k, | |||
m_algo_param.warp_m, | |||
m_algo_param.warp_n, | |||
m_algo_param.warp_k, | |||
1, | |||
1, | |||
1, | |||
2, | |||
alignment, | |||
alignment, | |||
SplitKMode::kParallel}; | |||
Operation const* op = Singleton::get().operation_table.find_op(key); | |||
const Operation* op = (const Operation*)get_available_op(args); | |||
GemmArguments gemm_args{problem_size, | |||
args.tensor_a.raw_ptr, | |||
@@ -882,6 +882,125 @@ TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_IMMA) { | |||
ConvBias::DirectParam{}); | |||
check(algo); | |||
} | |||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NHWC) { | |||
require_compute_capability(7, 5); | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||
auto check = [&checker](const std::string& algo) { | |||
checker.set_before_exec_callback( | |||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str())); | |||
UniformIntRNG rng{-8, 8}; | |||
UniformIntRNG bias_rng{-50, 50}; | |||
checker.set_rng(0, &rng) | |||
.set_rng(1, &rng) | |||
.set_rng(2, &bias_rng) | |||
.set_rng(3, &rng) | |||
.set_dtype(0, dtype::QuantizedS8{1.2f}) | |||
.set_dtype(1, dtype::QuantizedS8{1.3f}) | |||
.set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f}) | |||
.set_dtype(3, dtype::QuantizedS8{19.990229f}) | |||
.set_dtype(4, dtype::QuantizedS8{19.990228f}) | |||
.set_epsilon(1e-3); | |||
param::ConvBias param; | |||
param.pad_h = param.pad_w = 1; | |||
param.stride_h = param.stride_w = 1; | |||
param.format = param::ConvBias::Format::NHWC; | |||
checker.set_param(param).execs( | |||
{{16, 7, 7, 16}, {32, 3, 3, 16}, {1, 1, 1, 32}, {}, {}}); | |||
param.pad_h = param.pad_w = 0; | |||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||
checker.set_param(param).execs( | |||
{{16, 7, 7, 16}, {16, 1, 1, 16}, {1, 1, 1, 16}, {}, {}}); | |||
}; | |||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_64X16X32_64X16X32_2_16", | |||
ConvBias::DirectParam{}); | |||
check(algo); | |||
algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_128X32X32_64X32X32_1_16", | |||
ConvBias::DirectParam{}); | |||
check(algo); | |||
} | |||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NHWC_UINT4_WEIGHT_PREPROCESS) { | |||
require_compute_capability(7, 5); | |||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||
handle_cuda()); | |||
auto check = [&checker](const std::string& algo) { | |||
checker.set_before_exec_callback( | |||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str())); | |||
UniformIntRNG rng{-8, 8}; | |||
UniformIntRNG bias_rng{-50, 50}; | |||
UniformIntRNG rng_u4{0, 15}; | |||
checker.set_rng(0, &rng) | |||
.set_rng(1, &rng) | |||
.set_rng(2, &bias_rng) | |||
.set_rng(3, &rng_u4) | |||
.set_dtype(0, dtype::QuantizedS8{0.2f}) | |||
.set_dtype(1, dtype::QuantizedS8{0.3f}) | |||
.set_dtype(2, dtype::QuantizedS32{0.2f * 0.3f}) | |||
.set_dtype(3, dtype::Quantized4Asymm{0.5f, 8}) | |||
.set_dtype(4, dtype::Quantized4Asymm{0.5f, 4}) | |||
.set_epsilon(1 + 1e-3); | |||
param::ConvBias param; | |||
param.pad_h = param.pad_w = 1; | |||
param.stride_h = param.stride_w = 1; | |||
param.format = param::ConvBias::Format::NHWC; | |||
checker.set_param(param).execs( | |||
{{16, 7, 7, 16}, {32, 3, 3, 16}, {1, 1, 1, 32}, {}, {}}); | |||
param.pad_h = param.pad_w = 0; | |||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||
checker.set_param(param).execs( | |||
{{16, 7, 7, 16}, {16, 1, 1, 16}, {1, 1, 1, 16}, {}, {}}); | |||
}; | |||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_64X16X32_64X16X32_2_16", | |||
ConvBias::DirectParam{}); | |||
check(algo); | |||
algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_128X32X32_64X32X32_1_16", | |||
ConvBias::DirectParam{}); | |||
check(algo); | |||
} | |||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NHWC_FLOAT) { | |||
require_compute_capability(7, 5); | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||
auto check = [&checker](const std::string& algo) { | |||
checker.set_before_exec_callback( | |||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str())); | |||
UniformIntRNG rng{-8, 8}; | |||
UniformFloatRNG float_rng{-50, 50}; | |||
checker.set_rng(0, &rng) | |||
.set_rng(1, &rng) | |||
.set_rng(2, &float_rng) | |||
.set_rng(3, &float_rng) | |||
.set_dtype(0, dtype::QuantizedS8(1.9980618f)) | |||
.set_dtype(1, dtype::QuantizedS8(1.9980927f)) | |||
.set_dtype(2, dtype::Float32()) | |||
.set_dtype(3, dtype::Float32()) | |||
.set_dtype(4, dtype::Float32()); | |||
param::ConvBias param; | |||
param.pad_h = param.pad_w = 1; | |||
param.stride_h = param.stride_w = 1; | |||
param.format = param::ConvBias::Format::NHWC; | |||
checker.set_param(param).execs( | |||
{{16, 7, 7, 16}, {32, 3, 3, 16}, {1, 1, 1, 32}, {}, {}}); | |||
param.pad_h = param.pad_w = 0; | |||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||
checker.set_param(param).execs( | |||
{{16, 7, 7, 16}, {16, 1, 1, 16}, {1, 1, 1, 16}, {}, {}}); | |||
}; | |||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_64X16X32_64X16X32_2_16", | |||
ConvBias::DirectParam{}); | |||
check(algo); | |||
algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_128X32X32_64X32X32_1_16", | |||
ConvBias::DirectParam{}); | |||
check(algo); | |||
} | |||
#endif | |||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW4_NCHW) { | |||
@@ -969,7 +1088,7 @@ TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_NCHW4) { | |||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker< | |||
ConvBiasForward>( | |||
ConvBias::algo_name<ConvBias::DirectParam>( | |||
"INT8_NCHW32_IMMA_IMPLICIT_GEMM_128X128X64_64X64X64_2", | |||
"INT8_NCHW32_IMMA_IMPLICIT_GEMM_32X128X32_32X64X32_1", | |||
ConvBias::DirectParam{}) | |||
.c_str())); | |||
checker.set_dtype(0, dtype::QuantizedS8(1.9980618f)) | |||
@@ -1109,6 +1228,16 @@ TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW32) { | |||
"DIRECT:INT8_NCHW32_IMMA_IMPLICIT_GEMM", | |||
param::ConvBias::Format::NCHW32); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NHWC) { | |||
require_compute_capability(7, 5); | |||
benchmark_target_algo_with_cudnn_tsc( | |||
handle_cuda(), get_det_first_bench_args(16), | |||
dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f}, | |||
dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, | |||
"DIRECT:INT8_NHWC_IMMA_IMPLICIT_GEMM", | |||
param::ConvBias::Format::NHWC); | |||
} | |||
#endif | |||
TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4) { | |||
@@ -102,9 +102,7 @@ std::vector<BenchArgs> get_det_first_bench_args(size_t batch) { | |||
args.emplace_back(BenchArgs{batch, 16, 384, 640, 16, 3, 1}); | |||
args.emplace_back(BenchArgs{batch, 16, 384, 640, 32, 3, 2}); | |||
args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 1}); | |||
args.emplace_back(BenchArgs{batch, 32, 384, 640, 64, 3, 2}); | |||
args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 1, 1}); | |||
args.emplace_back(BenchArgs{batch, 32, 384, 640, 64, 1, 2}); | |||
return args; | |||
} | |||
@@ -333,6 +331,9 @@ void benchmark_target_algo_with_cudnn_tsc( | |||
.reshape({shape[0], shape[1] / 4, 4, shape[2], | |||
shape[3]}) | |||
.dimshuffle({1, 3, 4, 0, 2})); | |||
} else if (format == Format::NHWC) { | |||
ret = static_cast<TensorShape>( | |||
TensorLayout{shape, dtype}.dimshuffle({0, 2, 3, 1})); | |||
} | |||
return ret; | |||
}; | |||
@@ -363,6 +364,9 @@ void benchmark_target_algo_with_cudnn_tsc( | |||
if ((format == Format::CHWN4 || format == Format::NCHW4) && | |||
(arg.ci % 16 != 0)) | |||
continue; | |||
// skip testcase which cannot enable nhwc tensorcore | |||
if ((format == Format::NHWC) && (arg.ci % 4 != 0 || arg.co % 4 != 0)) | |||
continue; | |||
Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | |||
? Format::NCHW32 | |||
: Format::NCHW4; | |||
@@ -327,7 +327,6 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) { | |||
all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); | |||
all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | |||
all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | |||
all_params.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2}); | |||
for (auto algo_param : all_params) { | |||
Checker<ConvolutionBackwardData> checker(handle_cuda()); | |||