GitOrigin-RevId: f3954728d1
release-1.5
@@ -7,9 +7,14 @@ | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
import json | |||
from contextlib import contextmanager | |||
import os | |||
import re | |||
from contextlib import ContextDecorator, contextmanager | |||
from functools import wraps | |||
from typing import List | |||
from weakref import WeakSet | |||
from .. import _atexit | |||
from ..core._imperative_rt.core2 import ( | |||
pop_scope, | |||
push_scope, | |||
@@ -17,9 +22,13 @@ from ..core._imperative_rt.core2 import ( | |||
stop_profile, | |||
sync, | |||
) | |||
from ..logger import get_logger | |||
_running_profiler = None | |||
_living_profilers = WeakSet() | |||
class Profiler: | |||
class Profiler(ContextDecorator): | |||
r""" | |||
Profile graph execution in imperative mode. | |||
@@ -35,9 +44,10 @@ class Profiler: | |||
from megengine.utils.profiler import Profiler | |||
# With Learnable Parameters | |||
profiler = Profiler() | |||
for iter in range(0, 10): | |||
# Only profile record of last iter would be saved | |||
with Profiler("profile"): | |||
with profiler: | |||
# your code here | |||
# Then open the profile file in chrome timeline window | |||
@@ -45,46 +55,105 @@ class Profiler: | |||
CHROME_TIMELINE = "chrome_timeline.json" | |||
COMMAND = 1 << 0 | |||
OPERATOR = 1 << 1 | |||
TENSOR_LIFETIME = 1 << 2 | |||
TENSOR_PROP = 1 << 3 | |||
SYNC = 1 << 4 | |||
SCOPE = 1 << 5 | |||
ALL = (1 << 6) - 1 | |||
valid_options = {"sample_rate": 0, "profile_device": 1, "num_tensor_watch": 10} | |||
valid_formats = {"chrome_timeline.json", "memory_flow.svg"} | |||
def __init__( | |||
self, | |||
path: str = "profile", | |||
format: str = CHROME_TIMELINE, | |||
*, | |||
topic=OPERATOR | SCOPE, | |||
align_time=True, | |||
show_operator_name=True | |||
format: str = "chrome_timeline.json", | |||
formats: List[str] = None, | |||
**kwargs | |||
) -> None: | |||
self._path = path | |||
self._format = format | |||
self._options = { | |||
"topic": int(topic), | |||
"align_time": int(align_time), | |||
"show_operator_name": int(show_operator_name), | |||
} | |||
if not formats: | |||
formats = [format] | |||
def __enter__(self): | |||
assert not isinstance(formats, str), "formats excepts list, got str" | |||
for format in formats: | |||
assert format in Profiler.valid_formats, "unsupported format {}".format( | |||
format | |||
) | |||
self._path = path | |||
self._formats = formats | |||
self._options = {} | |||
for opt, optval in Profiler.valid_options.items(): | |||
self._options[opt] = int(kwargs.pop(opt, optval)) | |||
self._pid = "<PID>" | |||
@property | |||
def path(self): | |||
if len(self._formats) == 0: | |||
format = "<FORMAT>" | |||
elif len(self._formats) == 1: | |||
format = self._formats[0] | |||
else: | |||
format = "{" + ",".join(self._formats) + "}" | |||
return self.format_path(self._path, self._pid, format) | |||
@property | |||
def directory(self): | |||
return self._path | |||
@property | |||
def formats(self): | |||
return list(self._formats) | |||
def start(self): | |||
global _running_profiler | |||
assert _running_profiler is None | |||
_running_profiler = self | |||
self._pid = os.getpid() | |||
start_profile(self._options) | |||
return self | |||
def __exit__(self, val, tp, trace): | |||
stop_profile(self._path, self._format) | |||
# dump is async, so it's necessary to sync interpreter | |||
def stop(self): | |||
global _running_profiler | |||
assert _running_profiler is self | |||
_running_profiler = None | |||
sync() | |||
self._dump_callback = stop_profile() | |||
self._pid = os.getpid() | |||
_living_profilers.add(self) | |||
def dump(self): | |||
if self._dump_callback is not None: | |||
if not os.path.exists(self._path): | |||
os.makedirs(self._path) | |||
if not os.path.isdir(self._path): | |||
get_logger().warning( | |||
"{} is not a directory, cannot write profiling results".format( | |||
self._path | |||
) | |||
) | |||
return | |||
for format in self._formats: | |||
path = self.format_path(self._path, self._pid, format) | |||
get_logger().info("process {} generating {}".format(self._pid, format)) | |||
self._dump_callback(path, format) | |||
get_logger().info("profiling results written to {}".format(path)) | |||
self._dump_callback = None | |||
_living_profilers.remove(self) | |||
def format_path(self, path, pid, format): | |||
return os.path.join(path, "{}.{}".format(pid, format)) | |||
def __enter__(self): | |||
self.start() | |||
def __exit__(self, val, tp, trace): | |||
self.stop() | |||
def __call__(self, func): | |||
def wrapper(*args, **kwargs): | |||
with self: | |||
return func(*args, **kwargs) | |||
func = super().__call__(func) | |||
func.__profiler__ = self | |||
return func | |||
return wrapper | |||
def __del__(self): | |||
self.dump() | |||
@contextmanager | |||
@@ -94,16 +163,77 @@ def scope(name): | |||
pop_scope(name) | |||
profile = Profiler | |||
def profile(*args, **kwargs): | |||
if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): | |||
return Profiler()(args[0]) | |||
return Profiler(*args, **kwargs) | |||
def merge_trace_events(directory: str): | |||
names = filter( | |||
lambda x: re.match(r"\d+\.chrome_timeline\.json", x), os.listdir(directory) | |||
) | |||
def load_trace_events(name): | |||
with open(os.path.join(directory, name), "r", encoding="utf-8") as f: | |||
return json.load(f) | |||
def find_metadata(content): | |||
if isinstance(content, dict): | |||
assert "traceEvents" in content | |||
content = content["traceEvents"] | |||
if len(content) == 0: | |||
return None | |||
assert content[0]["name"] == "Metadata" | |||
return content[0]["args"] | |||
contents = list(map(load_trace_events, names)) | |||
metadata_list = list(map(find_metadata, contents)) | |||
min_local_time = min( | |||
map(lambda x: x["localTime"], filter(lambda x: x is not None, metadata_list)) | |||
) | |||
events = [] | |||
for content, metadata in zip(contents, metadata_list): | |||
local_events = content["traceEvents"] | |||
if len(local_events) == 0: | |||
continue | |||
local_time = metadata["localTime"] | |||
time_shift = local_time - min_local_time | |||
for event in local_events: | |||
if "ts" in event: | |||
event["ts"] = int(event["ts"] + time_shift) | |||
events.extend(filter(lambda x: x["name"] != "Metadata", local_events)) | |||
result = { | |||
"traceEvents": events, | |||
} | |||
path = os.path.join(directory, "merge.chrome_timeline.json") | |||
with open(path, "w") as f: | |||
json.dump(result, f, ensure_ascii=False, separators=(",", ":")) | |||
get_logger().info("profiling results written to {}".format(path)) | |||
def is_profiling(): | |||
return _running_profiler is not None | |||
def _stop_current_profiler(): | |||
global _running_profiler | |||
if _running_profiler is not None: | |||
_running_profiler.stop() | |||
living_profilers = [*_living_profilers] | |||
for profiler in living_profilers: | |||
profiler.dump() | |||
def merge_trace_events(sources: List[str], target: str): | |||
names = list(map(lambda x: x + ".chrome_timeline.json", sources)) | |||
result = [] | |||
for name in names: | |||
with open(name, "r", encoding="utf-8") as f: | |||
content = json.load(f) | |||
for entry in content: | |||
result.append(entry) | |||
with open(target + ".chrome_timeline.json", "w") as f: | |||
json.dump(result, f, ensure_ascii=False, indent=4) | |||
_atexit(_stop_current_profiler) |
@@ -13,6 +13,7 @@ | |||
#include "megbrain/common.h" | |||
#include "megbrain/imperative/ops/utility.h" | |||
#include "megbrain/imperative/ops/backward_graph.h" | |||
#include "megbrain/imperative/profiler.h" | |||
#include "megbrain/opr/io.h" | |||
#include "./tensor.h" | |||
@@ -927,9 +928,23 @@ void init_tensor(py::module m) { | |||
m.def("pop_scope", | |||
[](std::string name) { interpreter_for_py->pop_scope(name); }); | |||
m.def("start_profile", | |||
[](std::unordered_map<std::string, int> option) { return interpreter_for_py->start_profile(option); }); | |||
[](imperative::Profiler::options_t options) { | |||
interpreter_for_py->sync(); | |||
imperative::Profiler::load_options(std::move(options)); | |||
imperative::Profiler::start_profile(); | |||
interpreter_for_py->start_profile(); | |||
}); | |||
m.def("stop_profile", | |||
[](std::string basename, std::string format) { interpreter_for_py->stop_profile(basename, format); }); | |||
[]() -> std::function<void(std::string, std::string)> { | |||
interpreter_for_py->stop_profile(); | |||
interpreter_for_py->sync(); | |||
imperative::Profiler::stop_profile(); | |||
auto results = imperative::Profiler::collect(); | |||
auto options = imperative::Profiler::get_options(); | |||
return [results=std::move(results), options=std::move(options)](std::string basename, std::string format){ | |||
imperative::Profiler::dump_profile(basename, format, results, options); | |||
}; | |||
}); | |||
m.def("sync", | |||
[]() { | |||
interpreter_for_py->sync(); | |||
@@ -8,6 +8,7 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied | |||
import json | |||
import os | |||
import tempfile | |||
import pytest | |||
@@ -28,15 +29,18 @@ class Simple(Module): | |||
def test_profiler(): | |||
profile_prefix = "pytest_profile" | |||
tempdir = tempfile.NamedTemporaryFile() | |||
profile_prefix = tempdir.name | |||
profile_format = "chrome_timeline.json" | |||
profile_path = "{}.{}".format(profile_prefix, profile_format) | |||
with Profiler(profile_prefix, format=profile_format): | |||
with scope("my_scope"): | |||
oup = Simple()(tensor([1.23], dtype="float32")) | |||
profile_path = os.path.join( | |||
profile_prefix, "{}.{}".format(os.getpid(), profile_format) | |||
) | |||
with option("enable_host_compute", 0): | |||
with Profiler(profile_prefix, format=profile_format): | |||
with scope("my_scope"): | |||
oup = Simple()(tensor([1.23], dtype="float32")) | |||
with open(profile_path, "r") as f: | |||
events = json.load(f) | |||
os.remove(profile_path) | |||
prev_ts = {} | |||
scope_count = 0 | |||
for event in events: | |||
@@ -13,11 +13,14 @@ | |||
#include <string> | |||
#include <variant> | |||
#include <unordered_set> | |||
#include "megbrain/tensor.h" | |||
#include "megbrain/imperative/op_def.h" | |||
#include "megbrain/imperative/utils/to_string.h" | |||
#include "./tensor_info.h" | |||
namespace mgb::imperative { | |||
namespace interpreter::intl { | |||
@@ -43,7 +46,7 @@ struct Put { | |||
}; | |||
struct ApplyOp { | |||
uint64_t id; | |||
uint64_t id; //used by profiler to identify unique apply | |||
std::shared_ptr<OpDef> op; | |||
SmallVector<TensorInfo*> inputs; | |||
SmallVector<TensorInfo*> outputs; | |||
@@ -143,7 +146,7 @@ struct SetOption { | |||
}; | |||
struct StartProfile { | |||
InterpreterProfiler* profiler; | |||
std::unordered_set<TensorInfo*> capture_tensors; | |||
template <typename TFunctor> | |||
void get_props(TFunctor&& functor) const {} | |||
@@ -154,14 +157,10 @@ struct StartProfile { | |||
}; | |||
struct StopProfile { | |||
std::string basename; | |||
std::string format; | |||
std::unordered_set<TensorInfo*> escape_tensors; | |||
template <typename TFunctor> | |||
void get_props(TFunctor&& functor) const { | |||
functor("basename", basename); | |||
functor("format", format); | |||
} | |||
void get_props(TFunctor&& functor) const {} | |||
const char* get_name() const { | |||
return "StopProfile"; | |||
@@ -1,75 +0,0 @@ | |||
/** | |||
* \file imperative/src/impl/interpreter/events.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "./commands.h" | |||
#include "./tensor_info.h" | |||
namespace mgb::imperative::interpreter::intl { | |||
#define DEF_EVENT(X, ...) struct X##Event __VA_ARGS__; | |||
#define DEF_DUR_EVENT(X, ...) struct X##Event __VA_ARGS__; struct X##FinishEvent __VA_ARGS__; | |||
DEF_EVENT(Command, { | |||
IdentifiedCommand icmd; | |||
}); | |||
DEF_EVENT(CommandEnqueue, :CommandEvent {}); | |||
DEF_EVENT(CommandExecute, :CommandEvent {}); | |||
DEF_EVENT(CommandFinish, :CommandEvent {}); | |||
DEF_DUR_EVENT(OpExecute, { | |||
uint64_t id; | |||
std::shared_ptr<OpDef> op; | |||
SmallVector<uint64_t> inputs; | |||
SmallVector<uint64_t> outputs; | |||
}); | |||
DEF_DUR_EVENT(KernelExecute, { | |||
uint64_t id; | |||
std::shared_ptr<OpDef> op; | |||
SmallVector<uint64_t> inputs; | |||
SmallVector<uint64_t> outputs; | |||
}); | |||
DEF_EVENT(TensorDeclare, { | |||
uint64_t tensor_id; | |||
}); | |||
DEF_EVENT(TensorProduce, { | |||
uint64_t tensor_id; | |||
TensorLayout layout; | |||
CompNode device; | |||
}); | |||
DEF_EVENT(TensorErase, { | |||
uint64_t tensor_id; | |||
}); | |||
DEF_EVENT(TensorGetProp, { | |||
uint64_t tensor_id; | |||
TensorInfo::Prop prop; | |||
std::string prop_desc; | |||
}); | |||
DEF_DUR_EVENT(TensorWaitProp, { | |||
uint64_t tensor_id; | |||
TensorInfo::Prop prop; | |||
std::string prop_desc; | |||
}); | |||
DEF_EVENT(TensorNotifyProp, { | |||
uint64_t tensor_id; | |||
TensorInfo::Prop prop; | |||
std::string prop_desc; | |||
}); | |||
DEF_DUR_EVENT(Sync, {}); | |||
DEF_DUR_EVENT(Scope, { | |||
std::string name; | |||
}); | |||
DEF_DUR_EVENT(DeviceScope, { | |||
std::string name; | |||
}); | |||
} |
@@ -20,19 +20,17 @@ | |||
#include "megbrain/imperative/ops/opr_attr.h" | |||
#include "megbrain/imperative/utils/to_string.h" | |||
#include "../event_pool.h" | |||
#include "../op_trait.h" | |||
using namespace mgb; | |||
using namespace imperative; | |||
using namespace interpreter; | |||
using namespace interpreter::intl; | |||
#define RECORD_EVENT(type, ...) \ | |||
if (state.profiler->is_profiling()) { \ | |||
state.profiler->record_host<type>(type{__VA_ARGS__}); \ | |||
} \ | |||
#define RECORD_DEVICE_EVENT(type, device, ...) \ | |||
if (state.profiler->is_profiling()) { \ | |||
state.profiler->record_device<type>((device), type{__VA_ARGS__}); \ | |||
if (Profiler::is_profiling()) { \ | |||
Profiler::record<type>(type{__VA_ARGS__}); \ | |||
} \ | |||
@@ -46,6 +44,10 @@ namespace { | |||
}; | |||
} | |||
namespace mgb { | |||
using namespace profiler; | |||
} | |||
std::thread::id ChannelImpl::get_worker_tid() { | |||
return m_worker_state.tid; | |||
} | |||
@@ -60,6 +62,7 @@ ChannelImpl::WorkerState& ChannelImpl::get_worker_state() { | |||
return m_worker_state; | |||
} | |||
// Do not use m_xxx_state directly | |||
#define m_channel_state | |||
#define m_worker_state | |||
@@ -74,10 +77,16 @@ Interpreter& Interpreter::inst() { | |||
Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { | |||
mgb_assert(check_available(), "Channel already closed"); | |||
auto& state = get_channel_state(); | |||
state.scopes.push("Put"); | |||
auto info = put_impl(value, no_cache); | |||
state.scopes.pop("Put"); | |||
return info; | |||
} | |||
TensorInfo* ChannelImpl::put_impl(const HostTensorND& value, bool no_cache) { | |||
auto info = alloc(); | |||
info->desc.layout = value.layout(); | |||
info->desc.comp_node = value.comp_node(); | |||
info->desc.value = value.proxy_to_default_cpu(); | |||
init(info, {value.layout(), value.comp_node(), value.proxy_to_default_cpu()}); | |||
info->h_value = value; | |||
m_buffer.enqueue(Put{info, value, no_cache}); | |||
if (m_async_level == 0) { | |||
@@ -90,11 +99,15 @@ Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { | |||
Handle ChannelImpl::put(const DeviceTensorND& data) { | |||
auto& state = get_channel_state(); | |||
mgb_assert(check_available(), "Channel already closed"); | |||
state.scopes.push("Put"); | |||
auto info = alloc(); | |||
info->desc.layout = data.layout(); | |||
info->desc.comp_node = data.comp_node(); | |||
RECORD_EVENT(TensorCommandEvent, info->id, TensorCommandEvent::Put); | |||
init(info, {data.layout(), data.comp_node()}); | |||
info->ptr = Tensor::make(data); | |||
RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node); | |||
RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, data.raw_ptr()); | |||
info->status = TensorInfo::Produced; | |||
RECORD_EVENT(TensorCommandFinishEvent, info->id, TensorCommandFinishEvent::Put); | |||
state.scopes.pop("Put"); | |||
return info; | |||
} | |||
@@ -148,7 +161,7 @@ void ChannelImpl::dispatch_default_cpu( | |||
SmallVector<Handle>* outputs) { | |||
auto& state = get_channel_state(); | |||
auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | |||
MGB_MARK_USED_VAR(validated); | |||
RECORD_EVENT(ShapeInferEvent, validated); | |||
SmallVector<DeviceTensorND> input_tensornds; | |||
input_tensornds.reserve(input_descs.size()); | |||
@@ -166,6 +179,7 @@ void ChannelImpl::dispatch_default_cpu( | |||
if (info->ptr && info->ptr->try_get_value()) { | |||
input_tensornds.emplace_back(info->ptr->get_value().proxy_to_default_cpu()); | |||
} else { | |||
// It's OK for SwapOut. We assign h_value before drop ptr | |||
mgb_assert(!info->h_value.empty(), "inp->h_value is empty!"); | |||
input_tensornds.emplace_back(info->h_value.proxy_to_default_cpu()); | |||
} | |||
@@ -182,8 +196,7 @@ void ChannelImpl::dispatch_default_cpu( | |||
output_tensornds.emplace_back(HostTensorND(output_cn, desc.layout).proxy_to_default_cpu()); | |||
} | |||
auto apply_id = ++m_last_id; | |||
RECORD_EVENT(OpExecuteEvent, apply_id, op, tinfo_to_tid(input_infos), {}); | |||
uint64_t op_id = Profiler::next_id(); | |||
OpDef::apply_on_device_tensornd(*op, input_tensornds, &output_tensornds); | |||
@@ -193,14 +206,20 @@ void ChannelImpl::dispatch_default_cpu( | |||
HostTensorND host_tensornd = HostTensorND::make_proxy(tensornd) | |||
.proxy_to_comp_node(output_cn); | |||
// use `put` for consistency | |||
auto info = reinterpret_cast<TensorInfo*>(put(host_tensornd, false)); | |||
auto info = reinterpret_cast<TensorInfo*>(put_impl(host_tensornd, false)); | |||
mgb_assert(info->desc.layout.ndim != 0); | |||
output_infos.push_back(info); | |||
outputs->push_back(info); | |||
} | |||
RECORD_EVENT(OpExecuteFinishEvent, apply_id, op, | |||
tinfo_to_tid(input_infos), tinfo_to_tid(output_infos)); | |||
auto op_info_getter = [op]{ | |||
std::unordered_map<std::string, std::string> op_info; | |||
auto props = OpDef::props(*op); | |||
for (auto&& [key, value]: props) { | |||
op_info[key] = value; | |||
} | |||
return op_info; | |||
}; | |||
RECORD_EVENT(OpDispatchEvent, op_id, op->trait()->name, op_info_getter, tinfo_to_tid(input_infos), tinfo_to_tid(output_infos)); | |||
} | |||
void ChannelImpl::dispatch_kernel( | |||
@@ -209,15 +228,22 @@ void ChannelImpl::dispatch_kernel( | |||
const SmallVector<LogicalTensorDesc>& input_descs, | |||
SmallVector<Handle>* outputs) { | |||
auto& state = get_channel_state(); | |||
auto& options = state.options; | |||
auto name = op->trait()->make_name(*op); | |||
state.scopes.push(name); | |||
auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | |||
RECORD_EVENT(ShapeInferEvent, validated); | |||
ApplyOp cmd{++m_last_id, std::move(op)}; | |||
ApplyOp cmd{Profiler::next_id(), std::move(op)}; | |||
cmd.inputs = std::move(input_infos); | |||
cmd.outputs.reserve(output_descs.size()); | |||
outputs->reserve(output_descs.size()); | |||
for (auto&& desc : output_descs) { | |||
for (int i = 0; i < output_descs.size(); ++i) { | |||
auto&& desc = output_descs[i]; | |||
auto info = alloc(); | |||
info->desc = desc; | |||
init(info, desc); | |||
// make sure desc's value is consistent with h_value | |||
if (!info->desc.value.empty()) { | |||
info->h_value = HostTensorND::make_proxy(desc.value) | |||
@@ -226,10 +252,19 @@ void ChannelImpl::dispatch_kernel( | |||
cmd.outputs.push_back(info); | |||
outputs->push_back(info); | |||
} | |||
auto op_info_getter = [op=cmd.op]{ | |||
std::unordered_map<std::string, std::string> op_info; | |||
auto props = OpDef::props(*op); | |||
for (auto&& [key, value]: props) { | |||
op_info[key] = value; | |||
} | |||
return op_info; | |||
}; | |||
RECORD_EVENT(OpDispatchEvent, cmd.id, cmd.op->trait()->name, op_info_getter, tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
m_buffer.enqueue(std::move(cmd)); | |||
if (!validated && state.options.async_level == 1) { | |||
if (!validated && options.async_level == 1) { | |||
sync(); | |||
} else if (state.options.async_level == 0) { | |||
} else if (options.async_level == 0) { | |||
sync(); | |||
// check device error | |||
for (auto&& oup : *outputs) { | |||
@@ -237,6 +272,7 @@ void ChannelImpl::dispatch_kernel( | |||
info->ptr->comp_node().sync(); | |||
} | |||
} | |||
state.scopes.pop(name); | |||
} | |||
SmallVector<Handle> ChannelImpl::apply_op( | |||
@@ -282,31 +318,12 @@ SmallVector<Handle> ChannelImpl::apply_op( | |||
HostTensorND ChannelImpl::get_value(Handle handle) { | |||
mgb_assert(check_available(), "Channel already closed"); | |||
auto& state = get_channel_state(); | |||
// TODO: maybe get_value should be done on host. i.e. delete GetValue | |||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
"invalid handle: %p", handle); | |||
auto info = reinterpret_cast<TensorInfo*>(handle); | |||
mgb_assert(!m_waitee); | |||
// donnot use info->value_fetched, it's unsafe | |||
mgb_assert(!info->invalid, "Invalid tensor, unable to get_value!"); | |||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
TensorPtr tensor_ptr = info->ptr; | |||
auto value_fetched = [&]() { | |||
return tensor_ptr && tensor_ptr->value_fetched(); | |||
}; | |||
if (!value_fetched()) { | |||
m_waitee = info; | |||
m_buffer.enqueue(GetValue{info}); | |||
RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::HostValue); | |||
m_cv.wait(lock, [&]() { | |||
check_worker_exc_unsafe(); | |||
tensor_ptr = info->ptr; | |||
return value_fetched(); | |||
}); | |||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::HostValue); | |||
m_waitee = nullptr; | |||
} | |||
return tensor_ptr->get_value(); | |||
return wait_tensor(info, TensorProp::HostValue)->get_value(); | |||
} | |||
TensorShape ChannelImpl::get_shape(Handle handle) { | |||
@@ -318,18 +335,7 @@ TensorShape ChannelImpl::get_shape(Handle handle) { | |||
if (info->desc.layout.ndim != 0) { | |||
return info->desc.layout; | |||
} | |||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
mgb_assert(!m_waitee); | |||
m_waitee = info; | |||
m_buffer.flush(); | |||
RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::Shape); | |||
m_cv.wait(lock, [&]() { | |||
check_worker_exc_unsafe(); | |||
return static_cast<bool>(info->ptr); | |||
}); | |||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::Shape); | |||
m_waitee = nullptr; | |||
TensorShape ret = info->ptr->layout(); | |||
TensorShape ret = wait_tensor(info, TensorProp::Shape)->layout(); | |||
mgb_assert(ret.ndim != 0); | |||
return ret; | |||
} | |||
@@ -340,7 +346,7 @@ DType ChannelImpl::get_dtype(Handle handle) { | |||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
"invalid handle: %p", handle); | |||
auto info = reinterpret_cast<TensorInfo*>(handle); | |||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorInfo::DType); | |||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::DType); | |||
auto ret = info->desc.layout.dtype; | |||
mgb_assert(ret.valid()); | |||
return ret; | |||
@@ -352,7 +358,7 @@ CompNode ChannelImpl::get_device(Handle handle) { | |||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
"invalid handle: %p", handle); | |||
auto info = reinterpret_cast<TensorInfo*>(handle); | |||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorInfo::Device); | |||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::Device); | |||
auto ret = info->desc.comp_node; | |||
mgb_assert(ret.valid()); | |||
return ret; | |||
@@ -364,28 +370,14 @@ DeviceTensorND ChannelImpl::get_dev_tensor(Handle handle) { | |||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | |||
"invalid handle: %p", handle); | |||
auto info = reinterpret_cast<TensorInfo*>(handle); | |||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
mgb_assert(!m_waitee); | |||
m_waitee = info; | |||
m_buffer.flush(); | |||
RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::DevValue); | |||
m_cv.wait(lock, [&]() { | |||
check_worker_exc_unsafe(); | |||
return static_cast<bool>(info->ptr); | |||
}); | |||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::DevValue); | |||
m_waitee = nullptr; | |||
return info->ptr->dev_tensor(); | |||
return wait_tensor(info, TensorProp::DevValue)->dev_tensor(); | |||
} | |||
void ChannelImpl::sync() { | |||
mgb_assert(check_available(), "Channel already closed"); | |||
auto& state = get_channel_state(); | |||
m_buffer.flush(); | |||
RECORD_EVENT(SyncEvent); | |||
m_worker.wait_all_task_finish(); | |||
CompNode::sync_all(); | |||
RECORD_EVENT(SyncFinishEvent); | |||
MGB_LOCK_GUARD(m_mutex); | |||
check_worker_exc_unsafe(); | |||
} | |||
@@ -419,14 +411,24 @@ void ChannelImpl::set_option(std::string name, size_t value) { | |||
TensorInfo* ChannelImpl::alloc() { | |||
auto& state = get_channel_state(); | |||
MGB_LOCK_GUARD(m_mutex); | |||
auto info = m_pool.alloc(); | |||
m_valid_handle.insert(info); | |||
info->id = m_last_id++; | |||
RECORD_EVENT(TensorDeclareEvent, info->id); | |||
auto info = [this]{ | |||
MGB_LOCK_GUARD(m_mutex); | |||
return m_pool.alloc(); | |||
}(); | |||
info->id = Profiler::next_id(); | |||
if (Profiler::is_profiling()) { | |||
info->name = state.scopes.next_tensor_name(); | |||
} | |||
return info; | |||
} | |||
void ChannelImpl::init(TensorInfo* info, LogicalTensorDesc desc) { | |||
m_valid_handle.insert(info); | |||
RECORD_EVENT(TensorDeclareEvent, info->id, info->name); | |||
info->status = TensorInfo::Allocated; | |||
info->desc = std::move(desc); | |||
} | |||
void ChannelImpl::do_drop(TensorInfo* ptr, bool user=false) { | |||
if (!ptr->producer) { | |||
@@ -439,6 +441,7 @@ void ChannelImpl::do_drop(TensorInfo* ptr, bool user=false) { | |||
return; | |||
} | |||
ptr->evict_type = EvictType::DROP; | |||
ptr->status = TensorInfo::Dropped; | |||
release_tensor(ptr); | |||
} | |||
@@ -460,7 +463,8 @@ void ChannelImpl::free(TensorInfo* ptr) { | |||
} | |||
void ChannelImpl::recursive_free(TensorInfo* ptr) { | |||
SmallVector<TensorInfo*> inps(0); | |||
RECORD_EVENT(TensorCommandEvent, ptr->id, TensorCommandEvent::RecFree); | |||
SmallVector<TensorInfo*> inps; | |||
if (ptr->producer) { | |||
for (auto i : ptr->producer->inputs) { | |||
if (i && --i->ref_cnt == 0) { | |||
@@ -474,17 +478,23 @@ void ChannelImpl::recursive_free(TensorInfo* ptr) { | |||
recursive_free(i); | |||
} | |||
} | |||
RECORD_EVENT(TensorCommandFinishEvent, ptr->id, TensorCommandFinishEvent::RecFree); | |||
} | |||
void ChannelImpl::real_free(TensorInfo* ptr) { | |||
auto& state = get_worker_state(); | |||
MGB_LOCK_GUARD(m_mutex); | |||
RECORD_EVENT(TensorEraseEvent, ptr->id); | |||
if (ptr->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | |||
m_dtr.erase_candidate(ptr); | |||
} | |||
detach_users(ptr); | |||
ptr->detach_producer(); | |||
bool has_value = ptr->ptr != nullptr; | |||
if (has_value) { | |||
RECORD_EVENT(TensorReleaseEvent, ptr->id); | |||
} | |||
RECORD_EVENT(TensorEraseEvent, ptr->id, ptr->ptr_use_count); | |||
ptr->status = TensorInfo::Deleted; | |||
m_pool.free(ptr); | |||
} | |||
@@ -496,46 +506,48 @@ ChannelImpl::~ChannelImpl() { | |||
void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr, bool notice=true) { | |||
auto& state = get_worker_state(); | |||
auto lock = std::unique_lock<std::mutex>(m_mutex, std::defer_lock); | |||
std::unique_lock<std::mutex> lock{m_mutex, std::defer_lock}; | |||
if (notice) { | |||
lock.lock(); | |||
} | |||
m_dtr.update_used_time(dest); | |||
if (notice) { | |||
RECORD_EVENT(TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node()); | |||
} | |||
dest->value_fetched = ptr->value_fetched(); | |||
RECORD_EVENT(TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node(), ptr->dev_tensor().raw_ptr()); | |||
// update tensor desc for static infer | |||
dest->desc.layout = ptr->layout(); | |||
dest->desc.comp_node = ptr->comp_node(); | |||
dest->memory = ptr->blob()->size(); | |||
dest->ptr = std::move(ptr); | |||
dest->evict_type = EvictType::NONE; | |||
dest->status = TensorInfo::Produced; | |||
if (notice && dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | |||
m_dtr.insert_candidate(dest); | |||
} | |||
if (notice && m_waitee == dest) { | |||
m_cv.notify_all(); | |||
if (notice) { | |||
notify_tensor_unsafe(dest); | |||
} | |||
} | |||
void ChannelImpl::release_tensor(TensorInfo* dest) { | |||
RECORD_EVENT(TensorReleaseEvent, dest->id); | |||
MGB_LOCK_GUARD(m_mutex); | |||
dest->ptr.reset(); | |||
} | |||
void ChannelImpl::regenerate(TensorInfo* dest) { | |||
RECORD_EVENT(TensorCommandEvent, dest->id, TensorCommandEvent::ReGen); | |||
if (dest->evict_type == EvictType::DROP) { | |||
recompute(dest->producer); | |||
} else if (dest->evict_type == EvictType::SWAP) { | |||
produce_tensor(dest, Tensor::make(dest->h_value)); | |||
} | |||
RECORD_EVENT(TensorCommandFinishEvent, dest->id, TensorCommandFinishEvent::ReGen); | |||
} | |||
void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
using namespace ranges; | |||
using namespace ranges::views; | |||
auto& state = get_worker_state(); | |||
bool profiling_device = Profiler::is_profiling() && Profiler::get_option("profile_device", 0); | |||
uint64_t apply_id = cmd.id; | |||
SmallVector<TensorPtr> tensor_inputs; | |||
if (state.options.enable_dtr_auto_drop) { | |||
@@ -545,33 +557,50 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
if (!i->ptr && i->evict_type != EvictType::NONE) { | |||
regenerate(i); | |||
} | |||
// inputs.push_back(i->ptr); | |||
m_dtr.update_used_time(i); | |||
} | |||
tensor_inputs.reserve(cmd.inputs.size()); | |||
// refcnt == 1, owners: [TensorInfo::ptr] | |||
for (auto i : cmd.inputs) { | |||
mgb_assert(i->ptr, "Invalid input tensor ptr!"); | |||
// refcnt ++, owners: [i->ptr, tensor_inputs] | |||
tensor_inputs.push_back(i->ptr); | |||
} | |||
RECORD_EVENT(OpExecuteEvent, apply_id); | |||
// Begin profiling operator | |||
SmallVector<CompNode> devices; | |||
if (state.profiler->is_profiling()) { | |||
SmallVector<std::pair<CompNode, uint64_t>> kernels; | |||
if (profiling_device) { | |||
// Collecting devices | |||
SmallVector<CompNode> devices; | |||
for (auto&& i : concat(cmd.inputs, cmd.outputs)) { | |||
if (i != nullptr && count(devices, i->desc.comp_node) == 0) { | |||
devices.push_back(i->desc.comp_node); | |||
kernels.push_back({i->desc.comp_node, Profiler::next_id()}); | |||
} | |||
} | |||
} | |||
for (auto* input: cmd.inputs) { | |||
auto input_id = input->id; | |||
RECORD_EVENT(OpInputEvent, input_id); | |||
RECORD_EVENT(TensorUsageEvent, input_id); | |||
RECORD_EVENT(OpInputFinishEvent, input_id); | |||
} | |||
// Fused by command buffer. @see: CommandBuffer::fuse_del | |||
// Now if dest is inplacable, it's refcnt would be decreased to 1 and owned by tensor_inputs after Del. | |||
// Note for exprs like 'y = x op x', inplace is unsupported yet but Del would be also fused. | |||
for (auto* del : cmd.dels) { | |||
// refcnt --, owners: [tensor_inputs] | |||
// if it's decreased to 1, would be detected at @see: proxy_graph_detail::apply_on_physical_tensor | |||
uint64_t del_id = del->id; | |||
RECORD_EVENT(OpDelEvent, del_id); | |||
free(del); | |||
RECORD_EVENT(OpDelFinishEvent, del_id); | |||
} | |||
RECORD_EVENT(OpExecuteEvent, apply_id, cmd.op, | |||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
for (auto&& device: devices) { | |||
sync_device_scope(device); | |||
RECORD_DEVICE_EVENT(KernelExecuteEvent, device, apply_id, cmd.op, | |||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
// Before wait | |||
//TODO: split operator wait and execute so that OpWait could be corrected recorded. | |||
// Before execute | |||
for (auto&& [device, kernel_id]: kernels) { | |||
RECORD_EVENT(KernelExecuteEvent, apply_id, kernel_id, Timer::record_event(device)); | |||
} | |||
if (state.options.enable_dtr_auto_drop && state.options.dtr_eviction_threshold > 0) { | |||
auto_evict(); | |||
@@ -579,20 +608,26 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
// Apply op | |||
// Here std::move is REQUIRED for removing duplicated references. | |||
auto tensor_outputs = OpDef::apply_on_physical_tensor( | |||
*cmd.op, tensor_inputs); | |||
*cmd.op, std::move(tensor_inputs)); | |||
// After execute | |||
for (auto&& device : devices) { | |||
RECORD_DEVICE_EVENT(KernelExecuteFinishEvent, device, apply_id, cmd.op, | |||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
for (auto&& [device, kernel_id]: kernels) { | |||
RECORD_EVENT(KernelExecuteFinishEvent, apply_id, kernel_id, Timer::record_event(device)); | |||
} | |||
RECORD_EVENT(OpExecuteFinishEvent, apply_id, cmd.op, | |||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||
// End profiling operator | |||
mgb_assert(tensor_outputs.size() == cmd.outputs.size()); | |||
for (size_t i = 0; i < tensor_outputs.size(); ++i) { | |||
auto output = cmd.outputs[i]; | |||
if (output != nullptr && output->ptr == nullptr) { | |||
if (output == nullptr) { | |||
RECORD_EVENT(OpOutputEvent, 0); | |||
RECORD_EVENT(OpOutputFinishEvent, 0); | |||
} else if (output->ptr != nullptr) { | |||
RECORD_EVENT(OpOutputEvent, output->id); | |||
RECORD_EVENT(OpOutputFinishEvent, output->id); | |||
} else { | |||
RECORD_EVENT(OpOutputEvent, output->id); | |||
produce_tensor(output, tensor_outputs[i]); | |||
RECORD_EVENT(OpOutputFinishEvent, output->id); | |||
sample_on_device(output->desc.comp_node, false); | |||
} | |||
} | |||
@@ -612,6 +647,8 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||
} | |||
m_dtr.unpin(cmd.inputs); | |||
} | |||
RECORD_EVENT(OpExecuteFinishEvent, apply_id); | |||
// End profiling operator | |||
} | |||
void ChannelImpl::recompute(TensorInfo::ComputePath* path) { | |||
@@ -637,6 +674,7 @@ void ChannelImpl::auto_evict() { | |||
} | |||
size_t current_memory = m_dtr.comp_node.get_used_memory(); | |||
while (current_memory > state.options.dtr_eviction_threshold) { | |||
sample_on_device(m_dtr.comp_node, false); | |||
auto best = m_dtr.find_best_tensor(); | |||
if (!best) { | |||
if (!m_dtr.warn_printed) { | |||
@@ -656,6 +694,7 @@ void ChannelImpl::auto_evict() { | |||
if (best->evict_type == EvictType::DROP) { | |||
m_dtr.update_dsu_after_evict(best); | |||
} | |||
sample_on_device(m_dtr.comp_node, false); | |||
} | |||
} | |||
@@ -665,6 +704,10 @@ void ChannelImpl::detach_users(TensorInfo* dest) { | |||
SmallVector<TensorInfo*> outputs = user->outputs; | |||
SmallVector<TensorInfo*> inputs = user->inputs; | |||
for (auto* output: outputs) { | |||
// When a `ComputePath` is detach from it's input, | |||
// there is no need to reserve it, | |||
// so we detach all output of this path | |||
// to decrease it's `ref_cnt` to zero. | |||
if (output == nullptr) { | |||
continue; | |||
} | |||
@@ -674,63 +717,79 @@ void ChannelImpl::detach_users(TensorInfo* dest) { | |||
input->ref_cnt --; | |||
} | |||
} | |||
// now user is dead | |||
} | |||
mgb_assert(dest->users.size() == 0); | |||
//dest->users.clear(); | |||
mgb_assert(dest->users.empty(), "ComputePath leaking"); | |||
} | |||
bool ChannelImpl::check_available() { | |||
return !m_closed; | |||
} | |||
void ChannelImpl::sync_device_scope(CompNode device) { | |||
auto& state = get_worker_state(); | |||
auto& prev = state.device_scope_map[device]; | |||
auto& current = state.scopes; | |||
auto push_scope = [&](std::string name) { | |||
RECORD_DEVICE_EVENT(DeviceScopeEvent, device, name); | |||
}; | |||
auto pop_scope = [&](std::string name) { | |||
RECORD_DEVICE_EVENT(DeviceScopeFinishEvent, device, name); | |||
}; | |||
size_t similarity = 0; | |||
for (size_t i = 0; i < prev.size() && i < current.size(); i++) { | |||
if (prev[i] == current[i]) { | |||
similarity++; | |||
TensorPtr ChannelImpl::wait_tensor(TensorInfo* info, TensorProp prop) { | |||
m_buffer.flush(); | |||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||
mgb_assert(!m_waitee, "duplicate waitee"); | |||
m_waitee = info; | |||
m_waitee_id = Profiler::next_id(); | |||
RECORD_EVENT(TensorWaitPropEvent, info->id, m_waitee_id, prop); | |||
bool require_host = prop == TensorProp::HostValue; | |||
bool value_fetching = false; | |||
m_cv.wait(lock, [&]() { | |||
check_worker_exc_unsafe(); | |||
if (require_host) { | |||
if (info->ptr && info->ptr->value_fetched()) { | |||
return true; | |||
} | |||
if (!value_fetching) { | |||
m_buffer.enqueue(GetValue{info}); | |||
value_fetching = true; | |||
} | |||
return false; | |||
} else { | |||
break; | |||
return static_cast<bool>(info->ptr); | |||
} | |||
}); | |||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, m_waitee_id, prop, m_waitee == nullptr); | |||
if (m_waitee != nullptr) { | |||
mgb_assert(m_waitee == info, "waitee mismatch"); | |||
m_waitee = nullptr; | |||
} | |||
while (prev.size() > similarity) { | |||
pop_scope(prev.back()); | |||
prev.pop_back(); | |||
return info->ptr; | |||
} | |||
void ChannelImpl::notify_tensor_unsafe(TensorInfo* info) { | |||
if (info == m_waitee) { | |||
m_waitee = nullptr; | |||
RECORD_EVENT(TensorNotifyPropEvent, info->id); | |||
m_cv.notify_all(); | |||
} | |||
while (prev.size() < current.size()) { | |||
prev.push_back(current[prev.size()]); | |||
push_scope(prev.back()); | |||
} | |||
std::unordered_set<TensorInfo*> ChannelImpl::collect_valid_tensors() { | |||
std::unordered_set<TensorInfo*> valid_tensors; | |||
for (auto* handle: m_valid_handle) { | |||
auto* info = reinterpret_cast<TensorInfo*>(handle); | |||
valid_tensors.insert(info); | |||
//TODO: valid_tensors.insert({info, info->status}); | |||
} | |||
return valid_tensors; | |||
} | |||
void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
using namespace ranges; | |||
using namespace ranges::views; | |||
auto& state = get_worker_state(); | |||
RECORD_EVENT(CommandExecuteEvent, icmd); | |||
bool finished = false; | |||
auto do_finish_command = [&]{ | |||
if (finished) { | |||
return; | |||
} | |||
RECORD_EVENT(CommandFinishEvent, icmd); | |||
finished = true; | |||
}; | |||
auto& options = state.options; | |||
//TODO: remove std::visit for support osx 10.12 | |||
auto cmd_visitor = [&](const auto& cmd) { | |||
using T = std::decay_t<decltype(cmd)>; | |||
if constexpr (std::is_same_v<T, Put>) { | |||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Put); | |||
auto value = cmd.no_cache ? std::make_shared<Tensor>(cmd.value) : Tensor::make(cmd.value); | |||
produce_tensor(cmd.dest, std::move(value)); | |||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::Put); | |||
sample_on_device(cmd.dest->desc.comp_node, false); | |||
} else if constexpr (std::is_same_v<T, ApplyOp>) { | |||
do_apply_op(cmd); | |||
for (size_t i = 0; i < cmd.outputs.size(); ++i) { | |||
@@ -739,7 +798,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
continue; | |||
} | |||
if (state.options.enable_dtr_auto_drop) { | |||
cmd.outputs[i]->dsu_ptr = std::make_shared<DsuNode>(output->compute_time); | |||
output->dsu_ptr = std::make_shared<DsuNode>(output->compute_time); | |||
} | |||
} | |||
if (state.options.enable_drop && state.options.record_computing_path) { | |||
@@ -765,6 +824,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
bool cross_cn = any_of(concat(cmd.inputs, cmd.outputs), is_cross_cn); | |||
bool inplace = any_of(cartesian_product(cmd.inputs, cmd.outputs), is_inplace); | |||
if (!inplace && !cross_cn && !m_dtr.is_bad_op(get_name(*cmd.op))) { | |||
TensorInfo::ComputePath::make(cmd.id, cmd.op, cmd.inputs, cmd.outputs); | |||
size_t detach_cnt = 0; | |||
@@ -780,7 +840,12 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
} | |||
} | |||
} else if constexpr (std::is_same_v<T, Del>) { | |||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Del); | |||
CompNode device = cmd.dest->desc.comp_node; | |||
uint64_t tensor_id = cmd.dest->id; | |||
free(cmd.dest); | |||
RECORD_EVENT(TensorCommandFinishEvent, tensor_id, TensorCommandFinishEvent::Del); | |||
sample_on_device(device, false); | |||
} else if constexpr (std::is_same_v<T, GetValue>) { | |||
if (!cmd.dest->ptr && cmd.dest->evict_type != EvictType::NONE) { | |||
regenerate(cmd.dest); | |||
@@ -788,50 +853,62 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
mgb_assert(cmd.dest->ptr, "Invalid tensor ptr!"); | |||
cmd.dest->ptr->fetch_value(); | |||
MGB_LOCK_GUARD(m_mutex); | |||
cmd.dest->value_fetched = true; | |||
if (m_waitee == cmd.dest) { | |||
m_cv.notify_all(); | |||
} | |||
notify_tensor_unsafe(cmd.dest); | |||
} else if constexpr (std::is_same_v<T, SwapIn>) { | |||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::SwapIn); | |||
produce_tensor(cmd.dest, Tensor::make(cmd.dest->h_value)); | |||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::SwapIn); | |||
sample_on_device(cmd.dest->desc.comp_node, false); | |||
} else if constexpr (std::is_same_v<T, SwapOut>) { | |||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::SwapOut); | |||
cmd.dest->h_value = cmd.dest->ptr->get_value(); | |||
if (cmd.dest->evict_type == EvictType::NONE) { | |||
release_tensor(cmd.dest); | |||
cmd.dest->evict_type = EvictType::SWAP; | |||
cmd.dest->status = TensorInfo::Swapped; | |||
release_tensor(cmd.dest); | |||
} | |||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::SwapOut); | |||
sample_on_device(cmd.dest->desc.comp_node, false); | |||
} else if constexpr (std::is_same_v<T, Drop>) { | |||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Drop); | |||
do_drop(cmd.dest, true); | |||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::Drop); | |||
} else if constexpr (std::is_same_v<T, SetOption>) { | |||
state.options.set_option(cmd.key, cmd.value); | |||
options.set_option(cmd.key, cmd.value); | |||
} else if constexpr (std::is_same_v<T, StartProfile>) { | |||
RECORD_EVENT(StartProfileEvent); | |||
CompNode::sync_all(); | |||
state.profiler.reset(cmd.profiler); | |||
for (auto* info: cmd.capture_tensors) { | |||
RECORD_EVENT(TensorDeclareEvent, info->id, info->name); | |||
if (info->status == TensorInfo::Produced) { | |||
// TODO: handle swap/drop | |||
RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, info->ptr->dev_tensor().raw_ptr()); | |||
} | |||
} | |||
CompNode::foreach([&](CompNode device){ | |||
if (Profiler::get_option("sample_rate", 0)) { | |||
sample_on_device(device, true); | |||
} | |||
}); | |||
RECORD_EVENT(StartProfileFinishEvent); | |||
} else if constexpr (std::is_same_v<T, StopProfile>) { | |||
for (auto&& [device, scopes]: state.device_scope_map) { | |||
MGB_MARK_USED_VAR(scopes); | |||
sync_device_scope(device); | |||
RECORD_EVENT(StopProfileEvent); | |||
for (auto* info: cmd.escape_tensors) { | |||
bool has_value = info->status == TensorInfo::Produced; | |||
if (has_value) { | |||
RECORD_EVENT(TensorReleaseEvent, info->id); | |||
} | |||
RECORD_EVENT(TensorEraseEvent, info->id); | |||
} | |||
do_finish_command(); | |||
auto profiler = std::make_unique<InterpreterProfiler>(); | |||
std::swap(profiler, state.profiler); | |||
auto records = profiler->stop(); | |||
auto worker_tid = get_worker_tid(); | |||
auto host_map = [worker_tid](std::thread::id tid) { | |||
if (tid == worker_tid) { | |||
return "worker"; | |||
} else { | |||
return "unknown"; | |||
CompNode::foreach([&](CompNode device){ | |||
if (Profiler::get_option("sample_rate", 0)) { | |||
sample_on_device(device, true); | |||
} | |||
}; | |||
}); | |||
RECORD_EVENT(StopProfileFinishEvent); | |||
} else if constexpr (std::is_same_v<T, PushScope>) { | |||
state.scopes.push_back(cmd.scope_name); | |||
do_finish_command(); | |||
RECORD_EVENT(ScopeEvent, cmd.scope_name); | |||
} else if constexpr (std::is_same_v<T, PopScope>) { | |||
mgb_assert(state.scopes.back() == cmd.scope_name, "scope name mismatch"); | |||
state.scopes.pop_back(); | |||
do_finish_command(); | |||
RECORD_EVENT(ScopeFinishEvent, cmd.scope_name); | |||
} else { | |||
static_assert(!std::is_same_v<T, T>); | |||
@@ -839,7 +916,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
}; | |||
std::visit([&](const auto& cmd){ | |||
using T = std::decay_t<decltype(cmd)>; | |||
if (!state.options.catch_worker_execption) { | |||
if (!options.catch_worker_execption) { | |||
cmd_visitor(cmd); | |||
return; | |||
} | |||
@@ -855,10 +932,12 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||
cmd.dest->invalid = true; | |||
} | |||
m_worker_exc = std::current_exception(); | |||
m_cv.notify_all(); | |||
RECORD_EVENT(WorkerExceptionEvent); | |||
if (m_waitee) { | |||
notify_tensor_unsafe(m_waitee); | |||
} | |||
} | |||
}, icmd.second); | |||
do_finish_command(); | |||
} | |||
void ChannelImpl::check_worker_exc_unsafe() { | |||
@@ -888,17 +967,17 @@ void ChannelImpl::CommandBuffer::flush() { | |||
void ChannelImpl::CommandBuffer::flush(Handle pos) { | |||
auto& state = m_owner->get_channel_state(); | |||
for (auto iter = m_commands.begin(); iter != pos; ++iter) { | |||
// mgb_log_debug("%s Flushed", to_string(*iter).c_str()); | |||
IdentifiedCommand icmd{++m_owner->m_last_id, std::move(*iter)}; | |||
RECORD_EVENT(CommandEnqueueEvent, icmd); | |||
m_owner->m_worker.add_task(std::move(icmd)); | |||
if (Profiler::is_profiling()) { | |||
mgb_log_debug("%s Flushed", to_string(*iter).c_str()); | |||
} | |||
m_owner->m_worker.add_task(IdentifiedCommand{Profiler::next_id(), std::move(*iter)}); | |||
} | |||
m_commands.erase(m_commands.begin(), pos); | |||
} | |||
auto ChannelImpl::CommandBuffer::flush_pos_for(const Command& cmd) -> Handle { | |||
auto& state = m_owner->get_channel_state(); | |||
return std::visit([&, this](const auto& cmd) { | |||
return std::visit([this, &state](const auto& cmd) { | |||
using T = std::decay_t<decltype(cmd)>; | |||
if constexpr (std::is_same_v<T, ApplyOp>) { | |||
auto* op_type = cmd.op->dyn_typeinfo(); | |||
@@ -986,46 +1065,37 @@ auto ChannelImpl::CommandBuffer::find_produce(TensorInfo* dest, Range range) | |||
}); | |||
} | |||
void ChannelImpl::start_profile(std::unordered_map<std::string, int> option) { | |||
void ChannelImpl::start_profile() { | |||
mgb_assert(check_available(), "Channel already closed"); | |||
auto& state = get_channel_state(); | |||
auto profiler_option = InterpreterProfiler::Option::from_dict(option); | |||
auto profiler = std::make_unique<InterpreterProfiler>(); | |||
profiler->set_option(profiler_option); | |||
profiler->start(InterpreterProfiler::topic_to_mask(profiler_option.topic)); | |||
std::swap(profiler, state.profiler); | |||
m_buffer.enqueue(StartProfile{state.profiler.get()}); | |||
auto capture_tensors = collect_valid_tensors(); | |||
if (capture_tensors.size() > 0) { | |||
m_buffer.enqueue(StartProfile{std::move(capture_tensors)}); | |||
} | |||
} | |||
void ChannelImpl::stop_profile(std::string basename, std::string format) { | |||
void ChannelImpl::stop_profile() { | |||
mgb_assert(check_available(), "Channel already closed"); | |||
auto& state = get_channel_state(); | |||
m_buffer.flush(); | |||
auto profiler = std::make_unique<InterpreterProfiler>(); | |||
std::swap(profiler, state.profiler); | |||
profiler.release(); | |||
m_buffer.enqueue(StopProfile{basename, format}); | |||
auto escape_tensors = collect_valid_tensors(); | |||
if (escape_tensors.size() > 0) { | |||
m_buffer.enqueue(StopProfile{std::move(escape_tensors)}); | |||
} | |||
} | |||
void ChannelImpl::push_scope(std::string name) { | |||
mgb_assert(check_available(), "Channel already closed"); | |||
auto& state = get_channel_state(); | |||
state.scopes.push(name); | |||
RECORD_EVENT(ScopeEvent, name); | |||
if (state.profiler->is_profiling()) { | |||
state.scopes.push_back(name); | |||
m_buffer.enqueue(PushScope{name}); | |||
} | |||
m_buffer.enqueue(PushScope{name}); | |||
} | |||
void ChannelImpl::pop_scope(std::string name) { | |||
mgb_assert(check_available(), "Channel already closed"); | |||
auto& state = get_channel_state(); | |||
state.scopes.pop(name); | |||
RECORD_EVENT(ScopeFinishEvent, name); | |||
if (state.profiler->is_profiling()) { | |||
mgb_assert((!state.scopes.empty()) && state.scopes.back() == name, "scope name mismatch"); | |||
state.scopes.pop_back(); | |||
m_buffer.enqueue(PopScope{name}); | |||
} | |||
m_buffer.enqueue(PopScope{name}); | |||
} | |||
void ChannelImpl::assert_in_channel() { | |||
@@ -1036,6 +1106,19 @@ void ChannelImpl::assert_in_worker() { | |||
mgb_assert(get_worker_tid() == std::this_thread::get_id(), "this method can only be called in worker thread"); | |||
} | |||
void ChannelImpl::sample_on_device(CompNode device, bool force) { | |||
if (!force) { | |||
thread_local int last_sample_id = 0; | |||
int sample_rate = Profiler::is_profiling() ? Profiler::get_option("sample_rate", 0) : 0; | |||
if (!sample_rate || ((++last_sample_id) % sample_rate != 0)) { | |||
return; | |||
} | |||
} | |||
RECORD_EVENT(SampleDeviceEvent, device); | |||
auto [total, free] = device.get_mem_status_bytes(); | |||
RECORD_EVENT(SampleDeviceFinishEvent, device, total, free); | |||
} | |||
void ChannelImpl::DynamicSublinear::pin(const SmallVector<TensorInfo*>& vec) { | |||
for (auto i : vec) { | |||
i->pin(); | |||
@@ -24,10 +24,10 @@ | |||
#include "megbrain/imperative/profiler.h" | |||
#include "./commands.h" | |||
#include "./events.h" | |||
#include "./tensor_info.h" | |||
#include "./option_manager.h" | |||
#include "./profiler.h" | |||
#include "../profiler/events.h" | |||
namespace mgb::imperative::interpreter::intl { | |||
@@ -37,7 +37,6 @@ struct InterpreterImpl : Interpreter { | |||
std::unique_ptr<Channel> create_channel() override; | |||
}; | |||
struct ChannelImpl : Interpreter::Channel { | |||
ChannelImpl(); | |||
~ChannelImpl() override; | |||
@@ -67,19 +66,27 @@ struct ChannelImpl : Interpreter::Channel { | |||
size_t get_option(std::string name) override; | |||
void set_option(std::string name, size_t value) override; | |||
void start_profile(std::unordered_map<std::string, int> option) override; | |||
void stop_profile(std::string basename, std::string format) override; | |||
void start_profile() override; | |||
void stop_profile() override; | |||
void push_scope(std::string) override; | |||
void pop_scope(std::string) override; | |||
private: | |||
struct WorkQueue; | |||
struct State; | |||
TensorInfo* alloc(); | |||
void init(TensorInfo*, LogicalTensorDesc desc); | |||
void free(TensorInfo*); | |||
void real_free(TensorInfo*); | |||
void recursive_free(TensorInfo*); | |||
void do_drop(TensorInfo*, bool); | |||
void detach_users(TensorInfo*); | |||
TensorInfo* put_impl(const HostTensorND& value, bool no_cache); | |||
TensorPtr wait_tensor(TensorInfo* info, profiler::TensorProp prop); | |||
void notify_tensor_unsafe(TensorInfo* info); | |||
void process_one_task(IdentifiedCommand&); | |||
void check_worker_exc_unsafe(); | |||
@@ -105,24 +112,31 @@ private: | |||
bool check_available(); | |||
void push_scope(std::string, State&); | |||
void pop_scope(std::string, State&); | |||
void assert_in_channel(); | |||
void assert_in_worker(); | |||
std::thread::id get_worker_tid(); | |||
void sync_device_scope(CompNode device); | |||
template <typename TCommand> | |||
void enqueue_command(TCommand&& cmd) { | |||
m_buffer.enqueue(Command{std::forward<TCommand>(cmd)}); | |||
} | |||
void sample_on_device(CompNode device, bool force); | |||
// valid => status != Deleted | |||
std::unordered_set<TensorInfo*> collect_valid_tensors(); | |||
std::mutex m_mutex; | |||
std::condition_variable m_cv; | |||
MemPool<TensorInfo> m_pool; | |||
std::unordered_set<Handle> m_valid_handle; | |||
TensorInfo* m_waitee = nullptr; | |||
uint64_t m_waitee_id = 0; | |||
std::exception_ptr m_worker_exc; | |||
std::atomic_uint64_t m_last_id = 0; | |||
std::function<void(std::string, std::string)> m_profile_dump_callback; | |||
bool m_closed = false; | |||
@@ -191,27 +205,98 @@ private: | |||
//! level 0: both sync. | |||
int m_async_level = 2; | |||
struct State { | |||
OptionManager options; | |||
std::vector<std::string> scopes; | |||
std::unique_ptr<InterpreterProfiler> profiler; | |||
struct Scope { | |||
std::string name; | |||
std::unordered_map<std::string, std::unique_ptr<Scope>> children; | |||
size_t version = 0; | |||
size_t parent_version = 0; | |||
size_t tensor_count = 0; | |||
Scope* active_child = nullptr; | |||
Scope* parent = nullptr; | |||
Scope* enter(std::string name) { | |||
auto& child = children[name]; | |||
if (!child) { | |||
child = std::make_unique<Scope>(); | |||
child->name = name; | |||
child->parent = this; | |||
} | |||
if (version != child->parent_version) { | |||
child->version = 0; | |||
child->parent_version = version; | |||
} else { | |||
child->version++; | |||
} | |||
child->tensor_count = 0; | |||
return active_child = child.get(); | |||
} | |||
State() { | |||
profiler = std::make_unique<InterpreterProfiler>(); | |||
Scope* exit(std::string name) { | |||
mgb_assert(this->name == name, "scope name mismatch"); | |||
parent->active_child = nullptr; | |||
return parent; | |||
} | |||
}; | |||
struct ChannelState: State {}; | |||
class ScopeManager { | |||
private: | |||
Scope m_root; | |||
Scope* m_current_scope = &m_root; | |||
public: | |||
class ScopeGuard{ | |||
private: | |||
ScopeManager* m_manager; | |||
std::string m_name; | |||
public: | |||
ScopeGuard(ScopeManager* manager, std::string name): m_manager{manager}, m_name{name} { | |||
m_manager->push(m_name); | |||
} | |||
~ScopeGuard() { | |||
m_manager->pop(m_name); | |||
} | |||
}; | |||
void push(std::string name) { | |||
m_current_scope = m_current_scope->enter(name); | |||
} | |||
void pop(std::string name) { | |||
m_current_scope = m_current_scope->exit(name); | |||
} | |||
std::string next_tensor_name() { | |||
std::string builder; | |||
Scope* scope = &m_root; | |||
while (true) { | |||
builder.append(scope->name); | |||
if (scope->version != 0) { | |||
builder.append(ssprintf("(%ld)", scope->version)); | |||
} | |||
if (scope != &m_root) { | |||
builder.append("."); | |||
} | |||
if (scope->active_child == nullptr) { | |||
builder.append(ssprintf(":%%%ld", scope->tensor_count++)); | |||
break; | |||
} else { | |||
scope = scope->active_child; | |||
} | |||
} | |||
return builder; | |||
} | |||
}; | |||
struct WorkerState: State { | |||
struct State { | |||
std::thread::id tid; | |||
CompNode::UnorderedMap<std::vector<std::string>> device_scope_map; | |||
OptionManager options; | |||
}; | |||
struct ChannelState: State { | |||
ScopeManager scopes; | |||
}; | |||
struct WorkerState: State {}; | |||
ChannelState m_channel_state; | |||
WorkerState m_worker_state; | |||
/*! | |||
* \brief A framework of dynamic sublienar memory optimization | |||
* | |||
@@ -327,7 +412,6 @@ private: | |||
// assert thread id when call get_xxx_state to avoid misuse | |||
ChannelState& get_channel_state(); | |||
WorkerState& get_worker_state(); | |||
}; | |||
} // namespace mgb::imperative::interpreter::intl |
@@ -1,93 +0,0 @@ | |||
/** | |||
* \file imperative/src/impl/interpreter/profiler.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain/imperative/profiler.h" | |||
#include "./commands.h" | |||
#include "./events.h" | |||
#include "./option_manager.h" | |||
namespace mgb::imperative::interpreter::intl { | |||
class InterpreterProfiler: public Profiler< | |||
CommandEnqueueEvent, CommandExecuteEvent, CommandFinishEvent, | |||
OpExecuteEvent, OpExecuteFinishEvent, | |||
KernelExecuteEvent, KernelExecuteFinishEvent, | |||
TensorDeclareEvent, TensorProduceEvent, TensorEraseEvent, | |||
TensorGetPropEvent, TensorWaitPropEvent, TensorNotifyPropEvent, TensorWaitPropFinishEvent, | |||
SyncEvent, SyncFinishEvent, | |||
ScopeEvent, ScopeFinishEvent, | |||
DeviceScopeEvent, DeviceScopeFinishEvent> { | |||
public: | |||
enum Topic { | |||
Command = 0b000001, | |||
Operator = 0b000010, | |||
TensorLifetime = 0b000100, | |||
TensorProp = 0b001000, | |||
Sync = 0b010000, | |||
Scope = 0b100000, | |||
}; | |||
struct Option { | |||
Topic topic; | |||
bool align_time; | |||
bool show_operator_name; | |||
static Option from_dict(std::unordered_map<std::string, int> dict) { | |||
Option option; | |||
option.topic = Topic(dict.at("topic")); | |||
option.align_time = bool(dict.at("align_time")); | |||
option.show_operator_name = bool(dict.at("show_operator_name")); | |||
return option; | |||
} | |||
}; | |||
Option get_option() const { | |||
return m_option; | |||
} | |||
void set_option(const Option& option) { | |||
m_option = option; | |||
} | |||
static Mask topic_to_mask(Topic topic) { | |||
Mask result; | |||
if (topic & Command) { | |||
result |= mask_of<CommandEnqueueEvent, CommandExecuteEvent, CommandFinishEvent>(); | |||
} | |||
if (topic & Operator) { | |||
result |= mask_of<OpExecuteEvent, OpExecuteFinishEvent>(); | |||
result |= mask_of<KernelExecuteEvent, KernelExecuteFinishEvent>(); | |||
} | |||
if (topic & TensorLifetime) { | |||
result |= mask_of<TensorDeclareEvent, TensorProduceEvent, TensorEraseEvent>(); | |||
} | |||
if (topic & TensorProp) { | |||
result |= mask_of<TensorGetPropEvent, TensorWaitPropEvent, TensorNotifyPropEvent, TensorWaitPropFinishEvent>(); | |||
} | |||
if (topic & Sync) { | |||
result |= mask_of<SyncEvent, SyncFinishEvent>(); | |||
} | |||
if (topic & Scope) { | |||
result |= mask_of<ScopeEvent, ScopeFinishEvent>(); | |||
result |= mask_of<DeviceScopeEvent, DeviceScopeFinishEvent>(); | |||
} | |||
return result; | |||
} | |||
private: | |||
Option m_option; | |||
}; | |||
} |
@@ -27,19 +27,19 @@ enum EvictType { | |||
/*! | |||
* \brief an identifier to specify a component of evicted tensors | |||
* | |||
* | |||
* Each component tracks the sum of the compute costs of its elements, with the | |||
* union of two components having the sum of each constituent cost. | |||
*/ | |||
struct DsuNode { | |||
DsuNode(double _t): t(_t) {} | |||
std::shared_ptr<DsuNode> parent; | |||
bool is_root() { | |||
return !bool(parent); | |||
} | |||
double t; | |||
}; | |||
@@ -47,25 +47,33 @@ struct TensorInfo; | |||
using TensorInfoPtr = std::shared_ptr<TensorInfo>; | |||
struct TensorInfo { | |||
enum Prop { | |||
Device, Shape, DType, DevValue, HostValue | |||
enum Status { | |||
InvalidStatus, Allocated, Produced, Swapped, Dropped, Deleted, | |||
}; | |||
uint64_t id; | |||
uint64_t id = -1; | |||
std::string name; | |||
// Most attrs of TensorInfo, except `ptr` and `h_value`, | |||
// were visited read and written in main thread. | |||
// Lock interpreter when visiting `ptr`. | |||
TensorPtr ptr; | |||
LogicalTensorDesc desc; | |||
double compute_time; | |||
size_t memory; | |||
double last_used_time; | |||
// FIXME: broken by drop | |||
bool value_fetched = false; | |||
bool invalid = false; | |||
bool allow_delete = false; | |||
EvictType evict_type = NONE; | |||
// Status should be only modified in worker thread | |||
Status status = InvalidStatus; | |||
// Used by HostCompute and Memory Swap. | |||
// HostCompute and Swap does not happen in one thread. | |||
// Maybe a barrier is needed. | |||
HostTensorND h_value; | |||
// reserved for auto drop | |||
@@ -74,6 +82,10 @@ struct TensorInfo { | |||
size_t ref_cnt = 0; | |||
std::shared_ptr<DsuNode> dsu_ptr; | |||
// Not reference count, inc when used as input | |||
size_t ptr_use_count = 0; | |||
// Used by `Drop` action | |||
struct ComputePath { | |||
uint64_t id; | |||
std::shared_ptr<OpDef> op; | |||
@@ -111,7 +123,7 @@ struct TensorInfo { | |||
return path; | |||
} | |||
}* producer = nullptr; | |||
double eval_func(double cost, double free_mem, double cur_time, | |||
double param_cost, double param_mem, double param_time, double param_recompute_times) { | |||
return pow(cost + 1e-3, param_cost) * pow(param_recompute_times, (double)recompute_times) | |||
@@ -126,20 +138,24 @@ struct TensorInfo { | |||
--pinned; | |||
} | |||
void detach_producer() { | |||
// returns true if producer is deleted | |||
bool detach_producer() { | |||
if (!producer) { | |||
return; | |||
return false; | |||
} | |||
auto output = std::find(producer->outputs.begin(), producer->outputs.end(), this); | |||
mgb_assert(output != producer->outputs.end()); | |||
*output = nullptr; | |||
bool deleted = false; | |||
if (producer->ref_cnt() == 0) { | |||
for (auto* input: producer->unique_inputs) { | |||
input->users.erase(std::find(input->users.begin(), input->users.end(), producer)); | |||
} | |||
delete producer; | |||
deleted = true; | |||
} | |||
producer = nullptr; | |||
return deleted; | |||
} | |||
bool size_exceeds_thd(size_t thd) { | |||
@@ -150,26 +166,4 @@ struct TensorInfo { | |||
}; | |||
} | |||
template <> | |||
struct ToStringTrait<interpreter::intl::TensorInfo::Prop>{ | |||
using TensorInfo = interpreter::intl::TensorInfo; | |||
std::string operator()(TensorInfo::Prop prop) const { | |||
switch(prop) { | |||
case TensorInfo::DType: | |||
return "dtype"; | |||
case TensorInfo::DevValue: | |||
return "dev_value"; | |||
case TensorInfo::Device: | |||
return "device"; | |||
case TensorInfo::HostValue: | |||
return "host_value"; | |||
case TensorInfo::Shape: | |||
return "shape"; | |||
default: | |||
return "unknown"; | |||
} | |||
} | |||
}; | |||
} |
@@ -22,47 +22,58 @@ | |||
#include "./event_pool.h" | |||
#include "./op_trait.h" | |||
#include "./profiler/formats.h" | |||
namespace mgb { | |||
namespace imperative { | |||
namespace { | |||
DeviceTimer::SharedEvent alloc_recorded_event(CompNode device) { | |||
auto event = EventPool::with_timer().alloc_shared(device); | |||
event->record(); | |||
return event; | |||
uint64_t Timer::get_nsecs() { | |||
using namespace std::chrono; | |||
auto finish = steady_clock::now(); | |||
auto duration = duration_cast<nanoseconds>(finish - m_start); | |||
return duration.count(); | |||
} | |||
} // namespace | |||
DeviceTimer::SharedEvent DeviceTimer::get_device_time(CompNode device) { | |||
return alloc_recorded_event(device); | |||
uint64_t Timer::get_started_at() { | |||
return m_started_at; | |||
} | |||
SmallVector<DeviceTimer::SharedEvent> DeviceTimer::get_all(SmallVector<CompNode> device_list) { | |||
SmallVector<DeviceTimer::SharedEvent> results; | |||
for (auto&& device: device_list) { | |||
results.push_back(alloc_recorded_event(device)); | |||
} | |||
return results; | |||
void Timer::reset() { | |||
using namespace std::chrono; | |||
m_start = steady_clock::now(); | |||
auto now_ns = duration_cast<nanoseconds>(std::chrono::system_clock::now().time_since_epoch()); | |||
m_started_at = now_ns.count(); | |||
} | |||
double HostTimer::get_msecs() { | |||
using namespace std::chrono; | |||
auto finish = steady_clock::now(); | |||
auto duration = duration_cast<microseconds>(finish - m_start); | |||
return (double)duration.count() / 1e3; | |||
std::shared_ptr<CompNode::Event> Timer::record_event(CompNode device) { | |||
auto event = EventPool::with_timer().alloc_shared(device); | |||
event->record(); | |||
return event; | |||
} | |||
double HostTimer::get_started_at() { | |||
return m_started_at; | |||
Profiler::options_t Profiler::sm_profile_options; | |||
std::mutex Profiler::sm_mutex; | |||
std::unordered_map<std::thread::id, Profiler*> Profiler::sm_profilers; | |||
Timer Profiler::sm_timer; | |||
std::atomic_uint64_t Profiler::sm_last_id = 0; | |||
bool Profiler::sm_profiling = false; | |||
thread_local std::unique_ptr<Profiler> Profiler::tm_profiler = std::make_unique<Profiler>(); | |||
std::atomic_size_t Profiler::sm_preferred_capacity; | |||
auto Profiler::get_thread_dict() -> thread_dict_t { | |||
MGB_LOCK_GUARD(sm_mutex); | |||
thread_dict_t thread_dict; | |||
for (auto&& [tid, profiler]: sm_profilers) { | |||
thread_dict[tid] = profiler->m_thread_name; | |||
} | |||
return thread_dict; | |||
} | |||
void HostTimer::reset() { | |||
using namespace std::chrono; | |||
m_start = steady_clock::now(); | |||
auto now_us = duration_cast<microseconds>(std::chrono::system_clock::now().time_since_epoch()); | |||
m_started_at = (double)(now_us.count()) / 1e3; | |||
void Profiler::dump_profile(std::string basename, std::string format, results_t results, options_t options) { | |||
auto thread_dict = get_thread_dict(); | |||
{ | |||
mgb_log_error("unsupported profiling format %s", format.c_str()); | |||
} | |||
} | |||
} // namespace imperative | |||
@@ -1,145 +0,0 @@ | |||
#include <string> | |||
#include <memory> | |||
#include "megbrain/utils/json.h" | |||
namespace mgb { | |||
namespace imperative { | |||
class ChromeTraceEvent { | |||
public: | |||
ChromeTraceEvent& name(std::string name) { | |||
m_name = std::move(name); | |||
return *this; | |||
} | |||
ChromeTraceEvent& tid(uint64_t tid) { | |||
m_tid = std::move(tid); | |||
return *this; | |||
} | |||
ChromeTraceEvent& cat(std::string cat) { | |||
m_cat = std::move(cat); | |||
return *this; | |||
} | |||
ChromeTraceEvent& pid(uint64_t pid) { | |||
m_pid = pid; | |||
return *this; | |||
} | |||
ChromeTraceEvent& id(uint64_t id) { | |||
m_id = id; | |||
return *this; | |||
} | |||
ChromeTraceEvent& idx(uint64_t idx) { | |||
m_idx = idx; | |||
return *this; | |||
} | |||
ChromeTraceEvent& ts(double ts) { | |||
m_ts = ts; | |||
return *this; | |||
} | |||
ChromeTraceEvent& dur(double dur) { | |||
m_dur = dur; | |||
return *this; | |||
} | |||
ChromeTraceEvent& ph(char ph) { | |||
m_ph = ph; | |||
return *this; | |||
} | |||
ChromeTraceEvent& bp(char bp) { | |||
m_bp = bp; | |||
return *this; | |||
} | |||
ChromeTraceEvent& args(std::shared_ptr<json::Object> args) { | |||
m_args = std::move(args); | |||
return *this; | |||
} | |||
ChromeTraceEvent& arg(std::string key, std::string value) { | |||
if (!m_args) { | |||
m_args = json::Object::make(); | |||
} | |||
(*m_args)[key] = json::String::make(value); | |||
return *this; | |||
} | |||
ChromeTraceEvent& arg(std::string key, double value) { | |||
if (!m_args) { | |||
m_args = json::Object::make(); | |||
} | |||
(*m_args)[key] = json::Number::make(value); | |||
return *this; | |||
} | |||
ChromeTraceEvent& arg(std::string key, std::shared_ptr<json::Value> value) { | |||
if (!m_args) { | |||
m_args = json::Object::make(); | |||
} | |||
(*m_args)[key] = value; | |||
return *this; | |||
} | |||
std::shared_ptr<json::Object> to_json() const { | |||
auto result = json::Object::make(); | |||
auto prop_str = [&](auto key, auto value) { | |||
if (value.empty()) { | |||
return; | |||
} | |||
(*result)[key] = json::String::make(value); | |||
}; | |||
auto prop_num = [&](auto key, auto value) { | |||
if (!value) { | |||
return; | |||
} | |||
(*result)[key] = json::Number::make(value.value()); | |||
}; | |||
auto prop_char = [&](auto key, auto value) { | |||
if (!value) { | |||
return; | |||
} | |||
(*result)[key] = json::String::make(std::string{} + value.value()); | |||
}; | |||
prop_str("name", m_name); | |||
prop_num("tid", m_tid); | |||
prop_str("cat", m_cat); | |||
prop_num("pid", m_pid); | |||
prop_num("id", m_id); | |||
prop_num("idx", m_idx); | |||
prop_num("ts", m_ts); | |||
prop_num("dur", m_dur); | |||
prop_char("ph", m_ph); | |||
prop_char("bp", m_bp); | |||
if (m_args) { | |||
(*result)["args"] = m_args; | |||
} | |||
return result; | |||
} | |||
private: | |||
std::string m_name; | |||
std::string m_cat; | |||
std::optional<uint64_t> m_tid; | |||
std::optional<uint64_t> m_pid; | |||
std::optional<uint64_t> m_id; | |||
std::optional<uint64_t> m_idx; | |||
std::optional<double> m_ts; | |||
std::optional<double> m_dur; | |||
std::optional<char> m_ph; | |||
std::optional<char> m_bp; | |||
std::shared_ptr<json::Object> m_args; | |||
}; | |||
class ChromeTraceEventList { | |||
public: | |||
ChromeTraceEvent& new_event() { | |||
m_content.emplace_back(); | |||
return m_content.back(); | |||
} | |||
std::shared_ptr<json::Array> to_json() const { | |||
auto result = json::Array::make(); | |||
for (auto&& event: m_content) { | |||
result->add(event.to_json()); | |||
} | |||
return result; | |||
} | |||
private: | |||
std::vector<ChromeTraceEvent> m_content; | |||
}; | |||
} // namespace imperative | |||
} // namespace mgb |
@@ -0,0 +1,186 @@ | |||
/** | |||
* \file imperative/src/impl/interpreter/events.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain/utils/small_vector.h" | |||
#include "../op_trait.h" | |||
namespace mgb::imperative::profiler { | |||
enum class TensorProp { | |||
InvalidProp, Device, Shape, DType, DevValue, HostValue, | |||
}; | |||
using OpParams = std::unordered_map<std::string, std::string>; | |||
} | |||
namespace mgb::imperative { | |||
template <> | |||
struct ToStringTrait<profiler::TensorProp>{ | |||
using TensorProp = profiler::TensorProp; | |||
std::string operator()(TensorProp prop) const { | |||
switch(prop) { | |||
case TensorProp::DType: | |||
return "dtype"; | |||
case TensorProp::DevValue: | |||
return "dev_value"; | |||
case TensorProp::Device: | |||
return "device"; | |||
case TensorProp::HostValue: | |||
return "host_value"; | |||
case TensorProp::Shape: | |||
return "shape"; | |||
default: | |||
return "unknown"; | |||
} | |||
} | |||
}; | |||
} | |||
namespace mgb::imperative::profiler { | |||
#define DEF_EVENT(X, ...) struct X##Event __VA_ARGS__; | |||
#define DEF_DUR_EVENT(X, ...) struct X##Event __VA_ARGS__; struct X##FinishEvent __VA_ARGS__; | |||
DEF_EVENT(OpDispatch, { | |||
uint64_t op_id; | |||
std::string op_name; | |||
std::function<OpParams()> op_params; | |||
SmallVector<uint64_t> inputs; | |||
SmallVector<uint64_t> outputs; | |||
}); | |||
DEF_DUR_EVENT(OpInput, { | |||
uint64_t tensor_id; | |||
TensorShape shape; | |||
}); | |||
DEF_DUR_EVENT(OpDel, { | |||
uint64_t tensor_id; | |||
TensorShape shape; | |||
}); | |||
DEF_DUR_EVENT(OpOutput, { | |||
uint64_t tensor_id; | |||
TensorShape shape; | |||
}); | |||
DEF_DUR_EVENT(OpExecute, { | |||
uint64_t op_id; | |||
}); | |||
DEF_DUR_EVENT(OpPostExecute, { | |||
uint64_t op_id; | |||
}); | |||
DEF_DUR_EVENT(KernelExecute, { | |||
uint64_t op_id; | |||
uint64_t kernel_id; | |||
std::shared_ptr<CompNode::Event> event; | |||
}); | |||
DEF_EVENT(TensorDeclare, { | |||
uint64_t tensor_id; | |||
std::string name; | |||
}); | |||
DEF_EVENT(TensorProduce, { | |||
uint64_t tensor_id; | |||
TensorLayout layout; | |||
CompNode device; | |||
void* ptr; | |||
}); | |||
DEF_EVENT(TensorUsage, { | |||
uint64_t tensor_id; | |||
}); | |||
DEF_EVENT(TensorRelease, { | |||
uint64_t tensor_id; | |||
}); | |||
DEF_EVENT(TensorErase, { | |||
uint64_t tensor_id; | |||
size_t use_count; | |||
}); | |||
DEF_EVENT(TensorGetProp, { | |||
uint64_t tensor_id; | |||
TensorProp prop; | |||
}); | |||
DEF_EVENT(TensorNotifyProp, { | |||
uint64_t tensor_id; | |||
uint64_t wait_id; | |||
TensorProp prop; | |||
}); | |||
DEF_EVENT(TensorWaitProp, { | |||
uint64_t tensor_id; | |||
uint64_t wait_id; | |||
TensorProp prop; | |||
}); | |||
DEF_EVENT(TensorWaitPropFinish, { | |||
uint64_t tensor_id; | |||
uint64_t wait_id; | |||
TensorProp prop; | |||
bool notified; | |||
}); | |||
DEF_DUR_EVENT(SampleDevice, { | |||
CompNode device; | |||
size_t total_memory; | |||
size_t free_memory; | |||
}); | |||
DEF_EVENT(WorkerException, {}); | |||
DEF_EVENT(ShapeInfer, { | |||
bool success; | |||
}); | |||
DEF_DUR_EVENT(Scope, { | |||
std::string name; | |||
}); | |||
DEF_DUR_EVENT(DeviceScope, { | |||
std::string name; | |||
std::shared_ptr<CompNode::Event> event; | |||
}); | |||
DEF_DUR_EVENT(Sync, {}); | |||
DEF_DUR_EVENT(StartProfile, { | |||
size_t capture_count; | |||
}); | |||
DEF_DUR_EVENT(StopProfile, { | |||
size_t escape_count; | |||
}); | |||
DEF_DUR_EVENT(TensorCommand, { | |||
enum Kind { | |||
Put, Del, SwapIn, SwapOut, Drop, ReGen, RecFree, GetValue | |||
}; | |||
uint64_t tensor_id; | |||
Kind kind; | |||
}); | |||
#undef DEF_EVENT | |||
#undef DEF_DUR_EVENT | |||
} |
@@ -1,5 +1,5 @@ | |||
/** | |||
* \file imperative/src/impl/interpreter/profiler.cpp | |||
* \file imperative/src/impl/interpreter/profiler.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
@@ -9,22 +9,12 @@ | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "./profiler.h" | |||
#pragma once | |||
#include <sstream> | |||
#include <cinttypes> | |||
#include <unordered_set> | |||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) | |||
#include <unistd.h> | |||
#elif defined(_WIN32) | |||
#include <process.h> | |||
#else | |||
#error Unsupported platform | |||
#endif | |||
#include "../op_trait.h" | |||
namespace mgb::imperative::interpreter::intl { | |||
#include "megbrain/imperative/profiler.h" | |||
namespace mgb::imperative::profiler { | |||
} |
@@ -6,6 +6,8 @@ | |||
#include "megbrain/tensor.h" | |||
#include "./events.h" | |||
namespace mgb::imperative::profiler { | |||
struct ProfileDeviceState { | |||
@@ -53,6 +55,7 @@ struct ProfileStaticsState { | |||
struct ProfileOperatorState { | |||
uint64_t id; | |||
std::string name; | |||
OpParams params; | |||
SmallVector<uint64_t> inputs; | |||
SmallVector<uint64_t> outputs; | |||
CompNode device; | |||
@@ -47,8 +47,8 @@ struct Interpreter { | |||
virtual size_t get_option(std::string name) = 0; | |||
virtual void set_option(std::string name, size_t value) = 0; | |||
virtual void start_profile(std::unordered_map<std::string, int> option) = 0; | |||
virtual void stop_profile(std::string basename, std::string format) = 0; | |||
virtual void start_profile() = 0; | |||
virtual void stop_profile() = 0; | |||
virtual void push_scope(std::string name) = 0; | |||
virtual void pop_scope(std::string name) = 0; | |||
@@ -17,6 +17,9 @@ | |||
#include <fstream> | |||
#include <chrono> | |||
#include <bitset> | |||
#include <deque> | |||
#include <any> | |||
#include <typeindex> | |||
#include "megbrain/comp_node.h" | |||
#include "megbrain/graph/event.h" | |||
@@ -29,165 +32,188 @@ | |||
namespace mgb { | |||
namespace imperative { | |||
class DeviceTimer { | |||
public: | |||
using SharedEvent = std::shared_ptr<CompNode::Event>; | |||
DeviceTimer() = default; | |||
SharedEvent get_device_time(CompNode device); | |||
SmallVector<SharedEvent> get_all(SmallVector<CompNode> device_list); | |||
}; | |||
class HostTimer { | |||
class Timer { | |||
public: | |||
void reset(); | |||
double get_msecs(); | |||
double get_started_at(); | |||
uint64_t get_nsecs(); | |||
uint64_t get_started_at(); | |||
static std::shared_ptr<CompNode::Event> record_event(CompNode device); | |||
private: | |||
decltype(std::chrono::steady_clock::now()) m_start; | |||
double m_started_at; | |||
uint64_t m_started_at; | |||
}; | |||
class ProfilerBase { | |||
class Profiler { | |||
public: | |||
using Host = std::thread::id; | |||
using Device = CompNode; | |||
struct HostInstant { | |||
Host tid; | |||
double time; | |||
void wait() const {} | |||
struct Record { | |||
uint64_t id; | |||
uint64_t time; //in ns | |||
std::any data; | |||
}; | |||
struct DeviceInstant { | |||
double before; | |||
std::shared_ptr<CompNode::Event> event; | |||
double after; | |||
void wait() const { | |||
event->host_wait(); | |||
} | |||
enum Status: uint8_t { | |||
Running = 0, | |||
Recording = 1, | |||
Collecting = 2, | |||
}; | |||
using ProfileCollector = std::function<void(std::thread::id, Record)>; | |||
using option_t = uint64_t; | |||
using options_t = std::unordered_map<std::string, option_t>; | |||
using result_t = std::pair<std::thread::id, Record>; | |||
using results_t = std::vector<result_t>; | |||
using thread_dict_t = std::unordered_map<std::thread::id, std::string>; | |||
private: | |||
std::thread::id m_thread_id; | |||
std::vector<Record> m_records; | |||
std::atomic<Status> m_status = Running; | |||
uint64_t m_last_time = 0; | |||
std::string m_thread_name; | |||
static options_t sm_profile_options; | |||
static std::mutex sm_mutex; | |||
static std::unordered_map<std::thread::id, Profiler*> sm_profilers; | |||
static Timer sm_timer; | |||
static std::atomic_uint64_t sm_last_id; | |||
static std::atomic_size_t sm_preferred_capacity; | |||
static bool sm_profiling; | |||
static constexpr bool sm_debug = false; | |||
thread_local static std::unique_ptr<Profiler> tm_profiler; | |||
public: | |||
Profiler() { | |||
m_thread_id = std::this_thread::get_id(); | |||
MGB_LOCK_GUARD(sm_mutex); | |||
if (sm_profilers.size() == 0) { | |||
reset(); | |||
} | |||
mgb_assert(sm_profilers.count(m_thread_id) == 0); | |||
sm_profilers[m_thread_id] = this; | |||
} | |||
~Profiler() { | |||
MGB_LOCK_GUARD(sm_mutex); | |||
mgb_assert(sm_profilers.count(m_thread_id) == 1); | |||
sm_profilers.erase(m_thread_id); | |||
} | |||
public: | |||
static Profiler& get_instance() { | |||
return *tm_profiler; | |||
} | |||
using Instant = std::variant<HostInstant, DeviceInstant>; | |||
static void reset() { | |||
mgb_assert(sm_profilers.size() == 0, "profiler already running"); | |||
sm_timer.reset(); | |||
} | |||
template <typename TEvent> | |||
struct EventRecord { | |||
Instant instant; | |||
TEvent data; | |||
static uint64_t next_id() { | |||
return sm_last_id++; | |||
} | |||
const HostInstant& host() const { | |||
return std::get<HostInstant>(instant); | |||
template <typename T, typename... TArgs> | |||
static uint64_t record(TArgs&&... args) { | |||
auto& profiler = get_instance(); | |||
auto last_time = profiler.m_last_time; | |||
if constexpr (sm_debug) { | |||
Status expected = Running; | |||
mgb_assert(profiler.m_status.compare_exchange_strong(expected, Recording)); | |||
} | |||
const DeviceInstant& device() const { | |||
return std::get<DeviceInstant>(instant); | |||
uint64_t id = next_id(); | |||
uint64_t time = sm_timer.get_nsecs(); | |||
time = std::max(time, last_time + 2000); | |||
profiler.m_last_time = time; | |||
profiler.m_records.push_back({id, time, T{std::forward<TArgs>(args)...}}); | |||
if constexpr (sm_debug) { | |||
Status expected = Recording; | |||
mgb_assert(profiler.m_status.compare_exchange_strong(expected, Running)); | |||
} | |||
return id; | |||
} | |||
void wait() const { | |||
std::visit([&](const auto& instant){ instant.wait(); }, instant); | |||
static results_t collect() { | |||
MGB_LOCK_GUARD(sm_mutex); | |||
if constexpr (sm_debug) { | |||
for (auto&& [tid, profiler]: sm_profilers) { | |||
Status expected = Running; | |||
mgb_assert(profiler->m_status.compare_exchange_strong(expected, Collecting)); | |||
} | |||
} | |||
}; | |||
protected: | |||
HostInstant record_host() { | |||
return {std::this_thread::get_id(), m_host_timer.get_msecs()}; | |||
std::vector<std::pair<std::thread::id, Record>> profile_data; | |||
for (auto&& [tid, profiler]: sm_profilers) { | |||
sm_preferred_capacity = std::max(sm_preferred_capacity.load(), profiler->m_records.size()); | |||
for (auto& record: profiler->m_records) { | |||
profile_data.push_back({tid, std::move(record)}); | |||
} | |||
profiler->m_records.clear(); | |||
profiler->m_records.reserve(sm_preferred_capacity); | |||
} | |||
std::sort(profile_data.begin(), profile_data.end(), [](auto& lhs, auto& rhs){ | |||
return lhs.second.id < rhs.second.id; | |||
}); | |||
if constexpr (sm_debug) { | |||
for (auto&& [tid, profiler]: sm_profilers) { | |||
Status expected = Collecting; | |||
mgb_assert(profiler->m_status.compare_exchange_strong(expected, Running)); | |||
} | |||
} | |||
return profile_data; | |||
} | |||
DeviceInstant record_device(Device device) { | |||
auto before = m_host_timer.get_msecs(); | |||
auto event = m_device_timer.get_device_time(device); | |||
auto after = m_host_timer.get_msecs(); | |||
return {before, event, after}; | |||
static option_t get_option(std::string key, option_t default_val) { | |||
if (!sm_profile_options.count(key)) { | |||
return default_val; | |||
} | |||
return sm_profile_options.at(key); | |||
} | |||
protected: | |||
std::atomic_int64_t m_last_id = 0; | |||
HostTimer m_host_timer; | |||
DeviceTimer m_device_timer; | |||
Spinlock m_lock; | |||
}; | |||
static void load_options(options_t options) { | |||
sm_profile_options = std::move(options); | |||
} | |||
template <typename... TEvents> | |||
class Profiler: public ProfilerBase { | |||
public: | |||
using Record = std::variant<EventRecord<TEvents>...>; | |||
using Mask = std::bitset<sizeof...(TEvents)>; | |||
static options_t get_options() { | |||
return sm_profile_options; | |||
} | |||
struct Data { | |||
std::vector<Record> records; | |||
double started_at; | |||
}; | |||
static bool is_profiling() { | |||
return sm_profiling; | |||
} | |||
template <typename TEvent, size_t index = 0> | |||
static constexpr size_t index_of() { | |||
if constexpr (index == std::variant_size_v<Record>) { | |||
return index; | |||
} else if constexpr (std::is_same_v<EventRecord<TEvent>, std::variant_alternative_t<index, Record>>) { | |||
return index; | |||
} else { | |||
return index_of<TEvent, index+1>(); | |||
} | |||
}; | |||
static void start_profile() { | |||
mgb_assert(!sm_profiling); | |||
sm_profiling = true; | |||
} | |||
template <typename... TEvents2> | |||
static Mask mask_of() { | |||
return Mask{} | (Mask{}.set(index_of<TEvents2>()) |...); | |||
static void stop_profile() { | |||
mgb_assert(sm_profiling); | |||
sm_profiling = false; | |||
} | |||
enum Status { | |||
NotStarted, Profiling, Stopped | |||
}; | |||
static thread_dict_t get_thread_dict(); | |||
static void dump_profile(std::string basename, std::string format, results_t results, options_t options); | |||
}; | |||
class ProfileDataCollector { | |||
public: | |||
template <typename TEvent, typename... TArgs> | |||
void record_host(TArgs&&... args) { | |||
MGB_LOCK_GUARD(m_lock); | |||
if (!m_event_mask.test(index_of<TEvent>())) { | |||
return; | |||
} | |||
mgb_assert(m_status != Stopped, "record after stop"); | |||
auto instant = HostInstant{std::this_thread::get_id(), m_host_timer.get_msecs()}; | |||
m_record_list.emplace_back(EventRecord<TEvent>{std::move(instant), {std::forward<TArgs>(args)...}}); | |||
template <typename T> | |||
using SubCollector = std::function<void(uint64_t, std::thread::id, uint64_t, T)>; | |||
private: | |||
std::unordered_map<std::type_index, SubCollector<std::any>> m_collectors; | |||
public: | |||
template <typename T> | |||
ProfileDataCollector& handle(SubCollector<T> collector) { | |||
auto erased = [collector](uint64_t id, std::thread::id tid, uint64_t time, std::any data){ | |||
collector(id, tid, time, std::any_cast<T>(std::move(data))); | |||
}; | |||
m_collectors[typeid(T)] = erased; | |||
return *this; | |||
} | |||
template <typename TEvent, typename... TArgs> | |||
void record_device(Device device, TArgs&&... args) { | |||
MGB_LOCK_GUARD(m_lock); | |||
if (!m_event_mask.test(index_of<TEvent>())) { | |||
void operator()(uint64_t id, std::thread::id tid, uint64_t time, std::any event) { | |||
std::type_index type = event.type(); | |||
if (m_collectors.count(type) == 0) { | |||
return; | |||
} | |||
mgb_assert(m_status != Stopped, "record after stop"); | |||
auto before = m_host_timer.get_msecs(); | |||
auto event = m_device_timer.get_device_time(device); | |||
auto after = m_host_timer.get_msecs(); | |||
auto instant = DeviceInstant{before, event, after}; | |||
m_record_list.emplace_back(EventRecord<TEvent>{std::move(instant), {std::forward<TArgs>(args)...}}); | |||
} | |||
// unsafe | |||
bool is_profiling() { | |||
return m_status == Profiling; | |||
} | |||
void start(Mask mask) { | |||
MGB_LOCK_GUARD(m_lock); | |||
mgb_assert(m_status == NotStarted, "profiler already started"); | |||
m_status = Profiling; | |||
m_event_mask = mask; | |||
m_host_timer.reset(); | |||
} | |||
Data stop() { | |||
MGB_LOCK_GUARD(m_lock); | |||
mgb_assert(m_status == Profiling, "profiler not active"); | |||
m_status = Stopped; | |||
for (auto&& record: m_record_list) { | |||
std::visit([&](const auto& record){ | |||
record.wait(); | |||
}, record); | |||
} | |||
auto records = std::move(m_record_list); | |||
return { records, m_host_timer.get_started_at() }; | |||
auto& handler = m_collectors.at(type); | |||
handler(id, tid, time, std::move(event)); | |||
} | |||
protected: | |||
std::vector<Record> m_record_list; | |||
Mask m_event_mask; | |||
std::atomic<Status> m_status = NotStarted; | |||
}; | |||
} // namespace imperative | |||