@@ -270,6 +270,41 @@ protected: | |||||
}; | }; | ||||
using Remap = RemapForward; | using Remap = RemapForward; | ||||
class RemapBackwardData : public RemapBase { | |||||
DEF_OPR_IMPL(RemapBackwardData, RemapBase, 2, 1); | |||||
public: | |||||
virtual void exec(_megdnn_tensor_in map_xy, _megdnn_tensor_in diff, | |||||
_megdnn_tensor_out grad, _megdnn_workspace workspace) = 0; | |||||
virtual size_t get_workspace_in_bytes(const TensorLayout& map_xy, | |||||
const TensorLayout& diff, | |||||
const TensorLayout& grad) = 0; | |||||
protected: | |||||
void check_exec(const TensorLayout& map_xy, const TensorLayout& diff, | |||||
const TensorLayout& grad, size_t workspace_in_bytes); | |||||
}; | |||||
class RemapBackwardMat : public RemapBase { | |||||
DEF_OPR_IMPL(RemapBackwardMat, RemapBase, 3, 1); | |||||
public: | |||||
virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||||
_megdnn_workspace workspace) = 0; | |||||
virtual size_t get_workspace_in_bytes(const TensorLayout& src, | |||||
const TensorLayout& map_xy, | |||||
const TensorLayout& diff, | |||||
const TensorLayout& grad) = 0; | |||||
protected: | |||||
void check_exec(const TensorLayout& src, const TensorLayout& map_xy, | |||||
const TensorLayout& diff, const TensorLayout& grad, | |||||
size_t workspace_in_bytes); | |||||
}; | |||||
class SeparableFilterBase : public OperatorBase { | class SeparableFilterBase : public OperatorBase { | ||||
DEF_OPR_IMPL_CTOR(SeparableFilterBase, OperatorBase); | DEF_OPR_IMPL_CTOR(SeparableFilterBase, OperatorBase); | ||||
DEF_OPR_PARAM(SeparableFilter); | DEF_OPR_PARAM(SeparableFilter); | ||||
@@ -197,6 +197,8 @@ private: | |||||
cb(ROIAlignBackward) \ | cb(ROIAlignBackward) \ | ||||
cb(BatchConvBiasForward) \ | cb(BatchConvBiasForward) \ | ||||
cb(Remap) \ | cb(Remap) \ | ||||
cb(RemapBackwardData) \ | |||||
cb(RemapBackwardMat) \ | |||||
/*! | /*! | ||||
* \brief specialize HandleImpl::create_operator for a single opr type; | * \brief specialize HandleImpl::create_operator for a single opr type; | ||||
@@ -50,6 +50,7 @@ void RemapBase::check_layout_fwd(const TensorLayout& src, | |||||
megdnn_assert(dst.shape[0] == src.shape[0], "%s", errmsg().c_str()); | megdnn_assert(dst.shape[0] == src.shape[0], "%s", errmsg().c_str()); | ||||
megdnn_assert(map_xy.shape[3] == 2); | megdnn_assert(map_xy.shape[3] == 2); | ||||
megdnn_assert(map_xy.shape[0] == src.shape[0]); | megdnn_assert(map_xy.shape[0] == src.shape[0]); | ||||
megdnn_assert_contiguous(src); | |||||
// map_xy only support floa32 type | // map_xy only support floa32 type | ||||
// map_xy always in NHWC format | // map_xy always in NHWC format | ||||
@@ -85,6 +86,34 @@ void Remap::check_exec(const TensorLayout& src, const TensorLayout& map_xy, | |||||
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | ||||
} | } | ||||
void RemapBackwardData::check_exec(const TensorLayout& map_xy, | |||||
const TensorLayout& diff, | |||||
const TensorLayout& grad, | |||||
size_t workspace_in_bytes) { | |||||
check_layout_fwd(grad, map_xy, diff); | |||||
megdnn_assert(grad.dtype == dtype::Float32() MEGDNN_INC_FLOAT16( | |||||
|| grad.dtype == dtype::BFloat16()), | |||||
"Backward Remap only supports Float32/BFloat16."); | |||||
auto required_workspace_in_bytes = | |||||
get_workspace_in_bytes(map_xy, diff, grad); | |||||
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | |||||
} | |||||
void RemapBackwardMat::check_exec(const TensorLayout& src, | |||||
const TensorLayout& map_xy, | |||||
const TensorLayout& diff, | |||||
const TensorLayout& grad, | |||||
size_t workspace_in_bytes) { | |||||
check_layout_fwd(src, map_xy, diff); | |||||
megdnn_assert_eq_layout(map_xy, grad); | |||||
megdnn_assert(grad.dtype == dtype::Float32() MEGDNN_INC_FLOAT16( | |||||
|| grad.dtype == dtype::BFloat16()), | |||||
"Backward Remap only supports Float32/BFloat16."); | |||||
auto required_workspace_in_bytes = | |||||
get_workspace_in_bytes(src, map_xy, diff, grad); | |||||
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | |||||
} | |||||
} // namespace megdnn | } // namespace megdnn | ||||
// vim: syntax=cpp.doxygen | // vim: syntax=cpp.doxygen |
@@ -0,0 +1,71 @@ | |||||
/** | |||||
* \file dnn/src/cuda/remap/backward_data.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "src/cuda/remap/common.h" | |||||
#include "src/cuda/remap/opr_impl.h" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
void RemapBackwardDataImpl::exec(_megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_in diff, | |||||
_megdnn_tensor_out grad, | |||||
_megdnn_workspace workspace) { | |||||
check_exec(map_xy.layout, diff.layout, grad.layout, workspace.size); | |||||
megdnn_assert(param().imode == param::Remap::InterpolationMode::LINEAR, | |||||
"only support LINEAR interpolationMode"); | |||||
megdnn_assert(param().format == param::Remap::Format::NCHW, | |||||
"only support NCHW format for remap backward"); | |||||
auto stream = cuda_stream(this->handle()); | |||||
int N, C, IH, IW, OH, OW; | |||||
N = grad.layout.shape[0]; | |||||
C = grad.layout.shape[1]; | |||||
IH = grad.layout.shape[2]; | |||||
IW = grad.layout.shape[3]; | |||||
OH = map_xy.layout.shape[1]; | |||||
OW = map_xy.layout.shape[2]; | |||||
#define cb(dt, _format, bmode) \ | |||||
if (param().format == param::Remap::Format::_format && \ | |||||
param().border_type == param::Remap::BorderMode::bmode) { \ | |||||
using ctype = DTypeTrait<dt>::ctype; \ | |||||
remap::backwarddata_proxy<ctype, param_enumv::Remap::Format::_format, \ | |||||
::BorderMode::BORDER_##bmode>( \ | |||||
grad.compatible_ptr<ctype>(), \ | |||||
map_xy.compatible_ptr<dt_float32>(), \ | |||||
diff.compatible_ptr<ctype>(), N, C, IH, IW, OH, OW, stream); \ | |||||
break; \ | |||||
} | |||||
#define support_dtype(dt) \ | |||||
case DTypeTrait<dt>::enumv: { \ | |||||
cb(dt, NCHW, CONSTANT); \ | |||||
cb(dt, NCHW, REPLICATE); \ | |||||
cb(dt, NCHW, REFLECT); \ | |||||
cb(dt, NCHW, REFLECT_101); \ | |||||
cb(dt, NCHW, WRAP); \ | |||||
megdnn_throw("unsupported border type in remap cuda"); \ | |||||
} | |||||
switch (grad.layout.dtype.enumv()) { | |||||
support_dtype(dtype::Float32); | |||||
support_dtype(dtype::BFloat16); | |||||
default: | |||||
megdnn_throw("unsupported dtype in remap backward cuda\n"); | |||||
} | |||||
#undef support_dtype | |||||
#undef cb | |||||
} | |||||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,169 @@ | |||||
/** | |||||
* \file dnn/src/cuda/remap/backward_data.cu | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include <cuda_runtime.h> | |||||
#include "src/common/rounding_converter.cuh" | |||||
#include "src/cuda/cv/kernel_common.cuh" | |||||
#include "src/cuda/remap/common.h" | |||||
#include "src/cuda/utils.cuh" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace remap; | |||||
using namespace rounding; | |||||
namespace { | |||||
template <const uint32_t format> | |||||
__device__ inline int get_offset(int height, int width, int channel, int h, | |||||
int w, int c); | |||||
template <> | |||||
__device__ inline int get_offset<param_enumv::Remap::Format::NCHW>( | |||||
int height, int width, int channel, int h, int w, int c) { | |||||
return channel * h * w + height * w + width; | |||||
} | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
struct GetSrcData { | |||||
__device__ static inline int get_index(int height, int width, int channel, | |||||
int h, int w, int c) { | |||||
height = megcv::border_interpolate<bmode>(height, h); | |||||
width = megcv::border_interpolate<bmode>(width, w); | |||||
return get_offset<format>(height, width, channel, h, w, c); | |||||
} | |||||
}; | |||||
template <typename ctype, const uint32_t format> | |||||
struct GetSrcData<ctype, format, ::BorderMode::BORDER_CONSTANT> { | |||||
__device__ static inline int get_index(int height, int width, int channel, | |||||
int h, int w, int c) { | |||||
return (height >= 0 && height < h && width >= 0 && width < w) | |||||
? get_offset<format>(height, width, channel, h, w, c) | |||||
: -1; | |||||
} | |||||
}; | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
__global__ void kern_general(ctype* __restrict grad, const float* map_xy, | |||||
const ctype* diff, int C, int IH, int IW, int OH, | |||||
int OW) { | |||||
int ow = blockIdx.x * blockDim.x + threadIdx.x; | |||||
int oh = blockIdx.y * blockDim.y + threadIdx.y; | |||||
grad += blockIdx.z * C * IH * IW; | |||||
diff += blockIdx.z * C * OH * OW; | |||||
map_xy += blockIdx.z * 2 * OH * OW; | |||||
RoundingConverter<ctype> round_converter; | |||||
if (ow < OW && oh < OH) { | |||||
float index_col = map_xy[oh * OW * 2 + ow * 2 + 0]; | |||||
float index_row = map_xy[oh * OW * 2 + ow * 2 + 1]; | |||||
int col = static_cast<int>(floor(index_col)); | |||||
int row = static_cast<int>(floor(index_row)); | |||||
float v = index_col - col; // alphah | |||||
float u = index_row - row; // alphaw | |||||
const float one = 1.f; | |||||
for (int c = 0; c < C; ++c) { | |||||
float hidden = static_cast<float>( | |||||
diff[get_offset<format>(oh, ow, c, OH, OW, C)]); | |||||
int a00 = GetSrcData<ctype, format, bmode>::get_index( | |||||
row + 0, col + 0, c, IH, IW, C); | |||||
if (a00 != -1) { | |||||
atomic_add(grad + a00, | |||||
round_converter((one - u) * (one - v) * hidden)); | |||||
} | |||||
int a01 = GetSrcData<ctype, format, bmode>::get_index( | |||||
row + 0, col + 1, c, IH, IW, C); | |||||
if (a01 != -1) { | |||||
atomic_add(grad + a01, round_converter((one - u) * v * hidden)); | |||||
} | |||||
int a10 = GetSrcData<ctype, format, bmode>::get_index( | |||||
row + 1, col + 0, c, IH, IW, C); | |||||
if (a10 != -1) { | |||||
atomic_add(grad + a10, round_converter(u * (one - v) * hidden)); | |||||
} | |||||
int a11 = GetSrcData<ctype, param_enumv::Remap::Format::NCHW, | |||||
bmode>::get_index(row + 1, col + 1, c, IH, IW, | |||||
C); | |||||
if (a11 != -1) { | |||||
atomic_add(grad + a11, round_converter(u * v * hidden)); | |||||
} | |||||
} | |||||
} | |||||
} | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
void dispatch_backwarddata(ctype* grad, const float* map_xy, const ctype* diff, | |||||
int N, int C, int IH, int IW, int OH, int OW, | |||||
cudaStream_t stream) { | |||||
const int BX = 32, BY = 16; | |||||
const int max_batch_size = 65535; | |||||
while (N) { | |||||
size_t curr_batch_size = N < max_batch_size ? N : max_batch_size; | |||||
dim3 threads(BX, BY); | |||||
dim3 blocks((OW + BX - 1) / BX, (OH + BY - 1) / BY, curr_batch_size); | |||||
cuda_check(cudaMemsetAsync( | |||||
grad, 0, sizeof(ctype) * curr_batch_size * C * IH * IW, | |||||
stream)); | |||||
kern_general<ctype, format, bmode><<<blocks, threads, 0, stream>>>( | |||||
grad, map_xy, diff, C, IH, IW, OH, OW); | |||||
N -= curr_batch_size; | |||||
grad += curr_batch_size * C * IH * IW; | |||||
diff += curr_batch_size * C * OH * OW; | |||||
map_xy += curr_batch_size * 2 * OH * OW; | |||||
} | |||||
} | |||||
} // anonymous namespace | |||||
namespace megdnn { | |||||
namespace cuda { | |||||
namespace remap { | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
void backwarddata_proxy(ctype* grad, const float* map_xy, const ctype* diff, | |||||
int N, int C, int IH, int IW, int OH, int OW, | |||||
cudaStream_t stream) { | |||||
dispatch_backwarddata<ctype, format, bmode>(grad, map_xy, diff, N, C, IH, | |||||
IW, OH, OW, stream); | |||||
after_kernel_launch(); | |||||
} | |||||
#define INST(ctype, format, bmode) \ | |||||
template void backwarddata_proxy< \ | |||||
ctype, param_enumv::Remap::Format::format, ::BorderMode::bmode>( \ | |||||
ctype*, const float*, const ctype*, int, int, int, int, int, int, \ | |||||
cudaStream_t); | |||||
#define FOR_FORMAT_BMODE(ctype) \ | |||||
INST(ctype, NCHW, BORDER_CONSTANT) \ | |||||
INST(ctype, NCHW, BORDER_REPLICATE) \ | |||||
INST(ctype, NCHW, BORDER_REFLECT) \ | |||||
INST(ctype, NCHW, BORDER_REFLECT_101) \ | |||||
INST(ctype, NCHW, BORDER_WRAP) | |||||
FOR_FORMAT_BMODE(float) | |||||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||||
#undef FOR_FORMAT_BMODE | |||||
#undef INST | |||||
} // namespace remap | |||||
} // namespace cuda | |||||
} // namespace megdnn | |||||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,73 @@ | |||||
/** | |||||
* \file dnn/src/cuda/remap/backward_mat.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "src/cuda/remap/common.h" | |||||
#include "src/cuda/remap/opr_impl.h" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
void RemapBackwardMatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||||
_megdnn_workspace workspace) { | |||||
check_exec(src.layout, map_xy.layout, diff.layout, grad.layout, | |||||
workspace.size); | |||||
megdnn_assert(param().imode == param::Remap::InterpolationMode::LINEAR, | |||||
"only support LINEAR interpolationMode"); | |||||
megdnn_assert(param().format == param::Remap::Format::NCHW, | |||||
"only support NCHW format for remap backward"); | |||||
auto stream = cuda_stream(this->handle()); | |||||
int N, C, IH, IW, OH, OW; | |||||
N = src.layout.shape[0]; | |||||
C = src.layout.shape[1]; | |||||
IH = src.layout.shape[2]; | |||||
IW = src.layout.shape[3]; | |||||
OH = map_xy.layout.shape[1]; | |||||
OW = map_xy.layout.shape[2]; | |||||
#define cb(dt, _format, bmode) \ | |||||
if (param().format == param::Remap::Format::_format && \ | |||||
param().border_type == param::Remap::BorderMode::bmode) { \ | |||||
using ctype = DTypeTrait<dt>::ctype; \ | |||||
remap::backwardmat_proxy<ctype, param_enumv::Remap::Format::_format, \ | |||||
::BorderMode::BORDER_##bmode>( \ | |||||
src.compatible_ptr<ctype>(), \ | |||||
map_xy.compatible_ptr<dt_float32>(), \ | |||||
diff.compatible_ptr<ctype>(), \ | |||||
grad.compatible_ptr<dt_float32>(), N, C, IH, IW, OH, OW, \ | |||||
param().scalar, stream); \ | |||||
break; \ | |||||
} | |||||
#define support_dtype(dt) \ | |||||
case DTypeTrait<dt>::enumv: { \ | |||||
cb(dt, NCHW, CONSTANT); \ | |||||
cb(dt, NCHW, REPLICATE); \ | |||||
cb(dt, NCHW, REFLECT); \ | |||||
cb(dt, NCHW, REFLECT_101); \ | |||||
cb(dt, NCHW, WRAP); \ | |||||
megdnn_throw("unsupported border type in remap cuda"); \ | |||||
} | |||||
switch (src.layout.dtype.enumv()) { | |||||
support_dtype(dtype::Float32); | |||||
support_dtype(dtype::BFloat16); | |||||
default: | |||||
megdnn_throw("unsupported dtype in remap backward cuda\n"); | |||||
} | |||||
#undef support_dtype | |||||
#undef cb | |||||
} | |||||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,170 @@ | |||||
/** | |||||
* \file dnn/src/cuda/remap/backward_mat.cu | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include <cuda_runtime.h> | |||||
#include "src/common/rounding_converter.cuh" | |||||
#include "src/cuda/cv/kernel_common.cuh" | |||||
#include "src/cuda/remap/common.h" | |||||
#include "src/cuda/utils.cuh" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace remap; | |||||
using namespace rounding; | |||||
namespace { | |||||
template <const uint32_t format> | |||||
__device__ inline int get_offset(int height, int width, int channel, int h, | |||||
int w, int c); | |||||
template <> | |||||
__device__ inline int get_offset<param_enumv::Remap::Format::NCHW>( | |||||
int height, int width, int channel, int h, int w, int c) { | |||||
return channel * h * w + height * w + width; | |||||
} | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
struct GetSrcData { | |||||
__device__ static inline int get_index(int height, int width, int channel, | |||||
int h, int w, int c) { | |||||
height = megcv::border_interpolate<bmode>(height, h); | |||||
width = megcv::border_interpolate<bmode>(width, w); | |||||
return get_offset<format>(height, width, channel, h, w, c); | |||||
} | |||||
}; | |||||
template <typename ctype, const uint32_t format> | |||||
struct GetSrcData<ctype, format, ::BorderMode::BORDER_CONSTANT> { | |||||
__device__ static inline int get_index(int height, int width, int channel, | |||||
int h, int w, int c) { | |||||
return (height >= 0 && height < h && width >= 0 && width < w) | |||||
? get_offset<format>(height, width, channel, h, w, c) | |||||
: -1; | |||||
} | |||||
}; | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
__global__ void kern_general(const ctype* src, const float* map_xy, | |||||
const ctype* diff, float* __restrict grad, int C, | |||||
int IH, int IW, int OH, int OW, float scalar) { | |||||
int ow = blockIdx.x * blockDim.x + threadIdx.x; | |||||
int oh = blockIdx.y * blockDim.y + threadIdx.y; | |||||
src += blockIdx.z * C * IH * IW; | |||||
diff += blockIdx.z * C * OH * OW; | |||||
map_xy += blockIdx.z * 2 * OH * OW; | |||||
grad += blockIdx.z * 2 * OH * OW; | |||||
RoundingConverter<ctype> round_converter; | |||||
if (ow < OW && oh < OH) { | |||||
float index_col = map_xy[oh * OW * 2 + ow * 2 + 0]; | |||||
float index_row = map_xy[oh * OW * 2 + ow * 2 + 1]; | |||||
int col = static_cast<int>(floor(index_col)); | |||||
int row = static_cast<int>(floor(index_row)); | |||||
float v = index_col - col; // alphaw | |||||
float u = index_row - row; // alphah | |||||
const float one = 1.f; | |||||
for (int c = 0; c < C; ++c) { | |||||
float hidden = static_cast<float>( | |||||
diff[get_offset<format>( | |||||
oh, ow, c, OH, OW, C)]); | |||||
float du = 0.f, dv = 0.f; | |||||
int a00 = GetSrcData<ctype, format, bmode>::get_index( | |||||
row + 0, col + 0, c, IH, IW, C); | |||||
int a01 = GetSrcData<ctype, format, bmode>::get_index( | |||||
row + 0, col + 1, c, IH, IW, C); | |||||
int a10 = GetSrcData<ctype, format, bmode>::get_index( | |||||
row + 1, col + 0, c, IH, IW, C); | |||||
int a11 = GetSrcData<ctype, format, bmode>::get_index( | |||||
row + 1, col + 1, c, IH, IW, C); | |||||
dv -= ((a00 != -1) ? src[a00] : scalar) * (one - u); | |||||
dv += ((a01 != -1) ? src[a01] : scalar) * (one - u); | |||||
dv -= ((a10 != -1) ? src[a10] : scalar) * u; | |||||
dv += ((a11 != -1) ? src[a11] : scalar) * u; | |||||
du -= ((a00 != -1) ? src[a00] : scalar) * (one - v); | |||||
du -= ((a01 != -1) ? src[a01] : scalar) * v; | |||||
du += ((a10 != -1) ? src[a10] : scalar) * (one - v); | |||||
du += ((a11 != -1) ? src[a11] : scalar) * v; | |||||
grad[oh * OW * 2 + ow * 2 + 0] += round_converter(hidden * dv); | |||||
grad[oh * OW * 2 + ow * 2 + 1] += round_converter(hidden * du); | |||||
} | |||||
} | |||||
} | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
void dispatch_backwardmat(const ctype* src, const float* map_xy, | |||||
const ctype* diff, float* grad, int N, int C, int IH, | |||||
int IW, int OH, int OW, float scalar, | |||||
cudaStream_t stream) { | |||||
const int BX = 32, BY = 16; | |||||
const int max_batch_size = 65535; | |||||
while (N) { | |||||
size_t curr_batch_size = N < max_batch_size ? N : max_batch_size; | |||||
dim3 threads(BX, BY); | |||||
dim3 blocks((OW + BX - 1) / BX, (OH + BY - 1) / BY, curr_batch_size); | |||||
cuda_check(cudaMemsetAsync( | |||||
grad, 0, sizeof(float) * curr_batch_size * OH * OW * 2, | |||||
stream)); | |||||
kern_general<ctype, format, bmode><<<blocks, threads, 0, stream>>>( | |||||
src, map_xy, diff, grad, C, IH, IW, OH, OW, scalar); | |||||
N -= curr_batch_size; | |||||
src += curr_batch_size * C * IH * IW; | |||||
diff += curr_batch_size * C * OH * OW; | |||||
map_xy += curr_batch_size * 2 * OH * OW; | |||||
grad += curr_batch_size * 2 * OH * OW; | |||||
} | |||||
} | |||||
} // anonymous namespace | |||||
namespace megdnn { | |||||
namespace cuda { | |||||
namespace remap { | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
void backwardmat_proxy(const ctype* src, const float* map_xy, const ctype* diff, | |||||
float* grad, int N, int C, int IH, int IW, int OH, | |||||
int OW, float scalar, cudaStream_t stream) { | |||||
dispatch_backwardmat<ctype, format, bmode>(src, map_xy, diff, grad, N, C, | |||||
IH, IW, OH, OW, scalar, stream); | |||||
after_kernel_launch(); | |||||
} | |||||
#define INST(ctype, format, bmode) \ | |||||
template void backwardmat_proxy<ctype, param_enumv::Remap::Format::format, \ | |||||
::BorderMode::bmode>( \ | |||||
const ctype*, const float*, const ctype*, float*, int, int, int, \ | |||||
int, int, int, float, cudaStream_t); | |||||
#define FOR_FORMAT_BMODE(ctype) \ | |||||
INST(ctype, NCHW, BORDER_CONSTANT) \ | |||||
INST(ctype, NCHW, BORDER_REPLICATE) \ | |||||
INST(ctype, NCHW, BORDER_REFLECT) \ | |||||
INST(ctype, NCHW, BORDER_REFLECT_101) \ | |||||
INST(ctype, NCHW, BORDER_WRAP) | |||||
FOR_FORMAT_BMODE(float) | |||||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||||
#undef FOR_FORMAT_BMODE | |||||
#undef INST | |||||
} // namespace remap | |||||
} // namespace cuda | |||||
} // namespace megdnn | |||||
// vim: syntax=cpp.doxygen |
@@ -24,7 +24,17 @@ namespace remap { | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | template <typename ctype, const uint32_t format, ::BorderMode bmode> | ||||
void forward_proxy(const ctype* src, const float* map_xy, ctype* dst, int N, | void forward_proxy(const ctype* src, const float* map_xy, ctype* dst, int N, | ||||
int C, int IH, int IW, int OH, int OW, float scalar, | int C, int IH, int IW, int OH, int OW, float scalar, | ||||
int S_IN, int S_IC, int S_IH, int S_IW, cudaStream_t stream); | |||||
cudaStream_t stream); | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
void backwarddata_proxy(ctype* grad, const float* map_xy, const ctype* diff, | |||||
int N, int C, int IH, int IW, int OH, int OW, | |||||
cudaStream_t stream); | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
void backwardmat_proxy(const ctype* src, const float* map_xy, const ctype* diff, | |||||
float* grad, int N, int C, int IH, int IW, int OH, | |||||
int OW, float scalar, cudaStream_t stream); | |||||
} // namespace remap | } // namespace remap | ||||
} // namespace cuda | } // namespace cuda | ||||
@@ -22,9 +22,10 @@ using namespace cuda; | |||||
void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out map_xy, | void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out map_xy, | ||||
_megdnn_tensor_in dst, _megdnn_workspace workspace) { | _megdnn_tensor_in dst, _megdnn_workspace workspace) { | ||||
check_exec(src.layout, map_xy.layout, dst.layout, workspace.size); | check_exec(src.layout, map_xy.layout, dst.layout, workspace.size); | ||||
megdnn_assert(map_xy.layout.dtype.enumv() == | |||||
DTypeTrait<dtype::Float32>::enumv); | |||||
auto stream = cuda_stream(this->handle()); | auto stream = cuda_stream(this->handle()); | ||||
int N, C, IH, IW, OH, OW; | int N, C, IH, IW, OH, OW; | ||||
ptrdiff_t S_IN = 0, S_IC = 0, S_IH = 0, S_IW = 0; | |||||
OH = map_xy.layout.shape[1]; | OH = map_xy.layout.shape[1]; | ||||
OW = map_xy.layout.shape[2]; | OW = map_xy.layout.shape[2]; | ||||
@@ -36,10 +37,6 @@ void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out map_xy, | |||||
C = src.layout.shape[1]; | C = src.layout.shape[1]; | ||||
IH = src.layout.shape[2]; | IH = src.layout.shape[2]; | ||||
IW = src.layout.shape[3]; | IW = src.layout.shape[3]; | ||||
S_IN = src.layout.stride[0]; | |||||
S_IC = src.layout.stride[1]; | |||||
S_IH = src.layout.stride[2]; | |||||
S_IW = src.layout.stride[3]; | |||||
} else if (param().format == param::Remap::Format::NHWC) { | } else if (param().format == param::Remap::Format::NHWC) { | ||||
N = src.layout.shape[0]; | N = src.layout.shape[0]; | ||||
C = src.layout.shape[3]; | C = src.layout.shape[3]; | ||||
@@ -58,7 +55,7 @@ void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out map_xy, | |||||
src.compatible_ptr<ctype>(), \ | src.compatible_ptr<ctype>(), \ | ||||
map_xy.compatible_ptr<dt_float32>(), \ | map_xy.compatible_ptr<dt_float32>(), \ | ||||
dst.compatible_ptr<ctype>(), N, C, IH, IW, OH, OW, \ | dst.compatible_ptr<ctype>(), N, C, IH, IW, OH, OW, \ | ||||
param().scalar, S_IN, S_IC, S_IH, S_IW, stream); \ | |||||
param().scalar, stream); \ | |||||
break; \ | break; \ | ||||
} | } | ||||
@@ -78,15 +75,16 @@ void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out map_xy, | |||||
} | } | ||||
switch (src.layout.dtype.enumv()) { | switch (src.layout.dtype.enumv()) { | ||||
support_dtype(dtype::Float32) | |||||
MEGDNN_INC_FLOAT16(support_dtype(dtype::Float16)) | |||||
support_dtype(dtype::Int8) | |||||
support_dtype(dtype::Uint8) | |||||
support_dtype(dtype::Float32); | |||||
MEGDNN_INC_FLOAT16(support_dtype(dtype::Float16)); | |||||
MEGDNN_INC_FLOAT16(support_dtype(dtype::BFloat16)); | |||||
support_dtype(dtype::Int8); | |||||
support_dtype(dtype::Uint8); | |||||
default: | default: | ||||
megdnn_throw("unsupported dtype in remap cuda"); | megdnn_throw("unsupported dtype in remap cuda"); | ||||
} | } | ||||
#undef supported_dtype | |||||
#undef support_dtype | |||||
#undef cb | #undef cb | ||||
} | } | ||||
@@ -23,17 +23,6 @@ using namespace rounding; | |||||
namespace { | namespace { | ||||
template <typename ctype> | |||||
struct DirectSrcVisitor { | |||||
const ctype* ptr; | |||||
__device__ __forceinline__ const ctype* get(int batch, int im_size) { | |||||
return ptr + batch * im_size; | |||||
} | |||||
void move_batch(size_t batch, size_t im_size) { ptr += batch * im_size; } | |||||
}; | |||||
template <const uint32_t format> | template <const uint32_t format> | ||||
__device__ inline int get_offset(int height, int width, int channel, int h, | __device__ inline int get_offset(int height, int width, int channel, int h, | ||||
int w, int c); | int w, int c); | ||||
@@ -74,14 +63,13 @@ struct GetSrcData<ctype, format, ::BorderMode::BORDER_CONSTANT> { | |||||
} | } | ||||
}; | }; | ||||
template <typename ctype, typename SrcVisitor, ::BorderMode bmode> | |||||
__global__ void kern_general(SrcVisitor src, const float* map_xy, | |||||
template <typename ctype, ::BorderMode bmode> | |||||
__global__ void kern_general(const ctype* __restrict sptr, const float* map_xy, | |||||
ctype* __restrict dst, int C, int IH, int IW, | ctype* __restrict dst, int C, int IH, int IW, | ||||
int OH, int OW, int S_IN, int S_IC, int S_IH, | |||||
int S_IW, float scalar) { | |||||
int OH, int OW, float scalar) { | |||||
int ow = blockIdx.x * blockDim.x + threadIdx.x; | int ow = blockIdx.x * blockDim.x + threadIdx.x; | ||||
int oh = blockIdx.y * blockDim.y + threadIdx.y; | int oh = blockIdx.y * blockDim.y + threadIdx.y; | ||||
const ctype* __restrict sptr = src.get(blockIdx.z, S_IN); | |||||
sptr += blockIdx.z * C * IH * IW; | |||||
dst += blockIdx.z * C * OH * OW; | dst += blockIdx.z * C * OH * OW; | ||||
map_xy += blockIdx.z * 2 * OH * OW; | map_xy += blockIdx.z * 2 * OH * OW; | ||||
RoundingConverter<ctype> round_converter; | RoundingConverter<ctype> round_converter; | ||||
@@ -89,8 +77,8 @@ __global__ void kern_general(SrcVisitor src, const float* map_xy, | |||||
if (ow < OW && oh < OH) { | if (ow < OW && oh < OH) { | ||||
float index_col = map_xy[oh * OW * 2 + ow * 2 + 0]; | float index_col = map_xy[oh * OW * 2 + ow * 2 + 0]; | ||||
float index_row = map_xy[oh * OW * 2 + ow * 2 + 1]; | float index_row = map_xy[oh * OW * 2 + ow * 2 + 1]; | ||||
int col = (int)floor(index_col); | |||||
int row = (int)floor(index_row); | |||||
int col = static_cast<int>(floor(index_col)); | |||||
int row = static_cast<int>(floor(index_row)); | |||||
float v = index_col - col; | float v = index_col - col; | ||||
float u = index_row - row; | float u = index_row - row; | ||||
for (int c = 0; c < C; ++c) { | for (int c = 0; c < C; ++c) { | ||||
@@ -106,22 +94,25 @@ __global__ void kern_general(SrcVisitor src, const float* map_xy, | |||||
ctype a11 = GetSrcData<ctype, param_enumv::Remap::Format::NCHW, | ctype a11 = GetSrcData<ctype, param_enumv::Remap::Format::NCHW, | ||||
bmode>::get(sptr, row + 1, col + 1, c, IH, | bmode>::get(sptr, row + 1, col + 1, c, IH, | ||||
IW, C, scalar); | IW, C, scalar); | ||||
dst[get_offset<param_enumv::Remap::Format::NCHW>(oh, ow, c, OH, OW, | |||||
C)] = | |||||
round_converter(a00 * (1.f - u) * (1.f - v) + | |||||
a01 * (1.f - u) * v + a10 * (1.f - v) * u + | |||||
a11 * u * v); | |||||
/* in remap, we use float as the type of intermediate result */ | |||||
float result = static_cast<float>(a00) * (1.f - u) * (1.f - v) + | |||||
static_cast<float>(a01) * (1.f - u) * v + | |||||
static_cast<float>(a10) * (1.f - v) * u + | |||||
static_cast<float>(a11) * u * v; | |||||
dst[get_offset<param_enumv::Remap::Format::NCHW>( | |||||
oh, ow, c, OH, OW, C)] = round_converter(result); | |||||
} | } | ||||
} | } | ||||
} | } | ||||
template <typename ctype, typename SrcVisitor, ::BorderMode bmode> | |||||
__global__ void kern_general_nhwc(SrcVisitor src, const float* map_xy, | |||||
ctype* __restrict dst, int C, int IH, int IW, | |||||
int OH, int OW, float scalar) { | |||||
template <typename ctype, ::BorderMode bmode> | |||||
__global__ void kern_general_nhwc(const ctype* __restrict sptr, | |||||
const float* map_xy, ctype* __restrict dst, | |||||
int C, int IH, int IW, int OH, int OW, | |||||
float scalar) { | |||||
int ow = blockIdx.x * blockDim.x + threadIdx.x; | int ow = blockIdx.x * blockDim.x + threadIdx.x; | ||||
int oh = blockIdx.y * blockDim.y + threadIdx.y; | int oh = blockIdx.y * blockDim.y + threadIdx.y; | ||||
const ctype* __restrict sptr = src.get(blockIdx.z, C * IH * IW); | |||||
sptr += blockIdx.z * C * IH * IW; | |||||
dst += blockIdx.z * C * OH * OW; | dst += blockIdx.z * C * OH * OW; | ||||
map_xy += blockIdx.z * 2 * OH * OW; | map_xy += blockIdx.z * 2 * OH * OW; | ||||
RoundingConverter<ctype> round_converter; | RoundingConverter<ctype> round_converter; | ||||
@@ -129,8 +120,8 @@ __global__ void kern_general_nhwc(SrcVisitor src, const float* map_xy, | |||||
if (ow < OW && oh < OH) { | if (ow < OW && oh < OH) { | ||||
float index_col = map_xy[oh * OW * 2 + ow * 2 + 0]; | float index_col = map_xy[oh * OW * 2 + ow * 2 + 0]; | ||||
float index_row = map_xy[oh * OW * 2 + ow * 2 + 1]; | float index_row = map_xy[oh * OW * 2 + ow * 2 + 1]; | ||||
int col = (int)floor(index_col); | |||||
int row = (int)floor(index_row); | |||||
int col = static_cast<int>(floor(index_col)); | |||||
int row = static_cast<int>(floor(index_row)); | |||||
float v = index_col - col; | float v = index_col - col; | ||||
float u = index_row - row; | float u = index_row - row; | ||||
for (int c = 0; c < C; ++c) { | for (int c = 0; c < C; ++c) { | ||||
@@ -146,21 +137,21 @@ __global__ void kern_general_nhwc(SrcVisitor src, const float* map_xy, | |||||
ctype a11 = GetSrcData<ctype, param_enumv::Remap::Format::NHWC, | ctype a11 = GetSrcData<ctype, param_enumv::Remap::Format::NHWC, | ||||
bmode>::get(sptr, row + 1, col + 1, c, IH, | bmode>::get(sptr, row + 1, col + 1, c, IH, | ||||
IW, C, scalar); | IW, C, scalar); | ||||
dst[get_offset<param_enumv::Remap::Format::NHWC>(oh, ow, c, OH, OW, | |||||
C)] = | |||||
round_converter(a00 * (1.f - u) * (1.f - v) + | |||||
a01 * (1.f - u) * v + a10 * (1.f - v) * u + | |||||
a11 * u * v); | |||||
/* in remap, we use float as the type of intermediate result */ | |||||
float result = static_cast<float>(a00) * (1.f - u) * (1.f - v) + | |||||
static_cast<float>(a01) * (1.f - u) * v + | |||||
static_cast<float>(a10) * (1.f - v) * u + | |||||
static_cast<float>(a11) * u * v; | |||||
dst[get_offset<param_enumv::Remap::Format::NHWC>( | |||||
oh, ow, c, OH, OW, C)] = round_converter(result); | |||||
} | } | ||||
} | } | ||||
} | } | ||||
template <typename ctype, typename SrcVisitor, const uint32_t format, | |||||
::BorderMode bmode> | |||||
void dispatch_with_visitor(SrcVisitor src, const float* map_xy, ctype* dst, | |||||
int N, int C, int IH, int IW, int OH, int OW, | |||||
float scalar, int S_IN, int S_IC, int S_IH, int S_IW, | |||||
cudaStream_t stream) { | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | |||||
void dispatch_forward(const ctype* src, const float* map_xy, ctype* dst, int N, | |||||
int C, int IH, int IW, int OH, int OW, float scalar, | |||||
cudaStream_t stream) { | |||||
const int BX = 32, BY = 16; | const int BX = 32, BY = 16; | ||||
const int max_batch_size = 65535; | const int max_batch_size = 65535; | ||||
@@ -170,19 +161,17 @@ void dispatch_with_visitor(SrcVisitor src, const float* map_xy, ctype* dst, | |||||
dim3 blocks((OW + BX - 1) / BX, (OH + BY - 1) / BY, curr_batch_size); | dim3 blocks((OW + BX - 1) / BX, (OH + BY - 1) / BY, curr_batch_size); | ||||
if (format == param_enumv::Remap::Format::NCHW) { | if (format == param_enumv::Remap::Format::NCHW) { | ||||
kern_general<ctype, SrcVisitor, bmode> | |||||
<<<blocks, threads, 0, stream>>>(src, map_xy, dst, C, IH, | |||||
IW, OH, OW, S_IN, S_IC, | |||||
S_IH, S_IW, scalar); | |||||
kern_general<ctype, bmode><<<blocks, threads, 0, stream>>>( | |||||
src, map_xy, dst, C, IH, IW, OH, OW, scalar); | |||||
} else if (format == param_enumv::Remap::Format::NHWC) { | } else if (format == param_enumv::Remap::Format::NHWC) { | ||||
kern_general_nhwc<ctype, SrcVisitor, bmode> | |||||
<<<blocks, threads, 0, stream>>>(src, map_xy, dst, C, IH, | |||||
IW, OH, OW, scalar); | |||||
kern_general_nhwc<ctype, bmode><<<blocks, threads, 0, stream>>>( | |||||
src, map_xy, dst, C, IH, IW, OH, OW, scalar); | |||||
} | } | ||||
N -= curr_batch_size; | N -= curr_batch_size; | ||||
src.move_batch(curr_batch_size, C * IH * IW); | |||||
src += curr_batch_size * C * IH * IW; | |||||
dst += curr_batch_size * C * OH * OW; | dst += curr_batch_size * C * OH * OW; | ||||
map_xy += curr_batch_size * OH * OW * 2; | |||||
} | } | ||||
} | } | ||||
@@ -195,22 +184,17 @@ namespace remap { | |||||
template <typename ctype, const uint32_t format, ::BorderMode bmode> | template <typename ctype, const uint32_t format, ::BorderMode bmode> | ||||
void forward_proxy(const ctype* src, const float* map_xy, ctype* dst, int N, | void forward_proxy(const ctype* src, const float* map_xy, ctype* dst, int N, | ||||
int C, int IH, int IW, int OH, int OW, float scalar, | int C, int IH, int IW, int OH, int OW, float scalar, | ||||
int S_IN, int S_IC, int S_IH, int S_IW, | |||||
cudaStream_t stream) { | cudaStream_t stream) { | ||||
DirectSrcVisitor<ctype> visitor; | |||||
visitor.ptr = src; | |||||
using SrcVisitor = DirectSrcVisitor<ctype>; | |||||
dispatch_with_visitor<ctype, SrcVisitor, format, bmode>( | |||||
visitor, map_xy, dst, N, C, IH, IW, OH, OW, scalar, S_IN, S_IC, | |||||
S_IH, S_IW, stream); | |||||
dispatch_forward<ctype, format, bmode>(src, map_xy, dst, N, C, IH, IW, OH, | |||||
OW, scalar, stream); | |||||
after_kernel_launch(); | after_kernel_launch(); | ||||
} | } | ||||
#define INST(ctype, format, bmode) \ | |||||
template void forward_proxy<ctype, param_enumv::Remap::Format::format, \ | |||||
::BorderMode::bmode>( \ | |||||
const ctype* src, const float*, ctype*, int, int, int, int, int, \ | |||||
int, float, int, int, int, int, cudaStream_t); | |||||
#define INST(ctype, format, bmode) \ | |||||
template void forward_proxy<ctype, param_enumv::Remap::Format::format, \ | |||||
::BorderMode::bmode>( \ | |||||
const ctype*, const float*, ctype*, int, int, int, int, int, int, \ | |||||
float, cudaStream_t); | |||||
#define FOR_FORMAT_BMODE(ctype) \ | #define FOR_FORMAT_BMODE(ctype) \ | ||||
INST(ctype, NCHW, BORDER_CONSTANT) \ | INST(ctype, NCHW, BORDER_CONSTANT) \ | ||||
@@ -226,11 +210,13 @@ void forward_proxy(const ctype* src, const float* map_xy, ctype* dst, int N, | |||||
FOR_FORMAT_BMODE(float) | FOR_FORMAT_BMODE(float) | ||||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_float16)) | MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_float16)) | ||||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||||
FOR_FORMAT_BMODE(int8_t) | FOR_FORMAT_BMODE(int8_t) | ||||
FOR_FORMAT_BMODE(uint8_t) | FOR_FORMAT_BMODE(uint8_t) | ||||
#undef FOR_BMODE | |||||
#undef FOR_FORMAT_BMODE | |||||
#undef INST | #undef INST | ||||
} // namespace remap | } // namespace remap | ||||
} // namespace cuda | } // namespace cuda | ||||
} // namespace megdnn | } // namespace megdnn | ||||
@@ -15,13 +15,41 @@ | |||||
namespace megdnn { | namespace megdnn { | ||||
namespace cuda { | namespace cuda { | ||||
class RemapImpl final : public Remap { | class RemapImpl final : public Remap { | ||||
public: | |||||
using Remap::Remap; | using Remap::Remap; | ||||
void exec(_megdnn_tensor_in, _megdnn_tensor_in, _megdnn_tensor_out, | |||||
_megdnn_workspace) override; | |||||
void exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_out dst, _megdnn_workspace workspace) override; | |||||
size_t get_workspace_in_bytes(const TensorLayout&, const TensorLayout&, | |||||
const TensorLayout&) override { | |||||
size_t get_workspace_in_bytes(const TensorLayout& src, | |||||
const TensorLayout& map_xy, | |||||
const TensorLayout& dst) override { | |||||
return 0; | |||||
} | |||||
}; | |||||
class RemapBackwardDataImpl final : public RemapBackwardData { | |||||
public: | |||||
using RemapBackwardData::RemapBackwardData; | |||||
void exec(_megdnn_tensor_in map_xy, _megdnn_tensor_in diff, | |||||
_megdnn_tensor_out grad, _megdnn_workspace workspace) override; | |||||
size_t get_workspace_in_bytes(const TensorLayout& map_xy, | |||||
const TensorLayout& diff, | |||||
const TensorLayout& grad) override { | |||||
return 0; | |||||
} | |||||
}; | |||||
class RemapBackwardMatImpl final : public RemapBackwardMat { | |||||
public: | |||||
using RemapBackwardMat::RemapBackwardMat; | |||||
void exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||||
_megdnn_workspace workspace) override; | |||||
size_t get_workspace_in_bytes(const TensorLayout& src, | |||||
const TensorLayout& map_xy, | |||||
const TensorLayout& diff, | |||||
const TensorLayout& grad) override { | |||||
return 0; | return 0; | ||||
} | } | ||||
}; | }; | ||||
@@ -12,11 +12,13 @@ | |||||
#include "src/naive/remap/opr_impl.h" | #include "src/naive/remap/opr_impl.h" | ||||
#include "src/common/cv/helper.h" | #include "src/common/cv/helper.h" | ||||
#include "src/common/rounding_converter.cuh" | |||||
#include "src/common/utils.h" | #include "src/common/utils.h" | ||||
#include "src/naive/handle.h" | #include "src/naive/handle.h" | ||||
using namespace megdnn; | using namespace megdnn; | ||||
using namespace naive; | using namespace naive; | ||||
using namespace rounding; | |||||
namespace { | namespace { | ||||
template <param::Remap::Format format> | template <param::Remap::Format format> | ||||
@@ -36,35 +38,46 @@ inline int get_offset<param::Remap::Format::NHWC>(int height, int width, | |||||
return height * w * c + width * c + channel; | return height * w * c + width * c + channel; | ||||
} | } | ||||
template <typename DataType, param::Remap::Format format, | |||||
template <typename ctype, param::Remap::Format format, | |||||
param::Remap::BorderMode bordertype> | param::Remap::BorderMode bordertype> | ||||
struct GetSrcData { | struct GetSrcData { | ||||
static inline DataType get(const DataType* src, int height, int width, | |||||
int channel, int h, int w, int c, float, | |||||
std::function<DataType(float)>) { | |||||
static inline ctype get(const ctype* src, int height, int width, | |||||
int channel, int h, int w, int c, float) { | |||||
height = megcv::border_interpolate<bordertype>(height, h); | height = megcv::border_interpolate<bordertype>(height, h); | ||||
width = megcv::border_interpolate<bordertype>(width, w); | width = megcv::border_interpolate<bordertype>(width, w); | ||||
return src[get_offset<format>(height, width, channel, h, w, c)]; | return src[get_offset<format>(height, width, channel, h, w, c)]; | ||||
} | } | ||||
static inline int get_index(int height, int width, int channel, int h, | |||||
int w, int c) { | |||||
height = megcv::border_interpolate<bordertype>(height, h); | |||||
width = megcv::border_interpolate<bordertype>(width, w); | |||||
return get_offset<format>(height, width, channel, h, w, c); | |||||
} | |||||
}; | }; | ||||
template <typename DataType, param::Remap::Format format> | |||||
struct GetSrcData<DataType, format, param::Remap::BorderMode::CONSTANT> { | |||||
static inline DataType get(const DataType* src, int height, int width, | |||||
int channel, int h, int w, int c, float scalar, | |||||
std::function<DataType(float)> round) { | |||||
template <typename ctype, param::Remap::Format format> | |||||
struct GetSrcData<ctype, format, param::Remap::BorderMode::CONSTANT> { | |||||
static inline ctype get(const ctype* src, int height, int width, | |||||
int channel, int h, int w, int c, float scalar) { | |||||
RoundingConverter<ctype> round; | |||||
return (height >= 0 && height < h && width >= 0 && width < w) | return (height >= 0 && height < h && width >= 0 && width < w) | ||||
? src[get_offset<format>(height, width, channel, h, w, | ? src[get_offset<format>(height, width, channel, h, w, | ||||
c)] | c)] | ||||
: static_cast<DataType>(round(scalar)); | |||||
: round(scalar); | |||||
} | |||||
static inline int get_index(int height, int width, int channel, int h, | |||||
int w, int c) { | |||||
return (height >= 0 && height < h && width >= 0 && width < w) | |||||
? get_offset<format>(height, width, channel, h, w, c) | |||||
: -1; | |||||
} | } | ||||
}; | }; | ||||
template <typename DataType, param::Remap::Format format, | |||||
template <typename ctype, param::Remap::Format format, | |||||
param::Remap::BorderMode bordertype> | param::Remap::BorderMode bordertype> | ||||
void remap_LINEAR(const DataType* src, const float* map_xy, DataType* dst, | |||||
int N, int C, int IH, int IW, int OH, int OW, float scalar, | |||||
std::function<DataType(float)> round) { | |||||
void remap_LINEAR(const ctype* src, const float* map_xy, ctype* dst, int N, | |||||
int C, int IH, int IW, int OH, int OW, float scalar) { | |||||
RoundingConverter<ctype> round_converter; | |||||
for (int n = 0; n < N; | for (int n = 0; n < N; | ||||
++n, src += C * IH * IW, dst += C * OH * OW, map_xy += OH * OW * 2) { | ++n, src += C * IH * IW, dst += C * OH * OW, map_xy += OH * OW * 2) { | ||||
for (int h = 0; h < OH; ++h) { | for (int h = 0; h < OH; ++h) { | ||||
@@ -73,47 +86,131 @@ void remap_LINEAR(const DataType* src, const float* map_xy, DataType* dst, | |||||
float index_row = map_xy[h * OW * 2 + w * 2 + 1]; | float index_row = map_xy[h * OW * 2 + w * 2 + 1]; | ||||
int col = static_cast<int>(floor(index_col)); | int col = static_cast<int>(floor(index_col)); | ||||
int row = static_cast<int>(floor(index_row)); | int row = static_cast<int>(floor(index_row)); | ||||
float v = index_col - col; | |||||
float u = index_row - row; | |||||
float one = 1.f; | |||||
float v = index_col - col; // alphaw | |||||
float u = index_row - row; // alphah | |||||
const float one = 1.f; | |||||
for (int c = 0; c < C; ++c) { | for (int c = 0; c < C; ++c) { | ||||
DataType a00 = | |||||
GetSrcData<DataType, format, bordertype>::get( | |||||
src, row + 0, col + 0, c, IH, IW, C, scalar, | |||||
round); | |||||
DataType a01 = | |||||
GetSrcData<DataType, format, bordertype>::get( | |||||
src, row + 0, col + 1, c, IH, IW, C, scalar, | |||||
round); | |||||
DataType a10 = | |||||
GetSrcData<DataType, format, bordertype>::get( | |||||
src, row + 1, col + 0, c, IH, IW, C, scalar, | |||||
round); | |||||
DataType a11 = | |||||
GetSrcData<DataType, format, bordertype>::get( | |||||
src, row + 1, col + 1, c, IH, IW, C, scalar, | |||||
round); | |||||
ctype a00 = GetSrcData<ctype, format, bordertype>::get( | |||||
src, row + 0, col + 0, c, IH, IW, C, scalar); | |||||
ctype a01 = GetSrcData<ctype, format, bordertype>::get( | |||||
src, row + 0, col + 1, c, IH, IW, C, scalar); | |||||
ctype a10 = GetSrcData<ctype, format, bordertype>::get( | |||||
src, row + 1, col + 0, c, IH, IW, C, scalar); | |||||
ctype a11 = GetSrcData<ctype, format, bordertype>::get( | |||||
src, row + 1, col + 1, c, IH, IW, C, scalar); | |||||
dst[get_offset<format>(h, w, c, OH, OW, C)] = | dst[get_offset<format>(h, w, c, OH, OW, C)] = | ||||
static_cast<DataType>( | |||||
round(a00 * (one - u) * (one - v) + | |||||
a01 * (one - u) * v + | |||||
a10 * (one - v) * u + a11 * u * v)); | |||||
round_converter(a00 * (one - v) * (one - u) + | |||||
a01 * (one - u) * v + | |||||
a10 * (one - v) * u + a11 * u * v); | |||||
} | } | ||||
} | } | ||||
} | } | ||||
} | } | ||||
} | } | ||||
template <typename DataType, DTypeCategory cat> | |||||
struct Round { | |||||
static inline DataType round(float x) { return std::round(x); } | |||||
}; | |||||
template <typename ctype, param::Remap::Format format, | |||||
param::Remap::BorderMode bordertype> | |||||
void remap_LINEAR_backwarddata(ctype* grad, const float* map_xy, | |||||
const ctype* diff, int N, int C, int IH, int IW, | |||||
int OH, int OW) { | |||||
RoundingConverter<ctype> round_converter; | |||||
std::memset(grad, 0, sizeof(ctype) * N * C * IH * IW); | |||||
for (int n = 0; n < N; | |||||
++n, grad += C * IH * IW, diff += C * OH * OW, map_xy += OH * OW * 2) { | |||||
for (int h = 0; h < OH; ++h) { | |||||
for (int w = 0; w < OW; ++w) { | |||||
float index_col = map_xy[h * OW * 2 + w * 2 + 0]; | |||||
float index_row = map_xy[h * OW * 2 + w * 2 + 1]; | |||||
int col = static_cast<int>(floor(index_col)); | |||||
int row = static_cast<int>(floor(index_row)); | |||||
float v = index_col - col; // alphaw | |||||
float u = index_row - row; // alphah | |||||
const float one = 1.f; | |||||
for (int c = 0; c < C; ++c) { | |||||
ctype hidden = diff[get_offset<format>(h, w, c, OH, OW, C)]; | |||||
template <typename DataType> | |||||
struct Round<DataType, DTypeCategory::FLOAT> { | |||||
static inline DataType round(float x) { return static_cast<DataType>(x); } | |||||
}; | |||||
int a00 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 0, col + 0, c, IH, IW, C); | |||||
if (a00 != -1) { | |||||
grad[a00] += | |||||
round_converter((one - v) * (one - u) * hidden); | |||||
} | |||||
int a01 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 0, col + 1, c, IH, IW, C); | |||||
if (a01 != -1) { | |||||
grad[a01] += round_converter((one - u) * v * hidden); | |||||
} | |||||
int a10 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 1, col + 0, c, IH, IW, C); | |||||
if (a10 != -1) { | |||||
grad[a10] += round_converter(u * (one - v) * hidden); | |||||
} | |||||
int a11 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 1, col + 1, c, IH, IW, C); | |||||
if (a11 != -1) { | |||||
grad[a11] += round_converter(v * u * hidden); | |||||
} | |||||
} | |||||
} | |||||
} | |||||
} | |||||
} | |||||
template <typename ctype, param::Remap::Format format, | |||||
param::Remap::BorderMode bordertype> | |||||
void remap_LINEAR_backwardmat(const ctype* src, const float* map_xy, | |||||
const ctype* diff, float* grad, int N, int C, | |||||
int IH, int IW, int OH, int OW, float scalar) { | |||||
RoundingConverter<ctype> round_converter; | |||||
std::memset(grad, 0, sizeof(float) * N * 2 * OH * OW); | |||||
for (int n = 0; n < N; ++n, src += C * IH * IW, diff += C * OH * OW, | |||||
map_xy += OH * OW * 2, grad += OH * OW * 2) { | |||||
for (int h = 0; h < OH; ++h) { | |||||
for (int w = 0; w < OW; ++w) { | |||||
float index_col = map_xy[h * OW * 2 + w * 2 + 0]; | |||||
float index_row = map_xy[h * OW * 2 + w * 2 + 1]; | |||||
int col = static_cast<int>(floor(index_col)); | |||||
int row = static_cast<int>(floor(index_row)); | |||||
float v = index_col - col; // alphaw | |||||
float u = index_row - row; // alphah | |||||
const float one = 1.f; | |||||
for (int c = 0; c < C; ++c) { | |||||
float hidden = static_cast<float>( | |||||
diff[get_offset<format>(h, w, c, OH, OW, C)]); | |||||
float du = 0.f, dv = 0.f; | |||||
int a00 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 0, col + 0, c, IH, IW, C); | |||||
int a01 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 0, col + 1, c, IH, IW, C); | |||||
int a10 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 1, col + 0, c, IH, IW, C); | |||||
int a11 = GetSrcData<ctype, format, bordertype>::get_index( | |||||
row + 1, col + 1, c, IH, IW, C); | |||||
dv -= ((a00 != -1) ? src[a00] : scalar) * (one - u); | |||||
dv += ((a01 != -1) ? src[a01] : scalar) * (one - u); | |||||
dv -= ((a10 != -1) ? src[a10] : scalar) * u; | |||||
dv += ((a11 != -1) ? src[a11] : scalar) * u; | |||||
du -= ((a00 != -1) ? src[a00] : scalar) * (one - v); | |||||
du -= ((a01 != -1) ? src[a01] : scalar) * v; | |||||
du += ((a10 != -1) ? src[a10] : scalar) * (one - v); | |||||
du += ((a11 != -1) ? src[a11] : scalar) * v; | |||||
grad[h * OW * 2 + w * 2 + 0] += | |||||
round_converter(hidden * dv); | |||||
grad[h * OW * 2 + w * 2 + 1] += | |||||
round_converter(hidden * du); | |||||
} | |||||
} | |||||
} | |||||
} | |||||
} | |||||
} // namespace | } // namespace | ||||
@@ -148,8 +245,7 @@ void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
src.compatible_ptr<ctype>(), \ | src.compatible_ptr<ctype>(), \ | ||||
map_xy.compatible_ptr<dt_float32>(), \ | map_xy.compatible_ptr<dt_float32>(), \ | ||||
dst.compatible_ptr<ctype>(), N, C, IH, IW, OH, OW, \ | dst.compatible_ptr<ctype>(), N, C, IH, IW, OH, OW, \ | ||||
param().scalar, \ | |||||
Round<ctype, DTypeTrait<dt>::category>::round))); \ | |||||
param().scalar))); \ | |||||
break; \ | break; \ | ||||
} | } | ||||
@@ -172,6 +268,7 @@ void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
support_dtype(dtype::Float32); | support_dtype(dtype::Float32); | ||||
MEGDNN_INC_FLOAT16(support_dtype(dtype::Float16)); | MEGDNN_INC_FLOAT16(support_dtype(dtype::Float16)); | ||||
MEGDNN_INC_FLOAT16(support_dtype(dtype::BFloat16)); | |||||
support_dtype(dtype::Int8); | support_dtype(dtype::Int8); | ||||
support_dtype(dtype::Uint8); | support_dtype(dtype::Uint8); | ||||
#undef cb | #undef cb | ||||
@@ -181,3 +278,109 @@ void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
megdnn_throw("unsupported dtype in remap naive\n"); | megdnn_throw("unsupported dtype in remap naive\n"); | ||||
} | } | ||||
} | } | ||||
void RemapBackwardDataImpl::exec(_megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_in diff, | |||||
_megdnn_tensor_out grad, | |||||
_megdnn_workspace workspace) { | |||||
check_exec(map_xy.layout, diff.layout, grad.layout, workspace.size); | |||||
megdnn_assert(param().format == param::Remap::Format::NCHW, | |||||
"only support NCHW format for remap backward"); | |||||
int N, C, IH, IW, OH, OW; | |||||
N = grad.layout.shape[0]; | |||||
C = grad.layout.shape[1]; | |||||
IH = grad.layout.shape[2]; | |||||
IW = grad.layout.shape[3]; | |||||
OH = map_xy.layout.shape[1]; | |||||
OW = map_xy.layout.shape[2]; | |||||
switch (diff.layout.dtype.enumv()) { | |||||
#define cb(dt, fmt, border, interpolation) \ | |||||
if (param().format == param::Remap::Format::fmt && \ | |||||
param().border_type == param::Remap::BorderMode::border && \ | |||||
param().imode == param::Remap::InterpolationMode::interpolation) { \ | |||||
using ctype = DTypeTrait<dt>::ctype; \ | |||||
MEGDNN_DISPATCH_CPU_KERN_OPR((remap_##interpolation##_backwarddata< \ | |||||
ctype, param::Remap::Format::fmt, \ | |||||
param::Remap::BorderMode::border>( \ | |||||
grad.compatible_ptr<ctype>(), \ | |||||
map_xy.compatible_ptr<dt_float32>(), \ | |||||
diff.compatible_ptr<ctype>(), N, C, IH, IW, OH, OW))); \ | |||||
break; \ | |||||
} | |||||
#define support_dtype(dt) \ | |||||
case DTypeTrait<dt>::enumv: { \ | |||||
cb(dt, NCHW, CONSTANT, LINEAR); \ | |||||
cb(dt, NCHW, REPLICATE, LINEAR); \ | |||||
cb(dt, NCHW, REFLECT, LINEAR); \ | |||||
cb(dt, NCHW, REFLECT_101, LINEAR); \ | |||||
cb(dt, NCHW, WRAP, LINEAR); \ | |||||
megdnn_throw( \ | |||||
"format, border type or imode is incorrect in remap navie " \ | |||||
"with dtype = " #dt); \ | |||||
} | |||||
support_dtype(dtype::Float32); | |||||
MEGDNN_INC_FLOAT16(support_dtype(dtype::BFloat16)); | |||||
#undef cb | |||||
#undef support_dtype | |||||
default: | |||||
megdnn_throw("unsupported dtype in remap backward naive\n"); | |||||
} | |||||
} | |||||
void RemapBackwardMatImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||||
_megdnn_workspace workspace) { | |||||
check_exec(src.layout, map_xy.layout, diff.layout, grad.layout, | |||||
workspace.size); | |||||
megdnn_assert(param().format == param::Remap::Format::NCHW, | |||||
"only support NCHW format for remap backward"); | |||||
int N, C, IH, IW, OH, OW; | |||||
N = src.layout.shape[0]; | |||||
C = src.layout.shape[1]; | |||||
IH = src.layout.shape[2]; | |||||
IW = src.layout.shape[3]; | |||||
OH = map_xy.layout.shape[1]; | |||||
OW = map_xy.layout.shape[2]; | |||||
switch (src.layout.dtype.enumv()) { | |||||
#define cb(dt, fmt, border, interpolation) \ | |||||
if (param().format == param::Remap::Format::fmt && \ | |||||
param().border_type == param::Remap::BorderMode::border && \ | |||||
param().imode == param::Remap::InterpolationMode::interpolation) { \ | |||||
using ctype = DTypeTrait<dt>::ctype; \ | |||||
MEGDNN_DISPATCH_CPU_KERN_OPR((remap_##interpolation##_backwardmat< \ | |||||
ctype, param::Remap::Format::fmt, \ | |||||
param::Remap::BorderMode::border>( \ | |||||
src.compatible_ptr<ctype>(), \ | |||||
map_xy.compatible_ptr<dt_float32>(), \ | |||||
diff.compatible_ptr<ctype>(), \ | |||||
grad.compatible_ptr<dt_float32>(), N, C, IH, IW, OH, OW, \ | |||||
param().scalar))); \ | |||||
break; \ | |||||
} | |||||
#define support_dtype(dt) \ | |||||
case DTypeTrait<dt>::enumv: { \ | |||||
cb(dt, NCHW, CONSTANT, LINEAR); \ | |||||
cb(dt, NCHW, REPLICATE, LINEAR); \ | |||||
cb(dt, NCHW, REFLECT, LINEAR); \ | |||||
cb(dt, NCHW, REFLECT_101, LINEAR); \ | |||||
cb(dt, NCHW, WRAP, LINEAR); \ | |||||
megdnn_throw( \ | |||||
"format, border type or imode is incorrect in remap navie " \ | |||||
"with dtype = " #dt); \ | |||||
} | |||||
support_dtype(dtype::Float32); | |||||
MEGDNN_INC_FLOAT16(support_dtype(dtype::BFloat16)); | |||||
#undef cb | |||||
#undef support_dtype | |||||
default: | |||||
megdnn_throw("unsupported dtype in remap backward naive\n"); | |||||
} | |||||
} | |||||
// vim: syntax=cpp.doxygen |
@@ -23,6 +23,33 @@ class RemapImpl final : public Remap { | |||||
return 0; | return 0; | ||||
} | } | ||||
}; | }; | ||||
class RemapBackwardDataImpl final : public RemapBackwardData { | |||||
public: | |||||
using RemapBackwardData::RemapBackwardData; | |||||
void exec(_megdnn_tensor_in map_xy, _megdnn_tensor_in diff, | |||||
_megdnn_tensor_out grad, _megdnn_workspace workspace) override; | |||||
size_t get_workspace_in_bytes(const TensorLayout&, | |||||
const TensorLayout&, | |||||
const TensorLayout&) override { | |||||
return 0; | |||||
} | |||||
}; | |||||
class RemapBackwardMatImpl final : public RemapBackwardMat { | |||||
public: | |||||
using RemapBackwardMat::RemapBackwardMat; | |||||
void exec(_megdnn_tensor_in src, _megdnn_tensor_in map_xy, | |||||
_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||||
_megdnn_workspace workspace) override; | |||||
size_t get_workspace_in_bytes(const TensorLayout&, | |||||
const TensorLayout&, | |||||
const TensorLayout&, | |||||
const TensorLayout&) override { | |||||
return 0; | |||||
} | |||||
}; | |||||
} // namespace naive | } // namespace naive | ||||
} // namespace megdnn | } // namespace megdnn | ||||
@@ -106,6 +106,8 @@ DEF(DeformablePSROIPoolingForward, 5, true, true); | |||||
DEF(DeformablePSROIPoolingBackward, 7, true, false); | DEF(DeformablePSROIPoolingBackward, 7, true, false); | ||||
DEF(BatchConvBiasForward, 5, true, true); | DEF(BatchConvBiasForward, 5, true, true); | ||||
DEF(Remap, 3, true, true); | DEF(Remap, 3, true, true); | ||||
DEF(RemapBackwardData, 3, true, false); | |||||
DEF(RemapBackwardMat, 4, true, false); | |||||
} // namespace test | } // namespace test | ||||
} // namespace megdnn | } // namespace megdnn | ||||
@@ -46,6 +46,9 @@ static inline std::vector<TestArg> get_nchw_args() { | |||||
for (auto border_type : border_mode_vec) { | for (auto border_type : border_mode_vec) { | ||||
param.format = fmt; | param.format = fmt; | ||||
param.border_type = border_type; | param.border_type = border_type; | ||||
args.emplace_back(param, TensorShape{70000, 1, 2, 2}, | |||||
TensorShape{70000, 2, 2, 2}, TensorShape{70000, 1, 2, 2}); | |||||
args.emplace_back(param, TensorShape{1, 1, 2, 2}, | args.emplace_back(param, TensorShape{1, 1, 2, 2}, | ||||
TensorShape{1, 2, 2, 2}, TensorShape{1, 1, 2, 2}); | TensorShape{1, 2, 2, 2}, TensorShape{1, 1, 2, 2}); | ||||
@@ -90,6 +93,9 @@ static inline std::vector<TestArg> get_nhwc_args() { | |||||
param.format = fmt; | param.format = fmt; | ||||
param.border_type = border_type; | param.border_type = border_type; | ||||
param.scalar = 12.f; | param.scalar = 12.f; | ||||
args.emplace_back(param, TensorShape{70000, 2, 2, 1}, | |||||
TensorShape{70000, 2, 2, 2}, TensorShape{70000, 2, 2, 1}); | |||||
args.emplace_back(param, TensorShape{1, 2, 2, 1}, | args.emplace_back(param, TensorShape{1, 2, 2, 1}, | ||||
TensorShape{1, 2, 2, 2}, TensorShape{1, 2, 2, 1}); | TensorShape{1, 2, 2, 2}, TensorShape{1, 2, 2, 1}); | ||||
@@ -40,6 +40,22 @@ TEST_F(CUDA, REMAP_NCHW_FLOAT) { | |||||
cb(dtype::Float32(), float_rng); | cb(dtype::Float32(), float_rng); | ||||
cb(dtype::Float16(), float_rng); | cb(dtype::Float16(), float_rng); | ||||
#undef cb | #undef cb | ||||
#define cb(data_type, data_rng) \ | |||||
for (auto arg : args) { \ | |||||
UniformFloatRNG map_rng( \ | |||||
-2, std::max(arg.map_xy.shape[2], arg.map_xy.shape[1]) + 2); \ | |||||
checker.set_dtype(0, data_type) \ | |||||
.set_dtype(1, dtype::Float32()) \ | |||||
.set_dtype(2, data_type) \ | |||||
.set_rng(0, &data_rng) \ | |||||
.set_rng(1, &map_rng) \ | |||||
.set_rng(2, &data_rng) \ | |||||
.set_param(arg.param) \ | |||||
.set_epsilon(1e-2) \ | |||||
.execs({arg.src, arg.map_xy, arg.dst}); \ | |||||
} | |||||
cb(dtype::BFloat16(), float_rng); | |||||
#undef cb | |||||
} | } | ||||
TEST_F(CUDA, REMAP_NCHW_INT) { | TEST_F(CUDA, REMAP_NCHW_INT) { | ||||
@@ -87,6 +103,22 @@ TEST_F(CUDA, REMAP_NHWC_FLOAT) { | |||||
cb(dtype::Float32(), float_rng); | cb(dtype::Float32(), float_rng); | ||||
cb(dtype::Float16(), float_rng); | cb(dtype::Float16(), float_rng); | ||||
#undef cb | #undef cb | ||||
#define cb(data_type, data_rng) \ | |||||
for (auto arg : args) { \ | |||||
UniformFloatRNG map_rng( \ | |||||
-2, std::max(arg.map_xy.shape[2], arg.map_xy.shape[1]) + 2); \ | |||||
checker.set_dtype(0, data_type) \ | |||||
.set_dtype(1, dtype::Float32()) \ | |||||
.set_dtype(2, data_type) \ | |||||
.set_rng(0, &data_rng) \ | |||||
.set_rng(1, &map_rng) \ | |||||
.set_rng(2, &data_rng) \ | |||||
.set_param(arg.param) \ | |||||
.set_epsilon(1e-2) \ | |||||
.execs({arg.src, arg.map_xy, arg.dst}); \ | |||||
} | |||||
cb(dtype::BFloat16(), float_rng); | |||||
#undef cb | |||||
} | } | ||||
TEST_F(CUDA, REMAP_NHWC_INT) { | TEST_F(CUDA, REMAP_NHWC_INT) { | ||||
@@ -114,6 +146,85 @@ TEST_F(CUDA, REMAP_NHWC_INT) { | |||||
#undef cb | #undef cb | ||||
} | } | ||||
TEST_F(CUDA, REMAP_BACKWARD_DATA) { | |||||
Checker<RemapBackwardData> checker(handle_cuda()); | |||||
std::vector<TestArg> args = get_nchw_args(); | |||||
UniformFloatRNG float_rng(0, 255); | |||||
#define cb(data_type, data_rng) \ | |||||
for (auto arg : args) { \ | |||||
UniformFloatRNG map_rng( \ | |||||
-2, std::max(arg.map_xy.shape[2], arg.map_xy.shape[1]) + 2); \ | |||||
checker.set_dtype(1, data_type) \ | |||||
.set_dtype(0, dtype::Float32()) \ | |||||
.set_dtype(2, data_type) \ | |||||
.set_rng(1, &data_rng) \ | |||||
.set_rng(0, &map_rng) \ | |||||
.set_rng(2, &data_rng) \ | |||||
.set_param(arg.param) \ | |||||
.execs({arg.map_xy, arg.dst, arg.src}); \ | |||||
} | |||||
cb(dtype::Float32(), float_rng); | |||||
#undef cb | |||||
#define cb(data_type, data_rng) \ | |||||
for (auto arg : args) { \ | |||||
UniformFloatRNG map_rng( \ | |||||
-2, std::max(arg.map_xy.shape[2], arg.map_xy.shape[1]) + 2); \ | |||||
checker.set_dtype(1, data_type) \ | |||||
.set_dtype(0, dtype::Float32()) \ | |||||
.set_dtype(2, data_type) \ | |||||
.set_rng(1, &data_rng) \ | |||||
.set_rng(0, &map_rng) \ | |||||
.set_rng(2, &data_rng) \ | |||||
.set_param(arg.param) \ | |||||
.set_epsilon(1e-1) \ | |||||
.execs({arg.map_xy, arg.dst, arg.src}); \ | |||||
} | |||||
cb(dtype::BFloat16(), float_rng); | |||||
#undef cb | |||||
} | |||||
TEST_F(CUDA, REMAP_BACKWARD_MAT) { | |||||
Checker<RemapBackwardMat> checker(handle_cuda()); | |||||
std::vector<TestArg> args = get_nchw_args(); | |||||
UniformFloatRNG float_rng(0, 255); | |||||
#define cb(data_type, data_rng) \ | |||||
for (auto arg : args) { \ | |||||
UniformFloatRNG map_rng( \ | |||||
-2, std::max(arg.map_xy.shape[2], arg.map_xy.shape[1]) + 2); \ | |||||
checker.set_dtype(0, data_type) \ | |||||
.set_dtype(1, dtype::Float32()) \ | |||||
.set_dtype(2, data_type) \ | |||||
.set_dtype(3, dtype::Float32()) \ | |||||
.set_rng(0, &data_rng) \ | |||||
.set_rng(1, &map_rng) \ | |||||
.set_rng(2, &data_rng) \ | |||||
.set_rng(3, &map_rng) \ | |||||
.set_param(arg.param) \ | |||||
.set_epsilon(2e-2) \ | |||||
.execs({arg.src, arg.map_xy, arg.dst, arg.map_xy}); \ | |||||
} | |||||
cb(dtype::Float32(), float_rng); | |||||
#undef cb | |||||
#define cb(data_type, data_rng) \ | |||||
for (auto arg : args) { \ | |||||
UniformFloatRNG map_rng( \ | |||||
-2, std::max(arg.map_xy.shape[2], arg.map_xy.shape[1]) + 2); \ | |||||
checker.set_dtype(0, data_type) \ | |||||
.set_dtype(1, dtype::Float32()) \ | |||||
.set_dtype(2, data_type) \ | |||||
.set_dtype(3, dtype::Float32()) \ | |||||
.set_rng(0, &data_rng) \ | |||||
.set_rng(1, &map_rng) \ | |||||
.set_rng(2, &data_rng) \ | |||||
.set_rng(3, &map_rng) \ | |||||
.set_param(arg.param) \ | |||||
.set_epsilon(1e-1) \ | |||||
.execs({arg.src, arg.map_xy, arg.dst, arg.map_xy}); \ | |||||
} | |||||
cb(dtype::BFloat16(), float_rng); | |||||
#undef cb | |||||
} | |||||
#if MEGDNN_WITH_BENCHMARK | #if MEGDNN_WITH_BENCHMARK | ||||
TEST_F(CUDA, BENCHMARK_REMAP) { | TEST_F(CUDA, BENCHMARK_REMAP) { | ||||
@@ -144,13 +255,31 @@ TEST_F(CUDA, BENCHMARK_REMAP) { | |||||
.execs(shapes); | .execs(shapes); | ||||
auto t2 = benchmarker_cuda.set_display(false).set_param(param).execs( | auto t2 = benchmarker_cuda.set_display(false).set_param(param).execs( | ||||
shapes); | shapes); | ||||
int size = 0; | |||||
if (dtype == dtype::Float32{}) { | |||||
size = sizeof(float); | |||||
printf("float32: "); | |||||
} else if (dtype == dtype::Float16{}) { | |||||
size = sizeof(dt_float16); | |||||
printf("float16: "); | |||||
} else if (dtype == dtype::Int8{}) { | |||||
size = sizeof(dt_int8); | |||||
printf("int8: "); | |||||
} else if (dtype == dtype::Uint8{}) { | |||||
size = sizeof(dt_uint8); | |||||
printf("uint8: "); | |||||
} | |||||
const TensorShape map_xy = shapes[1]; | |||||
const TensorShape dst_layout = shapes[2]; | const TensorShape dst_layout = shapes[2]; | ||||
float calc_amount = dst_layout.total_nr_elems(); | |||||
printf("naive={%.3fms, %.3fMflops}, " | |||||
"cuda={%.3fms, %.3fMflops}\n", | |||||
t1 / RUN, calc_amount / (t1 / RUN * 1000), t2, | |||||
calc_amount / (t2 * 1000)); | |||||
float calc_amount = (dst_layout.total_nr_elems() * (4.f + 1.f) * size + | |||||
map_xy.total_nr_elems() * sizeof(float)) / | |||||
(1024 * 1024 * 1024); | |||||
printf("naive={%.3fms, %.3fGBPS}, " | |||||
"cuda={%.3fms, %.3fGBPS}\n", | |||||
t1 / RUN, calc_amount / (t1 / RUN) * 1e3, t2, | |||||
calc_amount / t2 * 1e3); | |||||
}; | }; | ||||
Param param; | Param param; | ||||
param.imode = param::Remap::InterpolationMode::LINEAR; | param.imode = param::Remap::InterpolationMode::LINEAR; | ||||
@@ -84,6 +84,7 @@ from .nn import ( | |||||
max_pool2d, | max_pool2d, | ||||
one_hot, | one_hot, | ||||
prelu, | prelu, | ||||
remap, | |||||
roi_align, | roi_align, | ||||
roi_pooling, | roi_pooling, | ||||
softmax, | softmax, | ||||
@@ -706,6 +706,61 @@ def warp_perspective( | |||||
@wrap_io_tensor | @wrap_io_tensor | ||||
def remap( | |||||
inp: Tensor, | |||||
map_xy: Tensor, | |||||
border_mode: str = "REPLICATE", | |||||
scalar: float = 0.0, | |||||
interp_mode: str = "LINEAR", | |||||
) -> Tensor: | |||||
r""" | |||||
Applies remap transformation to batched 2D images. | |||||
The input images are transformed to the output images by the tensor map_xy. | |||||
The output's H and W are same as map_xy's H and W. | |||||
:param inp: input image | |||||
:param map_xy: (batch, oh, ow, 2) transformation matrix | |||||
:param border_mode: pixel extrapolation method. Default: ``"REPLICATE"`` | |||||
:param scalar: value used in case of a constant border. Default: ``0`` | |||||
:param interp_mode: interpolation methods. Default: ``"LINEAR"`` | |||||
Examples: | |||||
.. testcode:: | |||||
import numpy as np | |||||
from megengine import tensor | |||||
import megengine.functional as F | |||||
inp_shape = (1, 1, 4, 4) | |||||
inp = tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||||
map_xy_shape = (1, 2, 2, 2) | |||||
map_xy = tensor(np.array([[[1., 0.],[0., 1.]], | |||||
[[0., 1.],[0., 1.]]], | |||||
dtype=np.float32).reshape(map_xy_shape)) | |||||
out = F.remap(inp, map_xy) | |||||
print(out.numpy()) | |||||
Outputs: | |||||
.. testoutput:: | |||||
[[[[1. 4.] | |||||
[4. 4.]]]] | |||||
""" | |||||
return mgb.opr.remap( | |||||
inp, | |||||
map_xy, | |||||
border_type=border_mode, | |||||
scalar=scalar, | |||||
imode=interp_mode, | |||||
format="NCHW", | |||||
) | |||||
@wrap_io_tensor | |||||
def eye( | def eye( | ||||
n: int, | n: int, | ||||
m: Optional[int] = None, | m: Optional[int] = None, | ||||
@@ -443,4 +443,29 @@ void RemapForward::init_output_dtype() { | |||||
output(0)->dtype(input(0)->dtype()); | output(0)->dtype(input(0)->dtype()); | ||||
} | } | ||||
#ifdef MGB_ENABLE_GRAD | |||||
MGB_IMPL_OPR_GRAD(RemapForward) { | |||||
mgb_assert(opr.input().size() == 2); | |||||
if (wrt_idx == 0) { | |||||
SymbolVar grad = | |||||
RemapBackwardData::make(opr.input(1), out_grad[0], | |||||
opr.input(0), opr.param()); | |||||
return grad.node(); | |||||
} else if (wrt_idx == 1) { | |||||
SymbolVar grad = | |||||
RemapBackwardMat::make(opr.input(0), opr.input(1), | |||||
out_grad[0], opr.param()); | |||||
return grad.node(); | |||||
} else | |||||
return InvalidGrad::make(opr, wrt_idx); | |||||
} | |||||
#endif | |||||
/* ====================== RemapBackward ====================== */ | |||||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(RemapBackwardData); | |||||
MEGDNN_OPR_INIT3(RemapBackwardData, "remap_bwd_data", 2, false); | |||||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(RemapBackwardMat); | |||||
MEGDNN_OPR_INIT3(RemapBackwardMat, "remap_bwd_mat", 1, true); | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -97,6 +97,8 @@ namespace opr { | |||||
MGB_SEREG_OPR(ResizeBackward, 2); | MGB_SEREG_OPR(ResizeBackward, 2); | ||||
MGB_SEREG_OPR(Remap, 2); | MGB_SEREG_OPR(Remap, 2); | ||||
MGB_SEREG_OPR(RemapBackwardData, 3); | |||||
MGB_SEREG_OPR(RemapBackwardMat, 3); | |||||
//! current warp affine version | //! current warp affine version | ||||
using WarpAffineV1 = opr::WarpAffine; | using WarpAffineV1 = opr::WarpAffine; | ||||
@@ -74,7 +74,7 @@ size_t get_workspace_size_bytes( | |||||
const TensorShapeArray& output_shapes) const override; | const TensorShapeArray& output_shapes) const override; | ||||
void record_execute_deps(ExecDependencyArray& deps) override; | void record_execute_deps(ExecDependencyArray& deps) override; | ||||
}; // namespace opr | |||||
}; | |||||
using WarpPerspective = WarpPerspectiveForward; | using WarpPerspective = WarpPerspectiveForward; | ||||
MGB_DEFINE_OPR_CLASS( | MGB_DEFINE_OPR_CLASS( | ||||
@@ -98,7 +98,7 @@ static SymbolVar make(SymbolVar mat, SymbolVar mat_idx, SymbolVar out_diff, | |||||
const OperatorNodeConfig& config = {}); | const OperatorNodeConfig& config = {}); | ||||
void scn_do_execute() override; | void scn_do_execute() override; | ||||
}; // namespace mgb | |||||
}; | |||||
MGB_DEFINE_OPR_CLASS( | MGB_DEFINE_OPR_CLASS( | ||||
WarpPerspectiveBackwardMat, | WarpPerspectiveBackwardMat, | ||||
@@ -119,8 +119,7 @@ static SymbolVar make(SymbolVar src, SymbolVar mat, SymbolVar mat_idx, | |||||
const OperatorNodeConfig& config = {}); | const OperatorNodeConfig& config = {}); | ||||
void scn_do_execute() override; | void scn_do_execute() override; | ||||
} | |||||
; | |||||
}; | |||||
/* ============================= shape infer ============================== */ | /* ============================= shape infer ============================== */ | ||||
//! param: src, dst | //! param: src, dst | ||||
@@ -164,8 +163,7 @@ size_t get_workspace_size_bytes( | |||||
const TensorShapeArray& input_shapes, | const TensorShapeArray& input_shapes, | ||||
const TensorShapeArray& output_shapes) const override; | const TensorShapeArray& output_shapes) const override; | ||||
void record_execute_deps(ExecDependencyArray& deps) override; | void record_execute_deps(ExecDependencyArray& deps) override; | ||||
} | |||||
; | |||||
}; | |||||
using Resize = ResizeForward; | using Resize = ResizeForward; | ||||
MGB_DEFINE_OPR_CLASS(ResizeBackward, | MGB_DEFINE_OPR_CLASS(ResizeBackward, | ||||
@@ -177,8 +175,7 @@ ResizeBackward(VarNode* out_diff, VarNode* in_for_shape, const Param& param, | |||||
static SymbolVar make(SymbolVar out_diff, SymbolVar in_for_shape, | static SymbolVar make(SymbolVar out_diff, SymbolVar in_for_shape, | ||||
const Param& param = {}, | const Param& param = {}, | ||||
const OperatorNodeConfig& config = {}); | const OperatorNodeConfig& config = {}); | ||||
} | |||||
; | |||||
}; | |||||
MGB_DEFINE_OPR_CLASS(RemapForward, | MGB_DEFINE_OPR_CLASS(RemapForward, | ||||
intl::MegDNNOprWrapperFwd<megdnn::RemapForward>) // { | intl::MegDNNOprWrapperFwd<megdnn::RemapForward>) // { | ||||
@@ -192,10 +189,31 @@ static SymbolVar make(SymbolVar in_tensor, SymbolVar map, | |||||
private: | private: | ||||
void init_output_dtype() override; | void init_output_dtype() override; | ||||
} | |||||
; | |||||
}; | |||||
using Remap = RemapForward; | using Remap = RemapForward; | ||||
MGB_DEFINE_OPR_CLASS(RemapBackwardData, | |||||
intl::MegDNNOprWrapperBwd<megdnn::RemapBackwardData>) // { | |||||
public: | |||||
RemapBackwardData(VarNode *map, VarNode *out_diff, | |||||
VarNode *in_for_shape, const Param ¶m, | |||||
const OperatorNodeConfig &config); | |||||
static SymbolVar make(SymbolVar map, SymbolVar out_diff, | |||||
SymbolVar in_for_shape, const Param ¶m = {}, | |||||
const OperatorNodeConfig &config = {}); | |||||
}; | |||||
MGB_DEFINE_OPR_CLASS(RemapBackwardMat, | |||||
intl::MegDNNOprWrapperBwd<megdnn::RemapBackwardMat>) // { | |||||
public: | |||||
RemapBackwardMat(VarNode *src, VarNode *map, VarNode *out_diff, | |||||
const Param ¶m, const OperatorNodeConfig &config); | |||||
static SymbolVar make(SymbolVar src, SymbolVar map, SymbolVar out_diff, | |||||
const Param ¶m = {}, const OperatorNodeConfig &config = {}); | |||||
}; | |||||
/*! | /*! | ||||
* \brief apply affine transformation to batched 2D images | * \brief apply affine transformation to batched 2D images | ||||
* | * | ||||
@@ -238,8 +256,7 @@ size_t get_workspace_size_bytes( | |||||
const TensorShapeArray& input_shapes, | const TensorShapeArray& input_shapes, | ||||
const TensorShapeArray& output_shapes) const override; | const TensorShapeArray& output_shapes) const override; | ||||
void record_execute_deps(ExecDependencyArray& deps) override; | void record_execute_deps(ExecDependencyArray& deps) override; | ||||
} | |||||
; | |||||
}; | |||||
using WarpAffine = WarpAffineForward; | using WarpAffine = WarpAffineForward; | ||||
} // opr | } // opr | ||||
@@ -640,11 +640,11 @@ TEST(TestOprImgproc, WarpAffineForward) { | |||||
} | } | ||||
TEST(TestOprImgproc, Remap_NCHW) { | TEST(TestOprImgproc, Remap_NCHW) { | ||||
constexpr size_t N = 2, C = 8; | |||||
constexpr size_t N = 2, C = 8, OH = 10, OW = 10; | |||||
opr::Remap::Param param; | opr::Remap::Param param; | ||||
using Checker = AutoOprChecker<2, 1>; | using Checker = AutoOprChecker<2, 1>; | ||||
TensorShape out_shp{N, C, 10, 10}; | |||||
TensorShape out_shp{N, C, OH, OW}; | |||||
param.format = opr::Remap::Param::Format::NCHW; | param.format = opr::Remap::Param::Format::NCHW; | ||||
auto make_graph = [&](const Checker::SymInpArray &inputs) -> | auto make_graph = [&](const Checker::SymInpArray &inputs) -> | ||||
Checker::SymOutArray { | Checker::SymOutArray { | ||||
@@ -657,12 +657,34 @@ TEST(TestOprImgproc, Remap_NCHW) { | |||||
opr->exec(inp[0]->as_megdnn(), inp[1]->as_megdnn(), dest[0].as_megdnn(), {}); | opr->exec(inp[0]->as_megdnn(), inp[1]->as_megdnn(), dest[0].as_megdnn(), {}); | ||||
}; | }; | ||||
std::mt19937 rng(next_rand_seed()); | |||||
auto rand_real = [&](double lo, double hi) { | |||||
auto real = rng() / (std::mt19937::max() + 1.0) * (hi - lo) + lo; | |||||
if(std::abs(std::round(real) - real) <= 1e-2) | |||||
return real + 1e-1; | |||||
return real; | |||||
}; | |||||
auto rand_real2 = [&](double range) { | |||||
return rand_real(-range, range); | |||||
}; | |||||
auto gen_mat = [&](HostTensorND& mat) { | |||||
auto ptr = mat.ptr<float>(); | |||||
for (size_t i = 0; i < N; ++ i) { | |||||
for(size_t j = 0; j < OH * OW * 2; j++) { | |||||
//! undifferentiable when map is an integer | |||||
ptr[j] = static_cast<float>(rand_real2(20)); | |||||
} | |||||
ptr += OH * OW * 2; | |||||
} | |||||
mgb_assert(ptr == mat.ptr<float>() + mat.shape().total_nr_elems()); | |||||
}; | |||||
Checker::RunOptions opt; | Checker::RunOptions opt; | ||||
Checker(make_graph, fwd, CompNode::load("cpu1")) | Checker(make_graph, fwd, CompNode::load("cpu1")) | ||||
.disable_grad_check() | |||||
.run({TensorShape{N, C, 3, 20}, TensorShape{N, 10, 10, 2}}, opt) | |||||
.run({TensorShape{N, C, 6, 5}, TensorShape{N, 10, 10, 2}}, opt) | |||||
.run({TensorShape{N, C, 20, 20}, TensorShape{N, 10, 10, 2}}, opt); | |||||
.set_input_generator(1, gen_mat) | |||||
.run({TensorShape{N, C, 3, 20}, TensorShape{N, OH, OW, 2}}, opt) | |||||
.run({TensorShape{N, C, 6, 5}, TensorShape{N, OH, OW, 2}}, opt) | |||||
.run({TensorShape{N, C, 20, 20}, TensorShape{N, OH, OW, 2}}, opt); | |||||
} | } | ||||
TEST(TestOprImgproc, Remap_NHWC) { | TEST(TestOprImgproc, Remap_NHWC) { | ||||
@@ -690,4 +712,5 @@ TEST(TestOprImgproc, Remap_NHWC) { | |||||
.run({TensorShape{N, 6, 5, C}, TensorShape{N, 10, 10, 2}}, opt) | .run({TensorShape{N, 6, 5, C}, TensorShape{N, 10, 10, 2}}, opt) | ||||
.run({TensorShape{N, 20, 20, C}, TensorShape{N, 10, 10, 2}}, opt); | .run({TensorShape{N, 20, 20, C}, TensorShape{N, 10, 10, 2}}, opt); | ||||
} | } | ||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | // vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |