GitOrigin-RevId: 229e1eb4be
release-1.6
@@ -19,8 +19,8 @@ class Conv2dOperation: | |||||
# | # | ||||
def __init__(self, conv_kind, conv_type, arch, tile_description, src, flt, bias, dst, element_epilogue, \ | def __init__(self, conv_kind, conv_type, arch, tile_description, src, flt, bias, dst, element_epilogue, \ | ||||
epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4, \ | epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity4, \ | ||||
need_load_from_const = True, implicit_gemm_mode = ImplicitGemmMode.GemmNT, without_shared_load = False, \ | |||||
required_cuda_ver_major = 9, required_cuda_ver_minor = 2): | |||||
special_optimization = SpecialOptimizeDesc.NoneSpecialOpt, implicit_gemm_mode = ImplicitGemmMode.GemmNT, \ | |||||
without_shared_load = False, required_cuda_ver_major = 9, required_cuda_ver_minor = 2): | |||||
self.operation_kind = OperationKind.Conv2d | self.operation_kind = OperationKind.Conv2d | ||||
self.conv_kind = conv_kind | self.conv_kind = conv_kind | ||||
@@ -34,7 +34,7 @@ class Conv2dOperation: | |||||
self.element_epilogue = element_epilogue | self.element_epilogue = element_epilogue | ||||
self.epilogue_functor = epilogue_functor | self.epilogue_functor = epilogue_functor | ||||
self.swizzling_functor = swizzling_functor | self.swizzling_functor = swizzling_functor | ||||
self.need_load_from_const = need_load_from_const | |||||
self.special_optimization = special_optimization | |||||
self.implicit_gemm_mode = implicit_gemm_mode | self.implicit_gemm_mode = implicit_gemm_mode | ||||
self.without_shared_load = without_shared_load | self.without_shared_load = without_shared_load | ||||
self.required_cuda_ver_major = required_cuda_ver_major | self.required_cuda_ver_major = required_cuda_ver_major | ||||
@@ -60,16 +60,18 @@ class Conv2dOperation: | |||||
else: | else: | ||||
inst_shape = '' | inst_shape = '' | ||||
unity_kernel = '' | |||||
if not self.need_load_from_const: | |||||
unity_kernel = '_1x1' | |||||
special_opt = '' | |||||
if self.special_optimization == SpecialOptimizeDesc.ConvFilterUnity: | |||||
special_opt = '_1x1' | |||||
elif self.special_optimization == SpecialOptimizeDesc.DeconvDoubleUpsampling: | |||||
special_opt = '_s2' | |||||
reorder_k = '' | reorder_k = '' | ||||
if self.without_shared_load: | if self.without_shared_load: | ||||
reorder_k = '_roc' | reorder_k = '_roc' | ||||
return "%s%s%s%s%s%s_%s" % (ShortDataTypeNames[self.accumulator_type()], \ | return "%s%s%s%s%s%s_%s" % (ShortDataTypeNames[self.accumulator_type()], \ | ||||
inst_shape, intermediate_type, ConvKindNames[self.conv_kind], unity_kernel, \ | |||||
inst_shape, intermediate_type, ConvKindNames[self.conv_kind], special_opt, \ | |||||
reorder_k, ShortEpilogueNames[self.epilogue_functor]) | reorder_k, ShortEpilogueNames[self.epilogue_functor]) | ||||
# | # | ||||
@@ -183,7 +185,7 @@ using Convolution = | |||||
${stages}, | ${stages}, | ||||
${alignment_src}, | ${alignment_src}, | ||||
${alignment_filter}, | ${alignment_filter}, | ||||
${nonuninity_kernel}, | |||||
${special_optimization}, | |||||
${math_operator}, | ${math_operator}, | ||||
${implicit_gemm_mode}, | ${implicit_gemm_mode}, | ||||
${without_shared_load}>; | ${without_shared_load}>; | ||||
@@ -226,7 +228,7 @@ using Convolution = | |||||
'stages': str(operation.tile_description.stages), | 'stages': str(operation.tile_description.stages), | ||||
'alignment_src': str(operation.src.alignment), | 'alignment_src': str(operation.src.alignment), | ||||
'alignment_filter': str(operation.flt.alignment), | 'alignment_filter': str(operation.flt.alignment), | ||||
'nonuninity_kernel': str(operation.need_load_from_const).lower(), | |||||
'special_optimization': SpecialOptimizeDescTag[operation.special_optimization], | |||||
'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], | 'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], | ||||
'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode], | 'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode], | ||||
'without_shared_load': str(operation.without_shared_load).lower() | 'without_shared_load': str(operation.without_shared_load).lower() | ||||
@@ -266,7 +268,7 @@ using Deconvolution = | |||||
${stages}, | ${stages}, | ||||
${alignment_src}, | ${alignment_src}, | ||||
${alignment_filter}, | ${alignment_filter}, | ||||
${nonuninity_kernel}, | |||||
${special_optimization}, | |||||
${math_operator}, | ${math_operator}, | ||||
${implicit_gemm_mode}>; | ${implicit_gemm_mode}>; | ||||
""" | """ | ||||
@@ -308,7 +310,7 @@ using Deconvolution = | |||||
'stages': str(operation.tile_description.stages), | 'stages': str(operation.tile_description.stages), | ||||
'alignment_src': str(operation.src.alignment), | 'alignment_src': str(operation.src.alignment), | ||||
'alignment_filter': str(operation.flt.alignment), | 'alignment_filter': str(operation.flt.alignment), | ||||
'nonuninity_kernel': str(operation.need_load_from_const).lower(), | |||||
'special_optimization': SpecialOptimizeDescTag[operation.special_optimization], | |||||
'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], | 'math_operator': MathOperationTag[operation.tile_description.math_instruction.math_operation], | ||||
'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode] | 'implicit_gemm_mode': ImplicitGemmModeTag[operation.implicit_gemm_mode] | ||||
} | } | ||||
@@ -323,9 +325,9 @@ using Deconvolution = | |||||
################################################################################################### | ################################################################################################### | ||||
# | # | ||||
def GenerateConv2d(conv_kind, tile_descriptions, src_layout, flt_layout, dst_layout, dst_type, min_cc, src_align = 32, flt_align = 32, dst_align = 128, \ | |||||
skip_unity_kernel = False, implicit_gemm_mode = ImplicitGemmMode.GemmNT, without_shared_load = False, required_cuda_ver_major = 9, \ | |||||
required_cuda_ver_minor = 2): | |||||
def GenerateConv2d(conv_kind, tile_descriptions, src_layout, flt_layout, dst_layout, dst_type, min_cc, src_align = 32, flt_align = 32, dst_align = 32, \ | |||||
use_special_optimization = SpecialOptimizeDesc.NoneSpecialOpt, implicit_gemm_mode = ImplicitGemmMode.GemmNT, without_shared_load = False, \ | |||||
required_cuda_ver_major = 9, required_cuda_ver_minor = 2): | |||||
operations = [] | operations = [] | ||||
element_epilogue = DataType.f32 | element_epilogue = DataType.f32 | ||||
@@ -412,10 +414,10 @@ def GenerateConv2d(conv_kind, tile_descriptions, src_layout, flt_layout, dst_lay | |||||
bias = TensorDescription(bias_type, dst_layout, max(1, int(32 / DataTypeSize[bias_type]))) | bias = TensorDescription(bias_type, dst_layout, max(1, int(32 / DataTypeSize[bias_type]))) | ||||
dst = TensorDescription(dst_type, dst_layout, int(dst_align / DataTypeSize[dst_type])) | dst = TensorDescription(dst_type, dst_layout, int(dst_align / DataTypeSize[dst_type])) | ||||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, True, implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, SpecialOptimizeDesc.NoneSpecialOpt, implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||||
operations.append(new_operation) | operations.append(new_operation) | ||||
if not skip_unity_kernel: | |||||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, False, implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||||
if use_special_optimization != SpecialOptimizeDesc.NoneSpecialOpt: | |||||
new_operation = Conv2dOperation(conv_kind, ConvType.Convolution, min_cc, tile, src, flt, bias, dst, element_epilogue, epilogue, swizzling_functor, use_special_optimization , implicit_gemm_mode, without_shared_load, required_cuda_ver_major, required_cuda_ver_minor) | |||||
operations.append(new_operation) | operations.append(new_operation) | ||||
return operations | return operations | ||||
@@ -168,10 +168,10 @@ def GenerateConv2d_Simt(args): | |||||
for dst_type, dst_layout in zip(dst_types, dst_layouts): | for dst_type, dst_layout in zip(dst_types, dst_layouts): | ||||
if dst_type == DataType.s4 or dst_type == DataType.u4: | if dst_type == DataType.s4 or dst_type == DataType.u4: | ||||
min_cc = 75 | min_cc = 75 | ||||
skip_unity_kernel = True | |||||
use_special_optimization = SpecialOptimizeDesc.NoneSpecialOpt | |||||
else: | else: | ||||
min_cc = 61 | min_cc = 61 | ||||
skip_unity_kernel = False | |||||
use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity | |||||
tile_descriptions = [ | tile_descriptions = [ | ||||
TileDescription([128, 128, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), | TileDescription([128, 128, 32], 2, [2, 4, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), | TileDescription([128, 64, 32], 2, [2, 2, 1], math_inst, min_cc, max_cc), | ||||
@@ -182,10 +182,16 @@ def GenerateConv2d_Simt(args): | |||||
TileDescription([ 64, 32, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), | TileDescription([ 64, 32, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([ 16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), | TileDescription([ 16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([ 16, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | TileDescription([ 16, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | ||||
] | |||||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | |||||
dst_layout, dst_type, min_cc, 32, 32, 32, | |||||
skip_unity_kernel) | |||||
] | |||||
for tile in tile_descriptions: | |||||
if dst_layout == LayoutType.TensorNC32HW32 and tile.threadblock_shape[0] > 32: | |||||
continue | |||||
if (dst_layout == LayoutType.TensorNCHW or dst_layout == LayoutType.TensorNHWC) \ | |||||
and tile.threadblock_shape[0] > 16: | |||||
continue | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], | |||||
dst_layout, dst_type, min_cc, 32, 32, 32, | |||||
use_special_optimization) | |||||
return operations | return operations | ||||
@@ -214,6 +220,8 @@ def GenerateConv2d_TensorOp_8816(args): | |||||
DataType.s8, | DataType.s8, | ||||
] | ] | ||||
use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity | |||||
min_cc = 75 | min_cc = 75 | ||||
max_cc = 1024 | max_cc = 1024 | ||||
@@ -232,28 +240,69 @@ def GenerateConv2d_TensorOp_8816(args): | |||||
TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([128, 64, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | TileDescription([128, 64, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([ 64, 128, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([ 32, 128, 32], 1, [1, 2, 1], math_inst, min_cc, max_cc), | |||||
] | ] | ||||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | ||||
dst_layout, dst_type, min_cc, 128, 128, 64, | |||||
False, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
else: | else: | ||||
assert dst_layout == LayoutType.TensorNC4HW4 | assert dst_layout == LayoutType.TensorNC4HW4 | ||||
tile_descriptions = [ | tile_descriptions = [ | ||||
TileDescription([128, 256, 64], 2, [2, 4, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([256, 128, 64], 2, [4, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([128, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([128, 64, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | TileDescription([ 64, 128, 64], 2, [2, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([128, 64, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([ 64, 128, 32], 1, [2, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([ 32, 128, 32], 1, [1, 2, 1], math_inst, min_cc, max_cc), | TileDescription([ 32, 128, 32], 1, [1, 2, 1], math_inst, min_cc, max_cc), | ||||
] | ] | ||||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | ||||
dst_layout, dst_type, min_cc, 128, 128, 64, | |||||
False, ImplicitGemmMode.GemmNT, False, cuda_major, cuda_minor) | |||||
dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, | |||||
ImplicitGemmMode.GemmNT, False, cuda_major, cuda_minor) | |||||
layouts_nhwc = [ | |||||
(LayoutType.TensorNHWC, LayoutType.TensorNC4HW4, 32), | |||||
(LayoutType.TensorNHWC, LayoutType.TensorNC8HW8, 64), | |||||
(LayoutType.TensorNHWC, LayoutType.TensorNC16HW16, 128), | |||||
] | |||||
dst_layouts_nhwc = [ | |||||
LayoutType.TensorNHWC, | |||||
] | |||||
for math_inst in math_instructions: | |||||
for layout in layouts_nhwc: | |||||
for dst_layout in dst_layouts_nhwc: | |||||
dst_type = math_inst.element_b | |||||
tile_descriptions = [ | |||||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([64, 16, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||||
] | |||||
for tile in tile_descriptions: | |||||
dst_align = 32 if tile.threadblock_shape[1] == 16 else 64 | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||||
if tile.threadblock_shape[1] == 16 or tile.threadblock_shape[1] == 32: | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
out_dtypes = [DataType.s4, DataType.u4, DataType.f32] | |||||
#INT8x8x4 and INT8x8x32 | |||||
for math_inst in math_instructions: | |||||
for layout in layouts_nhwc: | |||||
for dst_layout in dst_layouts_nhwc: | |||||
for out_dtype in out_dtypes: | |||||
tile_descriptions = [ | |||||
TileDescription([128, 32, 32], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([64, 16, 32], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||||
] | |||||
for tile in tile_descriptions: | |||||
dst_align = 4 * DataTypeSize[out_dtype] if tile.threadblock_shape[1] == 16 or out_dtype == DataType.f32 \ | |||||
else 8 * DataTypeSize[out_dtype] | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
out_dtype, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||||
if tile.threadblock_shape[1] == 16 or (tile.threadblock_shape[1] == 32 and out_dtype != DataType.f32): | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
out_dtype, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
return operations | return operations | ||||
@@ -281,6 +330,8 @@ def GenerateConv2d_TensorOp_8832(args): | |||||
LayoutType.TensorNC64HW64, | LayoutType.TensorNC64HW64, | ||||
] | ] | ||||
use_special_optimization = SpecialOptimizeDesc.ConvFilterUnity | |||||
min_cc = 75 | min_cc = 75 | ||||
max_cc = 1024 | max_cc = 1024 | ||||
@@ -298,8 +349,8 @@ def GenerateConv2d_TensorOp_8832(args): | |||||
TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | ||||
] | ] | ||||
operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | operations += GenerateConv2d(ConvKind.Fprop, tile_descriptions, layout[0], layout[1], | ||||
dst_layout, dst_type, min_cc, 128, 128, 64, | |||||
False, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
dst_layout, dst_type, min_cc, 128, 128, 64, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
layouts_nhwc = [ | layouts_nhwc = [ | ||||
(LayoutType.TensorNHWC, LayoutType.TensorNC8HW8, 32), | (LayoutType.TensorNHWC, LayoutType.TensorNC8HW8, 32), | ||||
@@ -316,18 +367,39 @@ def GenerateConv2d_TensorOp_8832(args): | |||||
for dst_layout in dst_layouts_nhwc: | for dst_layout in dst_layouts_nhwc: | ||||
dst_type = math_inst.element_b | dst_type = math_inst.element_b | ||||
tile_descriptions = [ | tile_descriptions = [ | ||||
TileDescription([128, 16, 64], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([128, 32, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | TileDescription([128, 32, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | ||||
] | ] | ||||
for tile in tile_descriptions: | for tile in tile_descriptions: | ||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], | |||||
dst_layout, dst_type, min_cc, layout[2], layout[2], 32, | |||||
False, ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||||
dst_align = 16 if tile.threadblock_shape[1] == 16 else 32 | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||||
if tile.threadblock_shape[1] == 32 or tile.threadblock_shape[1] == 64: | if tile.threadblock_shape[1] == 32 or tile.threadblock_shape[1] == 64: | ||||
dst_align = 32 if tile.threadblock_shape[1] == 32 else 64 | dst_align = 32 if tile.threadblock_shape[1] == 32 else 64 | ||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], | |||||
dst_layout, dst_type, min_cc, layout[2], layout[2], dst_align, | |||||
False, ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
dst_type, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
# INT4x4x8 | |||||
for math_inst in math_instructions: | |||||
for layout in layouts_nhwc: | |||||
for dst_layout in dst_layouts_nhwc: | |||||
tile_descriptions = [ | |||||
TileDescription([128, 16, 64], 2, [1, 1, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([128, 32, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([128, 64, 64], 1, [2, 1, 1], math_inst, min_cc, max_cc), | |||||
] | |||||
for tile in tile_descriptions: | |||||
dst_align = 32 if tile.threadblock_shape[1] == 16 else 64 | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
DataType.s8, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, False, cuda_major, cuda_minor) | |||||
if tile.threadblock_shape[1] == 32 or tile.threadblock_shape[1] == 64: | |||||
dst_align = 64 if tile.threadblock_shape[1] == 32 else 128 | |||||
operations += GenerateConv2d(ConvKind.Fprop, [tile], layout[0], layout[1], dst_layout, | |||||
DataType.s8, min_cc, layout[2], layout[2], dst_align, use_special_optimization, | |||||
ImplicitGemmMode.GemmTN, True, cuda_major, cuda_minor) | |||||
return operations | return operations | ||||
@@ -354,6 +426,8 @@ def GenerateDeconv_Simt(args): | |||||
DataType.s8, | DataType.s8, | ||||
] | ] | ||||
use_special_optimization = SpecialOptimizeDesc.DeconvDoubleUpsampling | |||||
min_cc = 61 | min_cc = 61 | ||||
max_cc = 1024 | max_cc = 1024 | ||||
@@ -361,7 +435,6 @@ def GenerateDeconv_Simt(args): | |||||
for layout in layouts: | for layout in layouts: | ||||
for dst_type, dst_layout in zip(dst_types, dst_layouts): | for dst_type, dst_layout in zip(dst_types, dst_layouts): | ||||
tile_descriptions = [ | tile_descriptions = [ | ||||
TileDescription([64, 128, 32], 2, [1, 4, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([32, 128, 32], 2, [1, 2, 1], math_inst, min_cc, max_cc), | TileDescription([32, 128, 32], 2, [1, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([16, 128, 16], 2, [1, 2, 1], math_inst, min_cc, max_cc), | TileDescription([16, 128, 16], 2, [1, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), | TileDescription([16, 128, 16], 1, [1, 1, 1], math_inst, min_cc, max_cc), | ||||
@@ -369,7 +442,7 @@ def GenerateDeconv_Simt(args): | |||||
] | ] | ||||
operations += GenerateConv2d(ConvKind.Dgrad, tile_descriptions, layout[0], layout[1], | operations += GenerateConv2d(ConvKind.Dgrad, tile_descriptions, layout[0], layout[1], | ||||
dst_layout, dst_type, min_cc, 32, 32, 32, | dst_layout, dst_type, min_cc, 32, 32, 32, | ||||
True) | |||||
use_special_optimization) | |||||
return operations | return operations | ||||
################################################################################ | ################################################################################ | ||||
@@ -562,6 +562,24 @@ StrideSupportNames = { | |||||
StrideSupport.Unity: 'unity_stride', | StrideSupport.Unity: 'unity_stride', | ||||
} | } | ||||
class SpecialOptimizeDesc(enum.Enum): | |||||
NoneSpecialOpt = enum_auto() | |||||
ConvFilterUnity = enum_auto() | |||||
DeconvDoubleUpsampling = enum_auto() | |||||
SpecialOptimizeDescNames = { | |||||
SpecialOptimizeDesc.NoneSpecialOpt: 'none', | |||||
SpecialOptimizeDesc.ConvFilterUnity: 'conv_filter_unity', | |||||
SpecialOptimizeDesc.DeconvDoubleUpsampling: 'deconv_double_upsampling', | |||||
} | |||||
SpecialOptimizeDescTag = { | |||||
SpecialOptimizeDesc.NoneSpecialOpt: 'cutlass::conv::SpecialOptimizeDesc::NONE', | |||||
SpecialOptimizeDesc.ConvFilterUnity: 'cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY', | |||||
SpecialOptimizeDesc.DeconvDoubleUpsampling: 'cutlass::conv::SpecialOptimizeDesc::DECONV_DOUBLE_UPSAMPLING', | |||||
} | |||||
class ImplicitGemmMode(enum.Enum): | class ImplicitGemmMode(enum.Enum): | ||||
GemmNT = enum_auto() | GemmNT = enum_auto() | ||||
GemmTN = enum_auto() | GemmTN = enum_auto() | ||||
@@ -455,11 +455,14 @@ cutlass_gen_list = [ | |||||
"cutlass_simt_sgemv_batched_strided_1x32_32_tt_align1x4.cu", | "cutlass_simt_sgemv_batched_strided_1x32_32_tt_align1x4.cu", | ||||
"cutlass_simt_sgemv_batched_strided_1x32_16_tt_align1x2.cu", | "cutlass_simt_sgemv_batched_strided_1x32_16_tt_align1x2.cu", | ||||
"cutlass_simt_sgemv_batched_strided_1x32_8_tt_align1x1.cu", | "cutlass_simt_sgemv_batched_strided_1x32_8_tt_align1x1.cu", | ||||
"cutlass_simt_s8_idgrad_id_s8_64x128x32_64x32x32_2_nc4hw4_k4rsc4.cu", | |||||
"cutlass_simt_s8_idgrad_id_s8_32x128x32_32x64x32_2_nc4hw4_k4rsc4.cu", | "cutlass_simt_s8_idgrad_id_s8_32x128x32_32x64x32_2_nc4hw4_k4rsc4.cu", | ||||
"cutlass_simt_s8_idgrad_s2_id_s8_32x128x32_32x64x32_2_nc4hw4_k4rsc4.cu", | |||||
"cutlass_simt_s8_idgrad_id_s8_16x128x16_16x64x16_2_nc4hw4_k4rsc4.cu", | "cutlass_simt_s8_idgrad_id_s8_16x128x16_16x64x16_2_nc4hw4_k4rsc4.cu", | ||||
"cutlass_simt_s8_idgrad_s2_id_s8_16x128x16_16x64x16_2_nc4hw4_k4rsc4.cu", | |||||
"cutlass_simt_s8_idgrad_id_s8_16x128x16_16x128x16_1_nc4hw4_k4rsc4.cu", | "cutlass_simt_s8_idgrad_id_s8_16x128x16_16x128x16_1_nc4hw4_k4rsc4.cu", | ||||
"cutlass_simt_s8_idgrad_s2_id_s8_16x128x16_16x128x16_1_nc4hw4_k4rsc4.cu", | |||||
"cutlass_simt_s8_idgrad_id_s8_16x64x8_16x64x8_2_nc4hw4_k4rsc4.cu", | "cutlass_simt_s8_idgrad_id_s8_16x64x8_16x64x8_2_nc4hw4_k4rsc4.cu", | ||||
"cutlass_simt_s8_idgrad_s2_id_s8_16x64x8_16x64x8_2_nc4hw4_k4rsc4.cu", | |||||
"all_deconv_simt_operations.cu", | "all_deconv_simt_operations.cu", | ||||
"cutlass_simt_s8_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4.cu", | "cutlass_simt_s8_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4.cu", | ||||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4.cu", | "cutlass_simt_s8_ifprop_1x1_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4.cu", | ||||
@@ -515,30 +518,6 @@ cutlass_gen_list = [ | |||||
"cutlass_simt_s8_ifprop_1x1_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | "cutlass_simt_s8_ifprop_1x1_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | ||||
"cutlass_simt_s8_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | "cutlass_simt_s8_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | ||||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | "cutlass_simt_s8_ifprop_1x1_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4.cu", | ||||
"cutlass_simt_s8_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | "cutlass_simt_s8_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | ||||
"cutlass_simt_s8_ifprop_1x1_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | "cutlass_simt_s8_ifprop_1x1_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | ||||
"cutlass_simt_s8_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | "cutlass_simt_s8_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | ||||
@@ -551,108 +530,18 @@ cutlass_gen_list = [ | |||||
"cutlass_simt_s8_ifprop_1x1_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | "cutlass_simt_s8_ifprop_1x1_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | ||||
"cutlass_simt_s8_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | "cutlass_simt_s8_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | ||||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | "cutlass_simt_s8_ifprop_1x1_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | ||||
"cutlass_simt_s8_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_s8_ifprop_1x1_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nc32hw32.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_u4_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_u4_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_u4_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_u4_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_u4_ifprop_hswish_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_u4_ifprop_hswish_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_u4_ifprop_id_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_u4_ifprop_id_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_u4_ifprop_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_u4_ifprop_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_u4_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_u4_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_s4_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nhwc.cu", | |||||
"cutlass_simt_s4_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_s4_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_s4_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_s4_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_s4_ifprop_hswish_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_s4_ifprop_hswish_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_s4_ifprop_id_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_s4_ifprop_id_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_s4_ifprop_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_s4_ifprop_relu_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_s4_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | "cutlass_simt_s4_ifprop_hswish_s8_16x64x8_16x64x8_2_nc4hw4_c4rsk4_nhwc.cu", | ||||
"cutlass_simt_f32_ifprop_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_id_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_relu_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_128x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_id_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_relu_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_128x64x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_id_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_relu_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_64x128x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_id_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_relu_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_128x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_id_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_relu_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_32x128x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_id_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_relu_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_32x64x32_32x64x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_id_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_relu_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_1x1_hswish_s8_64x32x32_64x32x32_2_nc4hw4_c4rsk4_nchw.cu", | |||||
"cutlass_simt_f32_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | "cutlass_simt_f32_ifprop_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | ||||
"cutlass_simt_f32_ifprop_1x1_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | "cutlass_simt_f32_ifprop_1x1_id_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | ||||
"cutlass_simt_f32_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | "cutlass_simt_f32_ifprop_relu_s8_16x128x16_16x128x16_1_nc4hw4_c4rsk4_nchw.cu", | ||||
@@ -708,72 +597,288 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | "cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x256x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_256x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x128x64_64x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x64x64_64x32x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_id_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_relu_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_hswish_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x128x64_32x64x64_2_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x64x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_id_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | "cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_32x128x32_32x64x32_1_nc32hw32_c32rsk32_nc4hw4.cu", | ||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc4hw4.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_128x32x32_64x32x32_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_id_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_relu_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_f32_i8816fprop_1x1_roc_hswish_s8_64x16x32_64x16x32_2_nhwc_nc16hw16.cu", | |||||
"all_conv2d_tensorop8816_operations.cu", | "all_conv2d_tensorop8816_operations.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_roc_id_s4_128x256x128_64x64x128_2_nc64hw64_c64rsk64.cu", | "cutlass_tensorop_s4_i8832fprop_roc_id_s4_128x256x128_64x64x128_2_nc64hw64_c64rsk64.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_id_s4_128x256x128_64x64x128_2_nc64hw64_c64rsk64.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_roc_id_s4_128x256x128_64x64x128_2_nc64hw64_c64rsk64.cu", | ||||
@@ -815,6 +920,12 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | "cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nc64hw64_c64rsk64.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | ||||
@@ -839,6 +950,12 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | ||||
@@ -863,6 +980,12 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_s4_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_s4_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | ||||
@@ -887,6 +1010,10 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_s4_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_s4_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | ||||
@@ -903,6 +1030,10 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | ||||
@@ -919,6 +1050,10 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_u4_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_u4_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | ||||
@@ -935,5 +1070,155 @@ cutlass_gen_list = [ | |||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_u4_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | "cutlass_tensorop_u4_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | ||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_hswish_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc8hw8.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc16hw16.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x16x64_128x16x64_2_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x32x64_64x32x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_id_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"cutlass_tensorop_s8_i8832fprop_1x1_roc_relu_u4_s4_128x64x64_64x64x64_1_nhwc_nc32hw32.cu", | |||||
"all_conv2d_tensorop8832_operations.cu", | "all_conv2d_tensorop8832_operations.cu", | ||||
] | |||||
] |
@@ -553,7 +553,10 @@ void ConvolutionBase<Parameter>::check_or_deduce_dtype_fwd(DType src, | |||||
dst.valid() && (dst.enumv() == src.enumv() || | dst.valid() && (dst.enumv() == src.enumv() || | ||||
((dst.enumv() == DTypeEnum::QuantizedS4 || | ((dst.enumv() == DTypeEnum::QuantizedS4 || | ||||
dst.enumv() == DTypeEnum::Quantized4Asymm) && | dst.enumv() == DTypeEnum::Quantized4Asymm) && | ||||
src.enumv() == DTypeEnum::QuantizedS8)); | |||||
src.enumv() == DTypeEnum::QuantizedS8) || | |||||
((src.enumv() == DTypeEnum::QuantizedS4 || | |||||
src.enumv() == DTypeEnum::Quantized4Asymm) && | |||||
dst.enumv() == DTypeEnum::QuantizedS8)); | |||||
if (cond_dst) { | if (cond_dst) { | ||||
supported_dst_dtype.push_back(dst); | supported_dst_dtype.push_back(dst); | ||||
} | } | ||||
@@ -71,6 +71,9 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||||
for (auto&& algo : int8_nchw32_imma) { | for (auto&& algo : int8_nchw32_imma) { | ||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
} | } | ||||
for (auto&& algo : int8_nhwc_imma) { | |||||
all_algos.push_back(&algo); | |||||
} | |||||
for (auto&& algo : int4_int4_nchw64_imma) { | for (auto&& algo : int4_int4_nchw64_imma) { | ||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
} | } | ||||
@@ -236,7 +239,21 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||||
int8_nchw32_imma.emplace_back( | int8_nchw32_imma.emplace_back( | ||||
AlgoParam{32, 128, 32, 32, 64, 32, 8, 8, 16, 1}); | AlgoParam{32, 128, 32, 32, 64, 32, 8, 8, 16, 1}); | ||||
} | } | ||||
{ | |||||
using AlgoParam = AlgoInt8NHWCIMMAImplicitGemm::AlgoParam; | |||||
int8_nhwc_imma.emplace_back( | |||||
AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 16}); | |||||
int8_nhwc_imma.emplace_back( | |||||
AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 8}); | |||||
int8_nhwc_imma.emplace_back( | |||||
AlgoParam{64, 16, 32, 64, 16, 32, 8, 8, 16, 2, 4}); | |||||
int8_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 16}); | |||||
int8_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 8}); | |||||
int8_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 32, 32, 64, 32, 32, 8, 8, 16, 1, 4}); | |||||
} | |||||
{ | { | ||||
using AlgoParam = AlgoInt4Int4NCHW64IMMAImplicitGemm::AlgoParam; | using AlgoParam = AlgoInt4Int4NCHW64IMMAImplicitGemm::AlgoParam; | ||||
int4_int4_nchw64_imma.emplace_back( | int4_int4_nchw64_imma.emplace_back( | ||||
@@ -262,6 +279,12 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||||
{ | { | ||||
using AlgoParam = AlgoInt4Int4NHWCIMMAImplicitGemm::AlgoParam; | using AlgoParam = AlgoInt4Int4NHWCIMMAImplicitGemm::AlgoParam; | ||||
int4_int4_nhwc_imma.emplace_back( | int4_int4_nhwc_imma.emplace_back( | ||||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32}); | |||||
int4_int4_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16}); | |||||
int4_int4_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8}); | |||||
int4_int4_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32}); | AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32}); | ||||
int4_int4_nhwc_imma.emplace_back( | int4_int4_nhwc_imma.emplace_back( | ||||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16}); | AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16}); | ||||
@@ -277,6 +300,12 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||||
{ | { | ||||
using AlgoParam = AlgoUInt4Int4NHWCIMMAImplicitGemm::AlgoParam; | using AlgoParam = AlgoUInt4Int4NHWCIMMAImplicitGemm::AlgoParam; | ||||
uint4_int4_nhwc_imma.emplace_back( | uint4_int4_nhwc_imma.emplace_back( | ||||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 32}); | |||||
uint4_int4_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 16}); | |||||
uint4_int4_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 16, 64, 128, 16, 64, 8, 8, 32, 2, 8}); | |||||
uint4_int4_nhwc_imma.emplace_back( | |||||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32}); | AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 32}); | ||||
uint4_int4_nhwc_imma.emplace_back( | uint4_int4_nhwc_imma.emplace_back( | ||||
AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16}); | AlgoParam{128, 32, 64, 64, 32, 64, 8, 8, 32, 1, 16}); | ||||
@@ -72,6 +72,7 @@ public: | |||||
CUDA_IMPLICIT_GEMM_REORDER_FILTER_CHWN4_IMMA_INT8, | CUDA_IMPLICIT_GEMM_REORDER_FILTER_CHWN4_IMMA_INT8, | ||||
CUDA_IMPLICIT_GEMM_UNROLL_WIDTH_CHWN4_IMMA_INT8, | CUDA_IMPLICIT_GEMM_UNROLL_WIDTH_CHWN4_IMMA_INT8, | ||||
CUDA_IMPLICIT_GEMM_IMMA_NCHW32_INT8, | CUDA_IMPLICIT_GEMM_IMMA_NCHW32_INT8, | ||||
CUDA_IMPLICIT_GEMM_IMMA_NHWC_INT8, | |||||
CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4, | CUDA_IMPLICIT_GEMM_IMMA_NCHW64_INT4_INT4, | ||||
CUDA_IMPLICIT_GEMM_IMMA_NCHW64_UINT4_INT4, | CUDA_IMPLICIT_GEMM_IMMA_NCHW64_UINT4_INT4, | ||||
CUDA_IMPLICIT_GEMM_IMMA_NHWC_INT4_INT4, | CUDA_IMPLICIT_GEMM_IMMA_NHWC_INT4_INT4, | ||||
@@ -524,6 +525,7 @@ public: | |||||
* + | * + | ||||
* +--- AlgoInt8NCHW4DotProdImplicitGemm | * +--- AlgoInt8NCHW4DotProdImplicitGemm | ||||
* +--- AlgoInt8NCHW32IMMAImplicitGemm | * +--- AlgoInt8NCHW32IMMAImplicitGemm | ||||
* +--- AlgoInt8NHWCIMMAImplicitGemm | |||||
* + | * + | ||||
* +--- AlgoInt4NCHW64IMMAImplicitGemmBase | * +--- AlgoInt4NCHW64IMMAImplicitGemmBase | ||||
* +----+--- AlgoInt4Int4NCHW64IMMAImplicitGemm | * +----+--- AlgoInt4Int4NCHW64IMMAImplicitGemm | ||||
@@ -582,7 +584,7 @@ public: | |||||
// operation (cutlass kernel) from the global OperationTable | // operation (cutlass kernel) from the global OperationTable | ||||
const cutlass::library::Operation* get_cutlass_conv_op( | const cutlass::library::Operation* get_cutlass_conv_op( | ||||
const SizeArgs& args, ConvOperator conv_op, ConvType conv_type, | const SizeArgs& args, ConvOperator conv_op, ConvType conv_type, | ||||
bool load_from_const, bool without_shared_load) const; | |||||
bool use_conv_filter_unity_opt, bool without_shared_load) const; | |||||
// execute the cutlass kernel found by get_cutlass_conv_op. we give | // execute the cutlass kernel found by get_cutlass_conv_op. we give | ||||
// subclasses full freedom to decide where and how these arguments are | // subclasses full freedom to decide where and how these arguments are | ||||
@@ -829,6 +831,47 @@ private: | |||||
std::string m_name; | std::string m_name; | ||||
}; | }; | ||||
class ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm final | |||||
: public AlgoCutlassConvolutionBase { | |||||
public: | |||||
AlgoInt8NHWCIMMAImplicitGemm(AlgoParam algo_param) | |||||
: AlgoCutlassConvolutionBase(algo_param) { | |||||
m_name = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
ssprintf("INT8_NHWC_IMMA_IMPLICIT_GEMM_%s", | |||||
to_string(m_algo_param).c_str()), | |||||
ConvBias::DirectParam{}); | |||||
} | |||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | |||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); } | |||||
AlgoAttribute attribute() const override { | |||||
return AlgoAttribute::REPRODUCIBLE; | |||||
} | |||||
static std::string to_string(AlgoParam algo_param); | |||||
size_t get_preprocess_workspace_in_bytes( | |||||
const SizeArgs& args) const override; | |||||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||||
const SizeArgs& args) const override; | |||||
void exec_preprocess(const ExecArgs& args) const override; | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_GEMM_IMMA_NHWC_INT8) | |||||
std::string param() const override { | |||||
std::string ret; | |||||
serialize_write_pod(m_algo_param, ret); | |||||
return ret; | |||||
} | |||||
private: | |||||
std::tuple<float, float, float, float, float> get_constants( | |||||
const ExecArgs& args) const; | |||||
void reorder_filter(const ExecArgs& args, int interleaved, | |||||
void* reordered_filter) const; | |||||
std::string m_name; | |||||
}; | |||||
class ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase | class ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase | ||||
: public AlgoCutlassConvolutionBase { | : public AlgoCutlassConvolutionBase { | ||||
public: | public: | ||||
@@ -1087,6 +1130,7 @@ public: | |||||
#endif | #endif | ||||
#if CUDA_VERSION >= 10020 | #if CUDA_VERSION >= 10020 | ||||
std::vector<AlgoInt8NCHW32IMMAImplicitGemm> int8_nchw32_imma; | std::vector<AlgoInt8NCHW32IMMAImplicitGemm> int8_nchw32_imma; | ||||
std::vector<AlgoInt8NHWCIMMAImplicitGemm> int8_nhwc_imma; | |||||
std::vector<AlgoInt4Int4NCHW64IMMAImplicitGemm> int4_int4_nchw64_imma; | std::vector<AlgoInt4Int4NCHW64IMMAImplicitGemm> int4_int4_nchw64_imma; | ||||
std::vector<AlgoUInt4Int4NCHW64IMMAImplicitGemm> uint4_int4_nchw64_imma; | std::vector<AlgoUInt4Int4NCHW64IMMAImplicitGemm> uint4_int4_nchw64_imma; | ||||
std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma; | std::vector<AlgoInt4Int4NHWCIMMAImplicitGemm> int4_int4_nhwc_imma; | ||||
@@ -140,6 +140,11 @@ LayoutPack get_layout_pack(const param::ConvBias::Format format, | |||||
LayoutTypeID::kTensorNC64HW64}; | LayoutTypeID::kTensorNC64HW64}; | ||||
case Format::NHWC: | case Format::NHWC: | ||||
switch (access_type) { | switch (access_type) { | ||||
case 4: | |||||
return {LayoutTypeID::kTensorNHWC, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
LayoutTypeID::kTensorNHWC, | |||||
LayoutTypeID::kTensorNHWC}; | |||||
case 8: | case 8: | ||||
return {LayoutTypeID::kTensorNHWC, | return {LayoutTypeID::kTensorNHWC, | ||||
LayoutTypeID::kTensorNC8HW8, | LayoutTypeID::kTensorNC8HW8, | ||||
@@ -192,12 +197,18 @@ EpilogueType get_epilogue_type(const param::ConvBias::NonlineMode mode, | |||||
const Operation* | const Operation* | ||||
ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | ||||
const SizeArgs& args, ConvOperator conv_op, ConvType conv_type, | const SizeArgs& args, ConvOperator conv_op, ConvType conv_type, | ||||
bool load_from_const, bool without_shared_load) const { | |||||
using Format = param::ConvBias::Format; | |||||
bool use_conv_filter_unity_opt, bool without_shared_load) const { | |||||
auto&& param = args.opr->param(); | auto&& param = args.opr->param(); | ||||
auto layouts = get_layout_pack(param.format, m_algo_param.access_size); | auto layouts = get_layout_pack(param.format, m_algo_param.access_size); | ||||
auto epilogue_type = get_epilogue_type(param.nonlineMode, | |||||
param.format != Format::NCHW4_NCHW); | |||||
auto epilogue_type = get_epilogue_type( | |||||
param.nonlineMode, | |||||
args.dst_layout->dtype.enumv() != DTypeEnum::Float32); | |||||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||||
(use_conv_filter_unity_opt) | |||||
? cutlass::conv::SpecialOptimizeDesc::CONV_FILTER_UNITY | |||||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||||
ConvolutionKey key{convert_conv_op(conv_op), | ConvolutionKey key{convert_conv_op(conv_op), | ||||
convert_dtype(args.src_layout->dtype.enumv()), | convert_dtype(args.src_layout->dtype.enumv()), | ||||
layouts.src, | layouts.src, | ||||
@@ -219,7 +230,7 @@ ConvBiasForwardImpl::AlgoCutlassConvolutionBase::get_cutlass_conv_op( | |||||
m_algo_param.instruction_k, | m_algo_param.instruction_k, | ||||
epilogue_type, | epilogue_type, | ||||
m_algo_param.stage, | m_algo_param.stage, | ||||
load_from_const, | |||||
special_optimization, | |||||
without_shared_load}; | without_shared_load}; | ||||
return Singleton::get().operation_table.find_op(key); | return Singleton::get().operation_table.find_op(key); | ||||
@@ -144,28 +144,48 @@ void megdnn::cuda::cutlass_wrapper::reorder_ncxhwx_imma_filter( | |||||
IC, FH, FW, trans_oc); | IC, FH, FW, trans_oc); | ||||
after_kernel_launch(); | after_kernel_launch(); | ||||
} | } | ||||
template <uint32_t size_bits, uint32_t alignbits> | |||||
template <uint32_t size_bits> | |||||
void megdnn::cuda::cutlass_wrapper::reorder_nhwc_imma_filter( | void megdnn::cuda::cutlass_wrapper::reorder_nhwc_imma_filter( | ||||
int8_t* dst_filter, const int8_t* src_filter, uint32_t OC, uint32_t IC, | int8_t* dst_filter, const int8_t* src_filter, uint32_t OC, uint32_t IC, | ||||
uint32_t FH, uint32_t FW, bool trans_oc, uint32_t oc_interleaved, | |||||
cudaStream_t stream) { | |||||
static constexpr uint32_t elements_per_access = alignbits / size_bits; | |||||
uint32_t nr_threads = | |||||
query_blocksize_for_kernel(reinterpret_cast<const void*>( | |||||
reorder_nhwc_imma_filter_kernel<size_bits, alignbits, 32>)); | |||||
uint32_t FH, uint32_t FW, bool trans_oc, uint32_t alignbits, | |||||
uint32_t interleaved, cudaStream_t stream) { | |||||
const uint32_t elements_per_access = alignbits / size_bits; | |||||
void (*kern)(int8_t* __restrict__, const int8_t* __restrict__, uint32_t, | |||||
uint32_t, uint32_t, uint32_t, bool); | |||||
kern = nullptr; | |||||
auto get_kern = [&kern](const uint32_t alignbits, | |||||
const uint32_t interleaved) { | |||||
#define DISPATCH_KERNEL(alignbits_, interleaved_) \ | |||||
if (alignbits == alignbits_ && interleaved == interleaved_) { \ | |||||
kern = reorder_nhwc_imma_filter_kernel<size_bits, alignbits_, \ | |||||
interleaved_>; \ | |||||
return; \ | |||||
} | |||||
DISPATCH_KERNEL(128, 16); | |||||
DISPATCH_KERNEL(64, 16); | |||||
DISPATCH_KERNEL(32, 16); | |||||
DISPATCH_KERNEL(128, 32); | |||||
DISPATCH_KERNEL(64, 32); | |||||
DISPATCH_KERNEL(32, 32); | |||||
DISPATCH_KERNEL(128, 64); | |||||
DISPATCH_KERNEL(64, 64); | |||||
DISPATCH_KERNEL(32, 64); | |||||
#undef DISPATCH_KERNEL | |||||
}; | |||||
get_kern(alignbits, interleaved); | |||||
uint32_t nr_threads = query_blocksize_for_kernel(kern); | |||||
uint32_t vthreads = DIVUP(OC * IC * FH * FW, elements_per_access); | uint32_t vthreads = DIVUP(OC * IC * FH * FW, elements_per_access); | ||||
nr_threads = std::min(nr_threads, vthreads); | nr_threads = std::min(nr_threads, vthreads); | ||||
uint32_t nr_blocks = DIVUP(vthreads, nr_threads); | uint32_t nr_blocks = DIVUP(vthreads, nr_threads); | ||||
if (oc_interleaved == 32) { | |||||
reorder_nhwc_imma_filter_kernel<size_bits, alignbits, 32> | |||||
<<<nr_blocks, nr_threads, 0, stream>>>( | |||||
dst_filter, src_filter, OC, IC, FH, FW, trans_oc); | |||||
} else { | |||||
reorder_nhwc_imma_filter_kernel<size_bits, alignbits, 64> | |||||
<<<nr_blocks, nr_threads, 0, stream>>>( | |||||
dst_filter, src_filter, OC, IC, FH, FW, trans_oc); | |||||
} | |||||
kern<<<nr_blocks, nr_threads, 0, stream>>>(dst_filter, src_filter, OC, IC, | |||||
FH, FW, trans_oc); | |||||
after_kernel_launch(); | after_kernel_launch(); | ||||
} | } | ||||
@@ -180,15 +200,14 @@ INST(8, 32) | |||||
INST(4, 64) | INST(4, 64) | ||||
#undef INST | #undef INST | ||||
#define INST(_size_bits, _alignbits) \ | |||||
template void megdnn::cuda::cutlass_wrapper::reorder_nhwc_imma_filter< \ | |||||
_size_bits, _alignbits>( \ | |||||
int8_t * dst_filter, const int8_t* src_filter, uint32_t OC, \ | |||||
uint32_t IC, uint32_t FH, uint32_t FW, bool trans_oc, \ | |||||
uint32_t oc_interleaved, cudaStream_t stream); | |||||
INST(4, 32) | |||||
INST(4, 64) | |||||
INST(4, 128) | |||||
#define INST(_size_bits) \ | |||||
template void \ | |||||
megdnn::cuda::cutlass_wrapper::reorder_nhwc_imma_filter<_size_bits>( \ | |||||
int8_t * dst_filter, const int8_t* src_filter, uint32_t OC, \ | |||||
uint32_t IC, uint32_t FH, uint32_t FW, bool trans_oc, \ | |||||
uint32_t alignbits, uint32_t interleaved, cudaStream_t stream); | |||||
INST(4) | |||||
INST(8) | |||||
#undef INST | #undef INST | ||||
// vim: syntax=cuda.doxygen | // vim: syntax=cuda.doxygen |
@@ -23,11 +23,11 @@ void reorder_ncxhwx_imma_filter(int8_t* dst_filter, const int8_t* src_filter, | |||||
uint32_t FW, bool trans_oc, | uint32_t FW, bool trans_oc, | ||||
cudaStream_t stream); | cudaStream_t stream); | ||||
template <uint32_t size_bits, uint32_t alignbits> | |||||
template <uint32_t size_bits> | |||||
void reorder_nhwc_imma_filter(int8_t* dst_filter, const int8_t* src_filter, | void reorder_nhwc_imma_filter(int8_t* dst_filter, const int8_t* src_filter, | ||||
uint32_t OC, uint32_t IC, uint32_t FH, | uint32_t OC, uint32_t IC, uint32_t FH, | ||||
uint32_t FW, bool trans_oc, | |||||
uint32_t oc_interleaved, cudaStream_t stream); | |||||
uint32_t FW, bool trans_oc, uint32_t alignbits, | |||||
uint32_t interleaved, cudaStream_t stream); | |||||
} // namespace cutlass_wrapper | } // namespace cutlass_wrapper | ||||
} // namespace cuda | } // namespace cuda | ||||
} // namespace megdnn | } // namespace megdnn |
@@ -68,13 +68,27 @@ ConvBiasForwardImpl::AlgoInt4Int4NHWCIMMAImplicitGemm::get_constants( | |||||
args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | ||||
bias_scale = | bias_scale = | ||||
args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | ||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
dst_scale; | |||||
if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
} else { // DTypeEnum::QuantizedS8 | |||||
megdnn_assert(args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8); | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
} | |||||
float alpha = src_scale * filter_scale / dst_scale, | float alpha = src_scale * filter_scale / dst_scale, | ||||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, theta = 0.f; | beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, theta = 0.f; | ||||
if (args.z_layout->ndim > 0) { | if (args.z_layout->ndim > 0) { | ||||
float z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
float z_scale; | |||||
if (args.z_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
} else { // DTypeEnum::QuantizedS8 | |||||
megdnn_assert(args.z_layout->dtype.enumv() == | |||||
DTypeEnum::QuantizedS8); | |||||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
} | |||||
gamma = z_scale / dst_scale; | gamma = z_scale / dst_scale; | ||||
} | } | ||||
@@ -76,6 +76,14 @@ bool ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::is_available( | |||||
if (fh * fw > kMaxFilterPixels) | if (fh * fw > kMaxFilterPixels) | ||||
return false; | return false; | ||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = true; | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
if (op == nullptr) | |||||
return false; | |||||
return true; | return true; | ||||
} | } | ||||
@@ -110,7 +118,7 @@ void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::exec( | |||||
float dst_scale = 0.f; | float dst_scale = 0.f; | ||||
float threshold = 0.f; | float threshold = 0.f; | ||||
uint8_t src_zero = 0; | uint8_t src_zero = 0; | ||||
bool load_from_const = !(fh == 1 && fw == 1); | |||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = true; | bool without_shared_load = true; | ||||
if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | ||||
@@ -126,7 +134,7 @@ void ConvBiasForwardImpl::AlgoInt4NCHW64IMMAImplicitGemmBase::exec( | |||||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | ||||
ConvType::kConvolution, | ConvType::kConvolution, | ||||
load_from_const, without_shared_load); | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | ||||
z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | ||||
@@ -56,8 +56,11 @@ bool ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::is_available( | |||||
if (args.src_layout->dtype.enumv() != src_dtype() || | if (args.src_layout->dtype.enumv() != src_dtype() || | ||||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS4 || | ||||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32 || | |||||
args.dst_layout->dtype.enumv() != src_dtype()) | |||||
args.bias_layout->dtype.enumv() != DTypeEnum::QuantizedS32) | |||||
return false; | |||||
if (!(args.dst_layout->dtype.enumv() == src_dtype() || | |||||
args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8)) | |||||
return false; | return false; | ||||
// uint4 do not support H_SWISH activition | // uint4 do not support H_SWISH activition | ||||
@@ -83,6 +86,16 @@ bool ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::is_available( | |||||
if ((co % 8 != 0) || (ci % m_algo_param.access_size != 0)) | if ((co % 8 != 0) || (ci % m_algo_param.access_size != 0)) | ||||
return false; | return false; | ||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | |||||
(m_algo_param.threadblock_n == 32 || | |||||
m_algo_param.threadblock_n == 64)); | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
if (op == nullptr) | |||||
return false; | |||||
return true; | return true; | ||||
} | } | ||||
@@ -117,26 +130,31 @@ void ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::exec( | |||||
float dst_scale = 0.f; | float dst_scale = 0.f; | ||||
float threshold = 0.f; | float threshold = 0.f; | ||||
uint8_t src_zero = 0; | uint8_t src_zero = 0; | ||||
bool load_from_const = !(fh == 1 && fw == 1); | |||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | ||||
(m_algo_param.threadblock_n == 32 || | (m_algo_param.threadblock_n == 32 || | ||||
m_algo_param.threadblock_n == 64)); | m_algo_param.threadblock_n == 64)); | ||||
if (args.src_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||||
src_zero = args.src_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point; | |||||
} | |||||
if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | ||||
dst_scale = | dst_scale = | ||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | ||||
src_zero = args.src_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point; | |||||
} else { // DTypeEnum::QuantizedS4 | |||||
} else if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | ||||
} else { // DTypeEnum::QuantizedS8 | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
} | } | ||||
cudaStream_t stream = cuda_stream(args.opr->handle()); | cudaStream_t stream = cuda_stream(args.opr->handle()); | ||||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | ||||
ConvType::kConvolution, | ConvType::kConvolution, | ||||
load_from_const, without_shared_load); | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | ||||
z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | ||||
@@ -166,29 +184,18 @@ void ConvBiasForwardImpl::AlgoInt4NHWCIMMAImplicitGemmBase::reorder_filter( | |||||
cudaStream_t stream = cuda_stream(args.opr->handle()); | cudaStream_t stream = cuda_stream(args.opr->handle()); | ||||
// reformat filter from nhwc to ncxhwx and reorder oc | // reformat filter from nhwc to ncxhwx and reorder oc | ||||
// use trans_oc threadblock_n must be 32 or 64 | |||||
// use trans_oc threadblock_n must be 32 or 64 and src dtype == dest dtype | |||||
bool trans_oc = ((co % m_algo_param.threadblock_n == 0) && | bool trans_oc = ((co % m_algo_param.threadblock_n == 0) && | ||||
(m_algo_param.threadblock_n == 32 || | (m_algo_param.threadblock_n == 32 || | ||||
m_algo_param.threadblock_n == 64)); | m_algo_param.threadblock_n == 64)); | ||||
uint32_t oc_iterleave = (m_algo_param.threadblock_n == 64) ? 64 : 32; | |||||
if (iterleaved == 8) { | |||||
cutlass_wrapper::reorder_nhwc_imma_filter<4, 32>( | |||||
reinterpret_cast<int8_t*>(reordered_filter), | |||||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, | |||||
fh, fw, trans_oc, oc_iterleave, stream); | |||||
} else if (iterleaved == 16) { | |||||
cutlass_wrapper::reorder_nhwc_imma_filter<4, 64>( | |||||
reinterpret_cast<int8_t*>(reordered_filter), | |||||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, | |||||
fh, fw, trans_oc, oc_iterleave, stream); | |||||
} else { | |||||
megdnn_assert(iterleaved == 32); | |||||
cutlass_wrapper::reorder_nhwc_imma_filter<4, 128>( | |||||
reinterpret_cast<int8_t*>(reordered_filter), | |||||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, | |||||
fh, fw, trans_oc, oc_iterleave, stream); | |||||
} | |||||
uint32_t oc_iterleaved = (m_algo_param.threadblock_n == 64) ? 64 : 32; | |||||
uint32_t alignbits = iterleaved * 4; | |||||
cutlass_wrapper::reorder_nhwc_imma_filter<4>( | |||||
reinterpret_cast<int8_t*>(reordered_filter), | |||||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, fh, | |||||
fw, trans_oc, alignbits, oc_iterleaved, stream); | |||||
} | } | ||||
#endif | #endif | ||||
@@ -77,6 +77,14 @@ bool ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::is_available( | |||||
// FIXME: too large filter size is not supported now | // FIXME: too large filter size is not supported now | ||||
size_t kMaxFilterPixels = 848 / (2 * m_algo_param.warp_k / 32) - 2; | size_t kMaxFilterPixels = 848 / (2 * m_algo_param.warp_k / 32) - 2; | ||||
available &= fh * fw <= kMaxFilterPixels; | available &= fh * fw <= kMaxFilterPixels; | ||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = (param.format == Format::NCHW32); | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
available &= (op != nullptr); | |||||
return available; | return available; | ||||
} | } | ||||
@@ -155,12 +163,12 @@ void ConvBiasForwardImpl::AlgoInt8NCHW32IMMAImplicitGemm::exec( | |||||
gamma = z_scale / dst_scale; | gamma = z_scale / dst_scale; | ||||
} | } | ||||
float delta = 0.f, theta = 0.f, threshold = 0.f; | float delta = 0.f, theta = 0.f, threshold = 0.f; | ||||
bool load_from_const = !(fh == 1 && fw == 1); | |||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = (param.format == Format::NCHW32); | bool without_shared_load = (param.format == Format::NCHW32); | ||||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | ||||
ConvType::kConvolution, | ConvType::kConvolution, | ||||
load_from_const, without_shared_load); | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
execute_cutlass_conv_op( | execute_cutlass_conv_op( | ||||
op, args.src_tensor->raw_ptr, filter_ptr, args.bias_tensor->raw_ptr, | op, args.src_tensor->raw_ptr, filter_ptr, args.bias_tensor->raw_ptr, | ||||
@@ -98,7 +98,14 @@ bool ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::is_available( | |||||
// FIXME: too large filter size is not supported now | // FIXME: too large filter size is not supported now | ||||
size_t kMaxFilterPixels = 848 / (2 * m_algo_param.warp_k / 4) - 2; | size_t kMaxFilterPixels = 848 / (2 * m_algo_param.warp_k / 4) - 2; | ||||
available &= fh * fw <= kMaxFilterPixels; | available &= fh * fw <= kMaxFilterPixels; | ||||
; | |||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = false; | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
available &= (op != nullptr); | |||||
return available; | return available; | ||||
} | } | ||||
@@ -213,12 +220,12 @@ void ConvBiasForwardImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec( | |||||
} | } | ||||
} | } | ||||
float threshold = 0.f; | float threshold = 0.f; | ||||
bool load_from_const = !(fh == 1 && fw == 1); | |||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = false; | bool without_shared_load = false; | ||||
const auto* op = get_cutlass_conv_op(args, ConvOperator::kFprop, | |||||
ConvType::kConvolution, | |||||
load_from_const, without_shared_load); | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
execute_cutlass_conv_op( | execute_cutlass_conv_op( | ||||
op, args.src_tensor->raw_ptr, filter_ptr, args.bias_tensor->raw_ptr, | op, args.src_tensor->raw_ptr, filter_ptr, args.bias_tensor->raw_ptr, | ||||
@@ -0,0 +1,294 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/implicit_gemm_int8_nhwc_imma.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "src/common/conv_bias.h" | |||||
#include "src/cuda/conv_bias/algo.h" | |||||
#include "src/cuda/conv_bias/cutlass_reorder_filter.cuh" | |||||
#include "src/cuda/convolution_helper/parameter.cuh" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace convolution; | |||||
#if CUDA_VERSION >= 10020 | |||||
bool ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
if (args.bias_layout->ndim <= 0) | |||||
return false; | |||||
using Param = param::ConvBias; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
using NonlineMode = megdnn::param::ConvBias::NonlineMode; | |||||
auto&& param = args.opr->param(); | |||||
if (!check_bias_share_in_channel(*(args.bias_layout), param.format)) | |||||
return false; | |||||
if (param.format != Format::NHWC || param.sparse != Sparse::DENSE || | |||||
param.mode != Mode::CROSS_CORRELATION) | |||||
return false; | |||||
if (param.nonlineMode != NonlineMode::IDENTITY && | |||||
param.nonlineMode != NonlineMode::RELU && | |||||
param.nonlineMode != NonlineMode::H_SWISH) | |||||
return false; | |||||
if (args.src_layout->dtype.enumv() != DTypeEnum::QuantizedS8 || | |||||
args.filter_layout->dtype.enumv() != DTypeEnum::QuantizedS8) | |||||
return false; | |||||
auto dst_dtype = args.dst_layout->dtype.enumv(); | |||||
if (!(dst_dtype == DTypeEnum::QuantizedS8 || | |||||
dst_dtype == DTypeEnum::QuantizedS4 || | |||||
dst_dtype == DTypeEnum::Quantized4Asymm || | |||||
dst_dtype == DTypeEnum::Float32)) | |||||
return false; | |||||
if (!(args.bias_layout->dtype.enumv() == DTypeEnum::QuantizedS32 || | |||||
(args.bias_layout->dtype.enumv() == DTypeEnum::Float32 && | |||||
dst_dtype == DTypeEnum::Float32))) | |||||
return false; | |||||
if (!is_compute_capability_required(7, 5)) | |||||
return false; | |||||
size_t co = args.filter_layout->operator[](0), | |||||
ci = args.filter_layout->operator[](3), | |||||
fh = args.filter_layout->operator[](1), | |||||
fw = args.filter_layout->operator[](2); | |||||
// param buffer size is 4K, use 3.4K to store precomputed offset | |||||
size_t kMaxFilterPixels = | |||||
848 / (m_algo_param.warp_k / m_algo_param.access_size) - 1; | |||||
if (fh * fw > kMaxFilterPixels) | |||||
return false; | |||||
// co should be aligned with 4, and ci should be aligned with | |||||
// algo_param.access_size | |||||
if ((co % 4 != 0) || (ci % m_algo_param.access_size != 0)) | |||||
return false; | |||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | |||||
(m_algo_param.threadblock_n == 16 || | |||||
(m_algo_param.threadblock_n == 32 && | |||||
dst_dtype != DTypeEnum::Float32))); | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
if (op == nullptr) | |||||
return false; | |||||
return true; | |||||
} | |||||
size_t | |||||
ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::get_workspace_in_bytes( | |||||
const SizeArgs& args) const { | |||||
if (args.preprocessed_filter) { | |||||
return 0; | |||||
} else { | |||||
return args.filter_layout->span().dist_byte(); | |||||
} | |||||
} | |||||
size_t ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm:: | |||||
get_preprocess_workspace_in_bytes(const SizeArgs& args) const { | |||||
return 0; | |||||
} | |||||
SmallVector<TensorLayout> ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm:: | |||||
deduce_preprocessed_filter_layout(const SizeArgs& args) const { | |||||
return {args.filter_layout->collapse_contiguous()}; | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::exec_preprocess( | |||||
const ExecArgs& args) const { | |||||
void* filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||||
reorder_filter(args, m_algo_param.access_size, filter_ptr); | |||||
} | |||||
std::tuple<float, float, float, float, float> | |||||
ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::get_constants( | |||||
const ExecArgs& args) const { | |||||
float src_scale = args.src_layout->dtype.param<dtype::QuantizedS8>().scale, | |||||
filter_scale = | |||||
args.filter_layout->dtype.param<dtype::QuantizedS8>().scale, | |||||
bias_scale = 1.f, dst_scale; | |||||
if (args.bias_layout->dtype.enumv() == DTypeEnum::QuantizedS32) { | |||||
bias_scale = args.bias_layout->dtype.param<dtype::QuantizedS32>().scale; | |||||
} | |||||
uint8_t dst_zero = 0; | |||||
if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8) { | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
} else if (args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
} else if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||||
dst_scale = | |||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
dst_zero = args.dst_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point; | |||||
} else { // DTypeEnum::Float32 | |||||
megdnn_assert(args.dst_layout->dtype.enumv() == DTypeEnum::Float32); | |||||
dst_scale = 1.f; | |||||
} | |||||
float alpha = src_scale * filter_scale / dst_scale, | |||||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, | |||||
theta = dst_zero; | |||||
if (args.z_layout->ndim > 0) { | |||||
float z_scale; | |||||
if (args.z_layout->dtype.enumv() == DTypeEnum::QuantizedS8) { | |||||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
gamma = z_scale / dst_scale; | |||||
} else if (args.z_layout->dtype.enumv() == DTypeEnum::QuantizedS4) { | |||||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
gamma = z_scale / dst_scale; | |||||
} else if (args.z_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||||
z_scale = | |||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
uint8_t z_zero = | |||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point; | |||||
gamma = z_scale / dst_scale; | |||||
delta = -z_zero * gamma; | |||||
} else { // DTypeEnum::Float32 | |||||
megdnn_assert(args.z_layout->dtype.enumv() == DTypeEnum::Float32); | |||||
gamma = 1.f; | |||||
} | |||||
} | |||||
if (args.opr->param().nonlineMode == | |||||
param::ConvBias::NonlineMode::IDENTITY) { | |||||
delta += theta; | |||||
theta = 0.f; | |||||
} | |||||
return {alpha, beta, gamma, delta, theta}; | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::exec( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
size_t n = args.src_layout->operator[](0), | |||||
ci = args.src_layout->operator[](3), | |||||
hi = args.src_layout->operator[](1), | |||||
wi = args.src_layout->operator[](2); | |||||
size_t co = args.dst_layout->operator[](3), | |||||
ho = args.dst_layout->operator[](1), | |||||
wo = args.dst_layout->operator[](2); | |||||
UNPACK_CONV_PARAMETER(fm, param); | |||||
MARK_USED_VAR | |||||
void* filter_ptr = nullptr; | |||||
void* bias_ptr = nullptr; | |||||
void* z_ptr = nullptr; | |||||
if (args.preprocessed_filter) { | |||||
filter_ptr = args.preprocessed_filter->tensors[0].raw_ptr; | |||||
} else { | |||||
filter_ptr = reinterpret_cast<void*>(args.workspace.raw_ptr); | |||||
reorder_filter(args, m_algo_param.access_size, filter_ptr); | |||||
} | |||||
bias_ptr = args.bias_tensor->raw_ptr; | |||||
if (args.z_layout->ndim > 0) | |||||
z_ptr = args.z_tensor->raw_ptr; | |||||
// \note these constants of cutlass epilogue will be passed to method | |||||
// `execute_cutlass_conv_op` by pointer and interpreted as ElementCompute*, | |||||
// a different dtype here results in undefined epilogue behaviors | |||||
float alpha, beta, gamma, delta, theta; | |||||
std::tie(alpha, beta, gamma, delta, theta) = get_constants(args); | |||||
float dst_scale = 1.f; | |||||
float threshold = 0.f; | |||||
bool use_conv_filter_unity_opt = (fh == 1 && fw == 1); | |||||
auto dst_dtype = args.dst_layout->dtype.enumv(); | |||||
bool without_shared_load = ((co % m_algo_param.threadblock_n == 0) && | |||||
(m_algo_param.threadblock_n == 16 || | |||||
(m_algo_param.threadblock_n == 32 && | |||||
dst_dtype != DTypeEnum::Float32))); | |||||
if (dst_dtype == DTypeEnum::QuantizedS8) { // DTypeEnum::QuantizedS8 | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
} else if (dst_dtype == DTypeEnum::QuantizedS4) { | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS4>().scale; | |||||
} else if (dst_dtype == DTypeEnum::Quantized4Asymm) { | |||||
dst_scale = | |||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
} else { // DTypeEnum::Float32 | |||||
dst_scale = 1.f; | |||||
} | |||||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||||
const auto* op = get_cutlass_conv_op( | |||||
args, ConvOperator::kFprop, ConvType::kConvolution, | |||||
use_conv_filter_unity_opt, without_shared_load); | |||||
execute_cutlass_conv_op(op, args.src_tensor->raw_ptr, filter_ptr, bias_ptr, | |||||
z_ptr, args.dst_tensor->raw_ptr, nullptr, n, hi, wi, | |||||
ci, co, fh, fw, ho, wo, ph, pw, sh, sw, dh, dw, | |||||
&alpha, &beta, &gamma, &delta, &theta, &threshold, | |||||
&dst_scale, stream); | |||||
after_kernel_launch(); | |||||
} | |||||
std::string ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::to_string( | |||||
AlgoParam algo_param) { | |||||
return ssprintf("%dX%dX%d_%dX%dX%d_%d_%d", algo_param.threadblock_m, | |||||
algo_param.threadblock_n, algo_param.threadblock_k, | |||||
algo_param.warp_m, algo_param.warp_n, algo_param.warp_k, | |||||
algo_param.stage, algo_param.access_size); | |||||
} | |||||
void ConvBiasForwardImpl::AlgoInt8NHWCIMMAImplicitGemm::reorder_filter( | |||||
const ExecArgs& args, const int iterleaved, | |||||
void* reordered_filter) const { | |||||
size_t co = args.filter_layout->operator[](0), | |||||
ci = args.filter_layout->operator[](3), | |||||
fh = args.filter_layout->operator[](1), | |||||
fw = args.filter_layout->operator[](2); | |||||
cudaStream_t stream = cuda_stream(args.opr->handle()); | |||||
// reformat filter from nhwc to ncxhwx and reorder oc | |||||
// use trans_oc threadblock_n must be 16 or 32 and src dtype == dest dtype | |||||
bool trans_oc = ((co % m_algo_param.threadblock_n == 0) && | |||||
(m_algo_param.threadblock_n == 16 || | |||||
(m_algo_param.threadblock_n == 32 && | |||||
args.dst_layout->dtype.enumv() != DTypeEnum::Float32))); | |||||
uint32_t oc_iterleaved = (m_algo_param.threadblock_n == 32) ? 32 : 16; | |||||
uint32_t alignbits = iterleaved * 8; | |||||
cutlass_wrapper::reorder_nhwc_imma_filter<8>( | |||||
reinterpret_cast<int8_t*>(reordered_filter), | |||||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), co, ci, fh, | |||||
fw, trans_oc, alignbits, oc_iterleaved, stream); | |||||
} | |||||
#endif | |||||
// vim: syntax=cpp.doxygen |
@@ -102,22 +102,41 @@ ConvBiasForwardImpl::AlgoUInt4Int4NHWCIMMAImplicitGemm::get_constants( | |||||
args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | args.filter_layout->dtype.param<dtype::QuantizedS4>().scale, | ||||
bias_scale = | bias_scale = | ||||
args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | args.bias_layout->dtype.param<dtype::QuantizedS32>().scale, | ||||
dst_scale = | |||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
dst_scale; | |||||
uint8_t dst_zero = 0; | |||||
if (args.dst_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||||
dst_scale = | |||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
dst_zero = args.dst_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point; | |||||
} else { // DTypeEnum::QuantizedS8 | |||||
megdnn_assert(args.dst_layout->dtype.enumv() == DTypeEnum::QuantizedS8); | |||||
dst_scale = args.dst_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
} | |||||
uint8_t dst_zero = | |||||
args.dst_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||||
float alpha = src_scale * filter_scale / dst_scale, | float alpha = src_scale * filter_scale / dst_scale, | ||||
beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, | beta = bias_scale / dst_scale, gamma = 0.f, delta = 0.f, | ||||
theta = dst_zero; | theta = dst_zero; | ||||
if (args.z_layout->ndim > 0) { | if (args.z_layout->ndim > 0) { | ||||
float z_scale = | |||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
gamma = z_scale / dst_scale; | |||||
uint8_t z_zero = | |||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().zero_point; | |||||
delta = -z_zero * gamma; | |||||
float z_scale; | |||||
if (args.z_layout->dtype.enumv() == DTypeEnum::Quantized4Asymm) { | |||||
z_scale = | |||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>().scale; | |||||
uint8_t z_zero = | |||||
args.z_layout->dtype.param<dtype::Quantized4Asymm>() | |||||
.zero_point; | |||||
gamma = z_scale / dst_scale; | |||||
delta = -z_zero * gamma; | |||||
} else { // DTypeEnum::QuantizedS8 | |||||
megdnn_assert(args.z_layout->dtype.enumv() == | |||||
DTypeEnum::QuantizedS8); | |||||
z_scale = args.z_layout->dtype.param<dtype::QuantizedS8>().scale; | |||||
gamma = z_scale / dst_scale; | |||||
} | |||||
} | } | ||||
// identity epilogue has no theta: | // identity epilogue has no theta: | ||||
@@ -65,6 +65,7 @@ public: | |||||
class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | class AlgoInt8CHWN4IMMAImplicitGemmReorderFilter; | ||||
class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | class AlgoInt8CHWN4IMMAImplicitGemmUnrollWidth; | ||||
class AlgoInt8NCHW32IMMAImplicitGemm; | class AlgoInt8NCHW32IMMAImplicitGemm; | ||||
class AlgoInt8NHWCIMMAImplicitGemm; | |||||
class AlgoInt4NCHW64IMMAImplicitGemmBase; | class AlgoInt4NCHW64IMMAImplicitGemmBase; | ||||
class AlgoInt4Int4NCHW64IMMAImplicitGemm; | class AlgoInt4Int4NCHW64IMMAImplicitGemm; | ||||
class AlgoUInt4Int4NCHW64IMMAImplicitGemm; | class AlgoUInt4Int4NCHW64IMMAImplicitGemm; | ||||
@@ -275,6 +275,7 @@ public: | |||||
private: | private: | ||||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | ||||
const SizeArgs& args) const; | const SizeArgs& args) const; | ||||
const void* get_available_op(const SizeArgs& args) const; | |||||
AlgoParam m_algo_param; | AlgoParam m_algo_param; | ||||
std::string m_name; | std::string m_name; | ||||
}; | }; | ||||
@@ -295,6 +296,7 @@ public: | |||||
private: | private: | ||||
WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | WorkspaceBundle get_workspace_bundle(dt_byte* raw_ptr, | ||||
const SizeArgs& args) const; | const SizeArgs& args) const; | ||||
const void* get_available_op(const SizeArgs& args) const; | |||||
}; | }; | ||||
class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | ||||
@@ -20,6 +20,43 @@ | |||||
using namespace megdnn; | using namespace megdnn; | ||||
using namespace cuda; | using namespace cuda; | ||||
const void* | |||||
ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm::get_available_op( | |||||
const SizeArgs& args) const { | |||||
using namespace cutlass::library; | |||||
auto&& fm = args.filter_meta; | |||||
size_t sh = fm.stride[0], sw = fm.stride[1]; | |||||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||||
(sh == 2 && sw == 2) ? cutlass::conv::SpecialOptimizeDesc:: | |||||
DECONV_DOUBLE_UPSAMPLING | |||||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||||
ConvolutionKey key{ | |||||
cutlass::conv::Operator::kDgrad, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorK4RSC4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS32, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
cutlass::conv::ConvType::kConvolution, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
1, | |||||
1, | |||||
4, | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||||
m_algo_param.stage, | |||||
special_optimization, | |||||
false}; | |||||
return (void*)Singleton::get().operation_table.find_op(key); | |||||
} | |||||
bool ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | bool ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | ||||
is_available(const SizeArgs& args) const { | is_available(const SizeArgs& args) const { | ||||
auto&& fm = args.filter_meta; | auto&& fm = args.filter_meta; | ||||
@@ -51,6 +88,7 @@ bool ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||||
// FIXME: too large filter size is not supported now | // FIXME: too large filter size is not supported now | ||||
available &= fm.spatial[0] * fm.spatial[1] <= | available &= fm.spatial[0] * fm.spatial[1] <= | ||||
(uint32_t)(848 / (2 * m_algo_param.warp_k / 4) - 2); | (uint32_t)(848 / (2 * m_algo_param.warp_k / 4) - 2); | ||||
available &= (get_available_op(args) != nullptr); | |||||
// only support sm_61 or later, platform should have fast native int8 | // only support sm_61 or later, platform should have fast native int8 | ||||
// support | // support | ||||
available &= is_compute_capability_required(6, 1); | available &= is_compute_capability_required(6, 1); | ||||
@@ -105,40 +143,14 @@ void ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm::exec( | |||||
args.grad_layout->dtype.param<dtype::QuantizedS8>().scale; | args.grad_layout->dtype.param<dtype::QuantizedS8>().scale; | ||||
// \note these constants of cutlass epilogue will be passed to struct | // \note these constants of cutlass epilogue will be passed to struct | ||||
// `ConvolutionArguments` by pointer and interpreted as ElementCompute*, a | |||||
// different dtype here results in undefined epilogue behaviors | |||||
// `ConvolutionArguments` by pointer and interpreted as ElementCompute*, | |||||
// a different dtype here results in undefined epilogue behaviors | |||||
float alpha = diff_scale * filter_scale / grad_scale, beta = 0.f, | float alpha = diff_scale * filter_scale / grad_scale, beta = 0.f, | ||||
gamma = 0.f, delta = 0.f; | gamma = 0.f, delta = 0.f; | ||||
using namespace cutlass::library; | using namespace cutlass::library; | ||||
// only use 16x64x8_16x64x8_2stages impl | |||||
ConvolutionKey key{ | |||||
cutlass::conv::Operator::kDgrad, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorK4RSC4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS32, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
cutlass::conv::ConvType::kConvolution, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
1, | |||||
1, | |||||
4, | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||||
m_algo_param.stage, | |||||
true, | |||||
false}; | |||||
const Operation* op = Singleton::get().operation_table.find_op(key); | |||||
const Operation* op = (const Operation*)get_available_op(args); | |||||
// gcc prints warnings when size_t values are implicitly narrowed to int | // gcc prints warnings when size_t values are implicitly narrowed to int | ||||
cutlass::conv::Conv2dProblemSize problem_size{ | cutlass::conv::Conv2dProblemSize problem_size{ | ||||
@@ -167,7 +179,6 @@ void ConvolutionBackwardDataImpl::AlgoPack::fill_int8_dp4a_algos() { | |||||
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); | int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); | ||||
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | ||||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | ||||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2}); | |||||
} | } | ||||
// vim: syntax=cpp.doxygen | // vim: syntax=cpp.doxygen |
@@ -19,6 +19,44 @@ | |||||
using namespace megdnn; | using namespace megdnn; | ||||
using namespace cuda; | using namespace cuda; | ||||
const void* | |||||
ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::get_available_op( | |||||
const SizeArgs& args) const { | |||||
using namespace cutlass::library; | |||||
auto&& fm = args.filter_meta; | |||||
size_t sh = fm.stride[0], sw = fm.stride[1]; | |||||
cutlass::conv::SpecialOptimizeDesc special_optimization = | |||||
(sh == 2 && sw == 2) ? cutlass::conv::SpecialOptimizeDesc:: | |||||
DECONV_DOUBLE_UPSAMPLING | |||||
: cutlass::conv::SpecialOptimizeDesc::NONE; | |||||
// only use 16x64x8_16x64x8_2stages impl | |||||
ConvolutionKey key{ | |||||
cutlass::conv::Operator::kDgrad, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorK4RSC4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS32, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
cutlass::conv::ConvType::kConvolution, | |||||
16, | |||||
64, | |||||
8, | |||||
16, | |||||
64, | |||||
8, | |||||
1, | |||||
1, | |||||
4, | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||||
2, | |||||
special_optimization, | |||||
false}; | |||||
return (void*)Singleton::get().operation_table.find_op(key); | |||||
} | |||||
bool ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::is_available( | bool ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::is_available( | ||||
const SizeArgs& args) const { | const SizeArgs& args) const { | ||||
auto&& fm = args.filter_meta; | auto&& fm = args.filter_meta; | ||||
@@ -52,6 +90,9 @@ bool ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::is_available( | |||||
available &= (fm.dilation[0] == 1 && fm.dilation[1] == 1); | available &= (fm.dilation[0] == 1 && fm.dilation[1] == 1); | ||||
// FIXME: too large filter size is not supported now | // FIXME: too large filter size is not supported now | ||||
available &= fm.spatial[0] * fm.spatial[1] <= (848 / (2 * 8 / 4) - 2); | available &= fm.spatial[0] * fm.spatial[1] <= (848 / (2 * 8 / 4) - 2); | ||||
available &= (get_available_op(args) != nullptr); | |||||
// only support sm_61 or later, platform should have fast native int8 | // only support sm_61 or later, platform should have fast native int8 | ||||
// support | // support | ||||
available &= is_compute_capability_required(6, 1); | available &= is_compute_capability_required(6, 1); | ||||
@@ -138,33 +179,7 @@ void ConvolutionBackwardDataImpl::AlgoInt8NCHWDotProdImplicitGemm::exec( | |||||
using namespace cutlass::library; | using namespace cutlass::library; | ||||
// only use 16x64x8_16x64x8_2stages impl | |||||
ConvolutionKey key{ | |||||
cutlass::conv::Operator::kDgrad, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorK4RSC4, | |||||
NumericTypeID::kS8, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
NumericTypeID::kS32, | |||||
LayoutTypeID::kTensorNC4HW4, | |||||
cutlass::conv::ConvType::kConvolution, | |||||
16, | |||||
64, | |||||
8, | |||||
16, | |||||
64, | |||||
8, | |||||
1, | |||||
1, | |||||
4, | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombinationClamp, | |||||
2, | |||||
true, | |||||
false}; | |||||
const Operation* op = Singleton::get().operation_table.find_op(key); | |||||
const Operation* op = (const Operation*)get_available_op(args); | |||||
// gcc prints warnings when size_t values are implicitly narrowed to int | // gcc prints warnings when size_t values are implicitly narrowed to int | ||||
cutlass::conv::Conv2dProblemSize problem_size{ | cutlass::conv::Conv2dProblemSize problem_size{ | ||||
@@ -119,8 +119,8 @@ public: | |||||
m_description.threadblock_swizzle = ThreadblockSwizzleMap< | m_description.threadblock_swizzle = ThreadblockSwizzleMap< | ||||
typename Operator::ThreadblockSwizzle>::kId; | typename Operator::ThreadblockSwizzle>::kId; | ||||
m_description.need_load_from_const_mem = | |||||
Operator::kNeedLoadFromConstMem; | |||||
m_description.special_optimization = | |||||
Operator::kSpecialOpt; | |||||
m_description.gemm_mode = Operator::kGemmMode; | m_description.gemm_mode = Operator::kGemmMode; | ||||
m_description.without_shared_load = Operator::kWithoutSharedLoad; | m_description.without_shared_load = Operator::kWithoutSharedLoad; | ||||
} | } | ||||
@@ -487,7 +487,7 @@ struct ConvolutionDescription : public OperationDescription { | |||||
ThreadblockSwizzleID threadblock_swizzle; | ThreadblockSwizzleID threadblock_swizzle; | ||||
bool need_load_from_const_mem; | |||||
conv::SpecialOptimizeDesc special_optimization; | |||||
conv::ImplicitGemmMode gemm_mode; | conv::ImplicitGemmMode gemm_mode; | ||||
bool without_shared_load; | bool without_shared_load; | ||||
}; | }; | ||||
@@ -124,7 +124,7 @@ ConvolutionKey get_convolution_key_from_desc( | |||||
key.epilogue_type = desc.epilogue_type; | key.epilogue_type = desc.epilogue_type; | ||||
key.stages = desc.tile_description.threadblock_stages; | key.stages = desc.tile_description.threadblock_stages; | ||||
key.need_load_from_const_mem = desc.need_load_from_const_mem; | |||||
key.special_optimization = desc.special_optimization; | |||||
key.without_shared_load = desc.without_shared_load; | key.without_shared_load = desc.without_shared_load; | ||||
return key; | return key; | ||||
@@ -156,23 +156,25 @@ void OperationTable::append(Manifest const& manifest) { | |||||
///////////////////////////////////////////////////////////////////////////////////////////////// | ///////////////////////////////////////////////////////////////////////////////////////////////// | ||||
Operation const* OperationTable::find_op(GemmKey const& key) const { | Operation const* OperationTable::find_op(GemmKey const& key) const { | ||||
megdnn_assert(gemm_operations.count(key) > 0, | |||||
"key not found in cutlass operation table"); | |||||
auto const& ops = gemm_operations.at(key); | |||||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||||
ops.size()); | |||||
return ops[0]; | |||||
if (gemm_operations.count(key)) { | |||||
auto const& ops = gemm_operations.at(key); | |||||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||||
ops.size()); | |||||
return ops[0]; | |||||
} | |||||
return nullptr; | |||||
} | } | ||||
///////////////////////////////////////////////////////////////////////////////////////////////// | ///////////////////////////////////////////////////////////////////////////////////////////////// | ||||
Operation const* OperationTable::find_op(ConvolutionKey const& key) const { | Operation const* OperationTable::find_op(ConvolutionKey const& key) const { | ||||
megdnn_assert(convolution_operations.count(key) > 0, | |||||
"key not found in cutlass operation table"); | |||||
auto const& ops = convolution_operations.at(key); | |||||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||||
ops.size()); | |||||
return ops[0]; | |||||
if (convolution_operations.count(key) > 0) { | |||||
auto const& ops = convolution_operations.at(key); | |||||
megdnn_assert(ops.size() == 1, "exactly one kernel expected, got %zu", | |||||
ops.size()); | |||||
return ops[0]; | |||||
} | |||||
return nullptr; | |||||
} | } | ||||
///////////////////////////////////////////////////////////////////////////////////////////////// | ///////////////////////////////////////////////////////////////////////////////////////////////// | ||||
@@ -211,7 +211,7 @@ struct ConvolutionKey { | |||||
epilogue::EpilogueType epilogue_type; | epilogue::EpilogueType epilogue_type; | ||||
int stages; | int stages; | ||||
bool need_load_from_const_mem; | |||||
conv::SpecialOptimizeDesc special_optimization; | |||||
bool without_shared_load; | bool without_shared_load; | ||||
inline bool operator==(ConvolutionKey const& rhs) const { | inline bool operator==(ConvolutionKey const& rhs) const { | ||||
@@ -234,7 +234,7 @@ struct ConvolutionKey { | |||||
(instruction_shape_n == rhs.instruction_shape_n) && | (instruction_shape_n == rhs.instruction_shape_n) && | ||||
(instruction_shape_k == rhs.instruction_shape_k) && | (instruction_shape_k == rhs.instruction_shape_k) && | ||||
(epilogue_type == rhs.epilogue_type) && (stages == rhs.stages) && | (epilogue_type == rhs.epilogue_type) && (stages == rhs.stages) && | ||||
(need_load_from_const_mem == rhs.need_load_from_const_mem) && | |||||
(special_optimization == rhs.special_optimization) && | |||||
(without_shared_load == rhs.without_shared_load); | (without_shared_load == rhs.without_shared_load); | ||||
} | } | ||||
@@ -270,8 +270,8 @@ struct ConvolutionKey { | |||||
"\n instruction_shape: " + instruction_shape_str + | "\n instruction_shape: " + instruction_shape_str + | ||||
"\n epilogue_type: " + to_string(epilogue_type) + | "\n epilogue_type: " + to_string(epilogue_type) + | ||||
"\n stages: " + std::to_string(stages) + | "\n stages: " + std::to_string(stages) + | ||||
"\n need_load_from_const_mem: " + | |||||
to_string(need_load_from_const_mem) + | |||||
"\n special_optimization: " + | |||||
to_string(special_optimization) + | |||||
"\n without_shared_load: " + to_string(without_shared_load) + | "\n without_shared_load: " + to_string(without_shared_load) + | ||||
"\n}"; | "\n}"; | ||||
} | } | ||||
@@ -308,8 +308,8 @@ struct ConvolutionKeyHasher { | |||||
sizeof(key.instruction_shape_k)) | sizeof(key.instruction_shape_k)) | ||||
.update(&key.epilogue_type, sizeof(key.epilogue_type)) | .update(&key.epilogue_type, sizeof(key.epilogue_type)) | ||||
.update(&key.stages, sizeof(key.stages)) | .update(&key.stages, sizeof(key.stages)) | ||||
.update(&key.need_load_from_const_mem, | |||||
sizeof(key.need_load_from_const_mem)) | |||||
.update(&key.special_optimization, | |||||
sizeof(key.special_optimization)) | |||||
.update(&key.without_shared_load, | .update(&key.without_shared_load, | ||||
sizeof(key.without_shared_load)) | sizeof(key.without_shared_load)) | ||||
.digest(); | .digest(); | ||||
@@ -1569,6 +1569,35 @@ char const* to_string(MathOperationID math_op, bool pretty) { | |||||
static struct { | static struct { | ||||
char const* text; | char const* text; | ||||
char const* pretty; | char const* pretty; | ||||
conv::SpecialOptimizeDesc enumerant; | |||||
} SpecialOptimizeDesc_enumerants[] = { | |||||
{"none_special_opt", "NoneSpecialOpt", conv::SpecialOptimizeDesc::NONE}, | |||||
{"conv_filter_unity", "ConvFilterUnity", | |||||
conv::SpecialOptimizeDesc::CONV_FILTER_UNITY}, | |||||
{"deconv_double_upsampling", "DeconvDoubleUpsampling", | |||||
conv::SpecialOptimizeDesc::DECONV_DOUBLE_UPSAMPLING}, | |||||
}; | |||||
/// Converts an SpecialOptimizeDesc enumerant to a string | |||||
char const* to_string(conv::SpecialOptimizeDesc special_opt, bool pretty) { | |||||
for (auto const& possible : SpecialOptimizeDesc_enumerants) { | |||||
if (special_opt == possible.enumerant) { | |||||
if (pretty) { | |||||
return possible.pretty; | |||||
} else { | |||||
return possible.text; | |||||
} | |||||
} | |||||
} | |||||
return pretty ? "Invalid" : "invalid"; | |||||
} | |||||
/////////////////////////////////////////////////////////////////////////////////////////////////// | |||||
static struct { | |||||
char const* text; | |||||
char const* pretty; | |||||
conv::ImplicitGemmMode enumerant; | conv::ImplicitGemmMode enumerant; | ||||
} ImplicitGemmMode_enumerants[] = { | } ImplicitGemmMode_enumerants[] = { | ||||
{"gemm_nt", "GemmNT", conv::ImplicitGemmMode::GEMM_NT}, | {"gemm_nt", "GemmNT", conv::ImplicitGemmMode::GEMM_NT}, | ||||
@@ -207,6 +207,10 @@ char const* to_string(bool val, bool pretty = false); | |||||
/// Converts a MathOperationID enumerant to a string | /// Converts a MathOperationID enumerant to a string | ||||
char const* to_string(MathOperationID math_op, bool pretty = false); | char const* to_string(MathOperationID math_op, bool pretty = false); | ||||
/// Converts a SpecialOptimizeDesc enumerant to a string | |||||
char const* to_string(conv::SpecialOptimizeDesc special_opt, | |||||
bool pretty = false); | |||||
/// Converts an ImplicitGemmMode enumerant to a string | /// Converts an ImplicitGemmMode enumerant to a string | ||||
char const* to_string(conv::ImplicitGemmMode mode, bool pretty = false); | char const* to_string(conv::ImplicitGemmMode mode, bool pretty = false); | ||||
@@ -235,6 +235,7 @@ public: | |||||
m_name{ssprintf("CUTLASS_FLOAT32_SIMT_%s", | m_name{ssprintf("CUTLASS_FLOAT32_SIMT_%s", | ||||
m_algo_param.to_string().c_str())} {} | m_algo_param.to_string().c_str())} {} | ||||
bool is_available(const SizeArgs& args) const override; | bool is_available(const SizeArgs& args) const override; | ||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | size_t get_workspace_in_bytes(const SizeArgs& args) const override; | ||||
const char* name() const override { return m_name.c_str(); } | const char* name() const override { return m_name.c_str(); } | ||||
AlgoAttribute attribute() const override { | AlgoAttribute attribute() const override { | ||||
@@ -260,6 +261,7 @@ private: | |||||
void do_exec(const ExecArgs& args) const override; | void do_exec(const ExecArgs& args) const override; | ||||
int min_alignment_requirement() const override { return 1; } | int min_alignment_requirement() const override { return 1; } | ||||
std::string m_name; | std::string m_name; | ||||
const void* get_available_op(const SizeArgs& args) const; | |||||
}; | }; | ||||
class MatrixMulForwardImpl::AlgoFloat32SIMTSplitK final | class MatrixMulForwardImpl::AlgoFloat32SIMTSplitK final | ||||
@@ -270,6 +272,7 @@ public: | |||||
m_name{ssprintf("CUTLASS_FLOAT32_SIMT_SPLIT_K_%s", | m_name{ssprintf("CUTLASS_FLOAT32_SIMT_SPLIT_K_%s", | ||||
m_algo_param.to_string().c_str())} {} | m_algo_param.to_string().c_str())} {} | ||||
bool is_available(const SizeArgs& args) const override; | bool is_available(const SizeArgs& args) const override; | ||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override; | size_t get_workspace_in_bytes(const SizeArgs& args) const override; | ||||
const char* name() const override { return m_name.c_str(); } | const char* name() const override { return m_name.c_str(); } | ||||
AlgoAttribute attribute() const override { | AlgoAttribute attribute() const override { | ||||
@@ -297,6 +300,7 @@ private: | |||||
void do_exec(const ExecArgs& args) const override; | void do_exec(const ExecArgs& args) const override; | ||||
int min_alignment_requirement() const override { return 1; } | int min_alignment_requirement() const override { return 1; } | ||||
std::string m_name; | std::string m_name; | ||||
const void* get_available_op(const SizeArgs& args) const; | |||||
}; | }; | ||||
class MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided final | class MatrixMulForwardImpl::AlgoFloat32SIMTGemvBatchedStrided final | ||||
@@ -19,6 +19,39 @@ | |||||
using namespace megdnn; | using namespace megdnn; | ||||
using namespace cuda; | using namespace cuda; | ||||
const void* MatrixMulForwardImpl::AlgoFloat32SIMT::get_available_op( | |||||
const SizeArgs& args) const { | |||||
using namespace cutlass::library; | |||||
auto&& param = args.opr->param(); | |||||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
int alignment = min_alignment_requirement(); | |||||
GemmKey key{NumericTypeID::kF32, | |||||
layoutA, | |||||
NumericTypeID::kF32, | |||||
layoutB, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kRowMajor, | |||||
NumericTypeID::kF32, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
1, | |||||
1, | |||||
1, | |||||
2, | |||||
alignment, | |||||
alignment, | |||||
SplitKMode::kNone}; | |||||
return (void*)Singleton::get().operation_table.find_op(key); | |||||
} | |||||
bool MatrixMulForwardImpl::AlgoFloat32SIMT::is_available( | bool MatrixMulForwardImpl::AlgoFloat32SIMT::is_available( | ||||
const SizeArgs& args) const { | const SizeArgs& args) const { | ||||
bool available = | bool available = | ||||
@@ -34,6 +67,8 @@ bool MatrixMulForwardImpl::AlgoFloat32SIMT::is_available( | |||||
m_algo_param.threadblock_n <= | m_algo_param.threadblock_n <= | ||||
y_grid_limit); | y_grid_limit); | ||||
available &= (get_available_op(args) != nullptr); | |||||
return available; | return available; | ||||
} | } | ||||
@@ -61,34 +96,7 @@ void MatrixMulForwardImpl::AlgoFloat32SIMT::do_exec( | |||||
using namespace cutlass::library; | using namespace cutlass::library; | ||||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
int alignment = min_alignment_requirement(); | |||||
GemmKey key{NumericTypeID::kF32, | |||||
layoutA, | |||||
NumericTypeID::kF32, | |||||
layoutB, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kRowMajor, | |||||
NumericTypeID::kF32, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
1, | |||||
1, | |||||
1, | |||||
2, | |||||
alignment, | |||||
alignment, | |||||
SplitKMode::kNone}; | |||||
const Operation* op = Singleton::get().operation_table.find_op(key); | |||||
const Operation* op = (const Operation*)get_available_op(args); | |||||
GemmArguments gemm_args{problem_size, | GemmArguments gemm_args{problem_size, | ||||
args.tensor_a.raw_ptr, | args.tensor_a.raw_ptr, | ||||
@@ -19,6 +19,39 @@ | |||||
using namespace megdnn; | using namespace megdnn; | ||||
using namespace cuda; | using namespace cuda; | ||||
const void* MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::get_available_op( | |||||
const SizeArgs& args) const { | |||||
using namespace cutlass::library; | |||||
auto&& param = args.opr->param(); | |||||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
int alignment = min_alignment_requirement(); | |||||
GemmKey key{NumericTypeID::kF32, | |||||
layoutA, | |||||
NumericTypeID::kF32, | |||||
layoutB, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kRowMajor, | |||||
NumericTypeID::kF32, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
1, | |||||
1, | |||||
1, | |||||
2, | |||||
alignment, | |||||
alignment, | |||||
SplitKMode::kParallel}; | |||||
return (void*)Singleton::get().operation_table.find_op(key); | |||||
} | |||||
bool MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::is_available( | bool MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::is_available( | ||||
const SizeArgs& args) const { | const SizeArgs& args) const { | ||||
auto&& param = args.opr->param(); | auto&& param = args.opr->param(); | ||||
@@ -35,6 +68,8 @@ bool MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::is_available( | |||||
available &= ((m + m_algo_param.threadblock_m - 1) / | available &= ((m + m_algo_param.threadblock_m - 1) / | ||||
m_algo_param.threadblock_m <= | m_algo_param.threadblock_m <= | ||||
y_grid_limit); | y_grid_limit); | ||||
available &= (get_available_op(args) != nullptr); | |||||
return available; | return available; | ||||
} | } | ||||
@@ -66,35 +101,7 @@ void MatrixMulForwardImpl::AlgoFloat32SIMTSplitK::do_exec( | |||||
float alpha = 1.f, beta = 0.f; | float alpha = 1.f, beta = 0.f; | ||||
using namespace cutlass::library; | using namespace cutlass::library; | ||||
auto layoutA = param.transposeA ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
auto layoutB = param.transposeB ? LayoutTypeID::kColumnMajor | |||||
: LayoutTypeID::kRowMajor; | |||||
int alignment = min_alignment_requirement(); | |||||
GemmKey key{NumericTypeID::kF32, | |||||
layoutA, | |||||
NumericTypeID::kF32, | |||||
layoutB, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kRowMajor, | |||||
NumericTypeID::kF32, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
1, | |||||
1, | |||||
1, | |||||
2, | |||||
alignment, | |||||
alignment, | |||||
SplitKMode::kParallel}; | |||||
Operation const* op = Singleton::get().operation_table.find_op(key); | |||||
const Operation* op = (const Operation*)get_available_op(args); | |||||
GemmArguments gemm_args{problem_size, | GemmArguments gemm_args{problem_size, | ||||
args.tensor_a.raw_ptr, | args.tensor_a.raw_ptr, | ||||
@@ -882,6 +882,125 @@ TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_IMMA) { | |||||
ConvBias::DirectParam{}); | ConvBias::DirectParam{}); | ||||
check(algo); | check(algo); | ||||
} | } | ||||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NHWC) { | |||||
require_compute_capability(7, 5); | |||||
Checker<ConvBiasForward> checker(handle_cuda()); | |||||
auto check = [&checker](const std::string& algo) { | |||||
checker.set_before_exec_callback( | |||||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str())); | |||||
UniformIntRNG rng{-8, 8}; | |||||
UniformIntRNG bias_rng{-50, 50}; | |||||
checker.set_rng(0, &rng) | |||||
.set_rng(1, &rng) | |||||
.set_rng(2, &bias_rng) | |||||
.set_rng(3, &rng) | |||||
.set_dtype(0, dtype::QuantizedS8{1.2f}) | |||||
.set_dtype(1, dtype::QuantizedS8{1.3f}) | |||||
.set_dtype(2, dtype::QuantizedS32{1.2f * 1.3f}) | |||||
.set_dtype(3, dtype::QuantizedS8{19.990229f}) | |||||
.set_dtype(4, dtype::QuantizedS8{19.990228f}) | |||||
.set_epsilon(1e-3); | |||||
param::ConvBias param; | |||||
param.pad_h = param.pad_w = 1; | |||||
param.stride_h = param.stride_w = 1; | |||||
param.format = param::ConvBias::Format::NHWC; | |||||
checker.set_param(param).execs( | |||||
{{16, 7, 7, 16}, {32, 3, 3, 16}, {1, 1, 1, 32}, {}, {}}); | |||||
param.pad_h = param.pad_w = 0; | |||||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||||
checker.set_param(param).execs( | |||||
{{16, 7, 7, 16}, {16, 1, 1, 16}, {1, 1, 1, 16}, {}, {}}); | |||||
}; | |||||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_64X16X32_64X16X32_2_16", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_128X32X32_64X32X32_1_16", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
} | |||||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NHWC_UINT4_WEIGHT_PREPROCESS) { | |||||
require_compute_capability(7, 5); | |||||
Checker<ConvBiasForward, OprWeightPreprocessProxy<ConvBiasForward>> checker( | |||||
handle_cuda()); | |||||
auto check = [&checker](const std::string& algo) { | |||||
checker.set_before_exec_callback( | |||||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str())); | |||||
UniformIntRNG rng{-8, 8}; | |||||
UniformIntRNG bias_rng{-50, 50}; | |||||
UniformIntRNG rng_u4{0, 15}; | |||||
checker.set_rng(0, &rng) | |||||
.set_rng(1, &rng) | |||||
.set_rng(2, &bias_rng) | |||||
.set_rng(3, &rng_u4) | |||||
.set_dtype(0, dtype::QuantizedS8{0.2f}) | |||||
.set_dtype(1, dtype::QuantizedS8{0.3f}) | |||||
.set_dtype(2, dtype::QuantizedS32{0.2f * 0.3f}) | |||||
.set_dtype(3, dtype::Quantized4Asymm{0.5f, 8}) | |||||
.set_dtype(4, dtype::Quantized4Asymm{0.5f, 4}) | |||||
.set_epsilon(1 + 1e-3); | |||||
param::ConvBias param; | |||||
param.pad_h = param.pad_w = 1; | |||||
param.stride_h = param.stride_w = 1; | |||||
param.format = param::ConvBias::Format::NHWC; | |||||
checker.set_param(param).execs( | |||||
{{16, 7, 7, 16}, {32, 3, 3, 16}, {1, 1, 1, 32}, {}, {}}); | |||||
param.pad_h = param.pad_w = 0; | |||||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||||
checker.set_param(param).execs( | |||||
{{16, 7, 7, 16}, {16, 1, 1, 16}, {1, 1, 1, 16}, {}, {}}); | |||||
}; | |||||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_64X16X32_64X16X32_2_16", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_128X32X32_64X32X32_1_16", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
} | |||||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NHWC_FLOAT) { | |||||
require_compute_capability(7, 5); | |||||
Checker<ConvBiasForward> checker(handle_cuda()); | |||||
auto check = [&checker](const std::string& algo) { | |||||
checker.set_before_exec_callback( | |||||
conv_bias::ConvBiasAlgoChecker<ConvBiasForward>(algo.c_str())); | |||||
UniformIntRNG rng{-8, 8}; | |||||
UniformFloatRNG float_rng{-50, 50}; | |||||
checker.set_rng(0, &rng) | |||||
.set_rng(1, &rng) | |||||
.set_rng(2, &float_rng) | |||||
.set_rng(3, &float_rng) | |||||
.set_dtype(0, dtype::QuantizedS8(1.9980618f)) | |||||
.set_dtype(1, dtype::QuantizedS8(1.9980927f)) | |||||
.set_dtype(2, dtype::Float32()) | |||||
.set_dtype(3, dtype::Float32()) | |||||
.set_dtype(4, dtype::Float32()); | |||||
param::ConvBias param; | |||||
param.pad_h = param.pad_w = 1; | |||||
param.stride_h = param.stride_w = 1; | |||||
param.format = param::ConvBias::Format::NHWC; | |||||
checker.set_param(param).execs( | |||||
{{16, 7, 7, 16}, {32, 3, 3, 16}, {1, 1, 1, 32}, {}, {}}); | |||||
param.pad_h = param.pad_w = 0; | |||||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||||
checker.set_param(param).execs( | |||||
{{16, 7, 7, 16}, {16, 1, 1, 16}, {1, 1, 1, 16}, {}, {}}); | |||||
}; | |||||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_64X16X32_64X16X32_2_16", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||||
"INT8_NHWC_IMMA_IMPLICIT_GEMM_128X32X32_64X32X32_1_16", | |||||
ConvBias::DirectParam{}); | |||||
check(algo); | |||||
} | |||||
#endif | #endif | ||||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW4_NCHW) { | TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW4_NCHW) { | ||||
@@ -969,7 +1088,7 @@ TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_NCHW4) { | |||||
checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker< | checker.set_before_exec_callback(conv_bias::ConvBiasAlgoChecker< | ||||
ConvBiasForward>( | ConvBiasForward>( | ||||
ConvBias::algo_name<ConvBias::DirectParam>( | ConvBias::algo_name<ConvBias::DirectParam>( | ||||
"INT8_NCHW32_IMMA_IMPLICIT_GEMM_128X128X64_64X64X64_2", | |||||
"INT8_NCHW32_IMMA_IMPLICIT_GEMM_32X128X32_32X64X32_1", | |||||
ConvBias::DirectParam{}) | ConvBias::DirectParam{}) | ||||
.c_str())); | .c_str())); | ||||
checker.set_dtype(0, dtype::QuantizedS8(1.9980618f)) | checker.set_dtype(0, dtype::QuantizedS8(1.9980618f)) | ||||
@@ -1109,6 +1228,16 @@ TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW32) { | |||||
"DIRECT:INT8_NCHW32_IMMA_IMPLICIT_GEMM", | "DIRECT:INT8_NCHW32_IMMA_IMPLICIT_GEMM", | ||||
param::ConvBias::Format::NCHW32); | param::ConvBias::Format::NCHW32); | ||||
} | } | ||||
TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NHWC) { | |||||
require_compute_capability(7, 5); | |||||
benchmark_target_algo_with_cudnn_tsc( | |||||
handle_cuda(), get_det_first_bench_args(16), | |||||
dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f}, | |||||
dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, | |||||
"DIRECT:INT8_NHWC_IMMA_IMPLICIT_GEMM", | |||||
param::ConvBias::Format::NHWC); | |||||
} | |||||
#endif | #endif | ||||
TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4) { | TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4) { | ||||
@@ -102,9 +102,7 @@ std::vector<BenchArgs> get_det_first_bench_args(size_t batch) { | |||||
args.emplace_back(BenchArgs{batch, 16, 384, 640, 16, 3, 1}); | args.emplace_back(BenchArgs{batch, 16, 384, 640, 16, 3, 1}); | ||||
args.emplace_back(BenchArgs{batch, 16, 384, 640, 32, 3, 2}); | args.emplace_back(BenchArgs{batch, 16, 384, 640, 32, 3, 2}); | ||||
args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 1}); | args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 3, 1}); | ||||
args.emplace_back(BenchArgs{batch, 32, 384, 640, 64, 3, 2}); | |||||
args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 1, 1}); | args.emplace_back(BenchArgs{batch, 32, 184, 320, 32, 1, 1}); | ||||
args.emplace_back(BenchArgs{batch, 32, 384, 640, 64, 1, 2}); | |||||
return args; | return args; | ||||
} | } | ||||
@@ -333,6 +331,9 @@ void benchmark_target_algo_with_cudnn_tsc( | |||||
.reshape({shape[0], shape[1] / 4, 4, shape[2], | .reshape({shape[0], shape[1] / 4, 4, shape[2], | ||||
shape[3]}) | shape[3]}) | ||||
.dimshuffle({1, 3, 4, 0, 2})); | .dimshuffle({1, 3, 4, 0, 2})); | ||||
} else if (format == Format::NHWC) { | |||||
ret = static_cast<TensorShape>( | |||||
TensorLayout{shape, dtype}.dimshuffle({0, 2, 3, 1})); | |||||
} | } | ||||
return ret; | return ret; | ||||
}; | }; | ||||
@@ -363,6 +364,9 @@ void benchmark_target_algo_with_cudnn_tsc( | |||||
if ((format == Format::CHWN4 || format == Format::NCHW4) && | if ((format == Format::CHWN4 || format == Format::NCHW4) && | ||||
(arg.ci % 16 != 0)) | (arg.ci % 16 != 0)) | ||||
continue; | continue; | ||||
// skip testcase which cannot enable nhwc tensorcore | |||||
if ((format == Format::NHWC) && (arg.ci % 4 != 0 || arg.co % 4 != 0)) | |||||
continue; | |||||
Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | ||||
? Format::NCHW32 | ? Format::NCHW32 | ||||
: Format::NCHW4; | : Format::NCHW4; | ||||
@@ -327,7 +327,6 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DATA_INT8_NCHW4_DP4A) { | |||||
all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); | all_params.emplace_back(AlgoParam{16, 128, 16, 16, 64, 16, 2}); | ||||
all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | all_params.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | ||||
all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | all_params.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | ||||
all_params.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2}); | |||||
for (auto algo_param : all_params) { | for (auto algo_param : all_params) { | ||||
Checker<ConvolutionBackwardData> checker(handle_cuda()); | Checker<ConvolutionBackwardData> checker(handle_cuda()); | ||||