GitOrigin-RevId: f3954728d1
release-1.5
@@ -7,9 +7,14 @@ | |||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
import json | import json | ||||
from contextlib import contextmanager | |||||
import os | |||||
import re | |||||
from contextlib import ContextDecorator, contextmanager | |||||
from functools import wraps | |||||
from typing import List | from typing import List | ||||
from weakref import WeakSet | |||||
from .. import _atexit | |||||
from ..core._imperative_rt.core2 import ( | from ..core._imperative_rt.core2 import ( | ||||
pop_scope, | pop_scope, | ||||
push_scope, | push_scope, | ||||
@@ -17,9 +22,13 @@ from ..core._imperative_rt.core2 import ( | |||||
stop_profile, | stop_profile, | ||||
sync, | sync, | ||||
) | ) | ||||
from ..logger import get_logger | |||||
_running_profiler = None | |||||
_living_profilers = WeakSet() | |||||
class Profiler: | |||||
class Profiler(ContextDecorator): | |||||
r""" | r""" | ||||
Profile graph execution in imperative mode. | Profile graph execution in imperative mode. | ||||
@@ -35,9 +44,10 @@ class Profiler: | |||||
from megengine.utils.profiler import Profiler | from megengine.utils.profiler import Profiler | ||||
# With Learnable Parameters | # With Learnable Parameters | ||||
profiler = Profiler() | |||||
for iter in range(0, 10): | for iter in range(0, 10): | ||||
# Only profile record of last iter would be saved | # Only profile record of last iter would be saved | ||||
with Profiler("profile"): | |||||
with profiler: | |||||
# your code here | # your code here | ||||
# Then open the profile file in chrome timeline window | # Then open the profile file in chrome timeline window | ||||
@@ -45,46 +55,105 @@ class Profiler: | |||||
CHROME_TIMELINE = "chrome_timeline.json" | CHROME_TIMELINE = "chrome_timeline.json" | ||||
COMMAND = 1 << 0 | |||||
OPERATOR = 1 << 1 | |||||
TENSOR_LIFETIME = 1 << 2 | |||||
TENSOR_PROP = 1 << 3 | |||||
SYNC = 1 << 4 | |||||
SCOPE = 1 << 5 | |||||
ALL = (1 << 6) - 1 | |||||
valid_options = {"sample_rate": 0, "profile_device": 1, "num_tensor_watch": 10} | |||||
valid_formats = {"chrome_timeline.json", "memory_flow.svg"} | |||||
def __init__( | def __init__( | ||||
self, | self, | ||||
path: str = "profile", | path: str = "profile", | ||||
format: str = CHROME_TIMELINE, | |||||
*, | |||||
topic=OPERATOR | SCOPE, | |||||
align_time=True, | |||||
show_operator_name=True | |||||
format: str = "chrome_timeline.json", | |||||
formats: List[str] = None, | |||||
**kwargs | |||||
) -> None: | ) -> None: | ||||
self._path = path | |||||
self._format = format | |||||
self._options = { | |||||
"topic": int(topic), | |||||
"align_time": int(align_time), | |||||
"show_operator_name": int(show_operator_name), | |||||
} | |||||
if not formats: | |||||
formats = [format] | |||||
def __enter__(self): | |||||
assert not isinstance(formats, str), "formats excepts list, got str" | |||||
for format in formats: | |||||
assert format in Profiler.valid_formats, "unsupported format {}".format( | |||||
format | |||||
) | |||||
self._path = path | |||||
self._formats = formats | |||||
self._options = {} | |||||
for opt, optval in Profiler.valid_options.items(): | |||||
self._options[opt] = int(kwargs.pop(opt, optval)) | |||||
self._pid = "<PID>" | |||||
@property | |||||
def path(self): | |||||
if len(self._formats) == 0: | |||||
format = "<FORMAT>" | |||||
elif len(self._formats) == 1: | |||||
format = self._formats[0] | |||||
else: | |||||
format = "{" + ",".join(self._formats) + "}" | |||||
return self.format_path(self._path, self._pid, format) | |||||
@property | |||||
def directory(self): | |||||
return self._path | |||||
@property | |||||
def formats(self): | |||||
return list(self._formats) | |||||
def start(self): | |||||
global _running_profiler | |||||
assert _running_profiler is None | |||||
_running_profiler = self | |||||
self._pid = os.getpid() | |||||
start_profile(self._options) | start_profile(self._options) | ||||
return self | return self | ||||
def __exit__(self, val, tp, trace): | |||||
stop_profile(self._path, self._format) | |||||
# dump is async, so it's necessary to sync interpreter | |||||
def stop(self): | |||||
global _running_profiler | |||||
assert _running_profiler is self | |||||
_running_profiler = None | |||||
sync() | sync() | ||||
self._dump_callback = stop_profile() | |||||
self._pid = os.getpid() | |||||
_living_profilers.add(self) | |||||
def dump(self): | |||||
if self._dump_callback is not None: | |||||
if not os.path.exists(self._path): | |||||
os.makedirs(self._path) | |||||
if not os.path.isdir(self._path): | |||||
get_logger().warning( | |||||
"{} is not a directory, cannot write profiling results".format( | |||||
self._path | |||||
) | |||||
) | |||||
return | |||||
for format in self._formats: | |||||
path = self.format_path(self._path, self._pid, format) | |||||
get_logger().info("process {} generating {}".format(self._pid, format)) | |||||
self._dump_callback(path, format) | |||||
get_logger().info("profiling results written to {}".format(path)) | |||||
self._dump_callback = None | |||||
_living_profilers.remove(self) | |||||
def format_path(self, path, pid, format): | |||||
return os.path.join(path, "{}.{}".format(pid, format)) | |||||
def __enter__(self): | |||||
self.start() | |||||
def __exit__(self, val, tp, trace): | |||||
self.stop() | |||||
def __call__(self, func): | def __call__(self, func): | ||||
def wrapper(*args, **kwargs): | |||||
with self: | |||||
return func(*args, **kwargs) | |||||
func = super().__call__(func) | |||||
func.__profiler__ = self | |||||
return func | |||||
return wrapper | |||||
def __del__(self): | |||||
self.dump() | |||||
@contextmanager | @contextmanager | ||||
@@ -94,16 +163,77 @@ def scope(name): | |||||
pop_scope(name) | pop_scope(name) | ||||
profile = Profiler | |||||
def profile(*args, **kwargs): | |||||
if len(args) == 1 and len(kwargs) == 0 and callable(args[0]): | |||||
return Profiler()(args[0]) | |||||
return Profiler(*args, **kwargs) | |||||
def merge_trace_events(directory: str): | |||||
names = filter( | |||||
lambda x: re.match(r"\d+\.chrome_timeline\.json", x), os.listdir(directory) | |||||
) | |||||
def load_trace_events(name): | |||||
with open(os.path.join(directory, name), "r", encoding="utf-8") as f: | |||||
return json.load(f) | |||||
def find_metadata(content): | |||||
if isinstance(content, dict): | |||||
assert "traceEvents" in content | |||||
content = content["traceEvents"] | |||||
if len(content) == 0: | |||||
return None | |||||
assert content[0]["name"] == "Metadata" | |||||
return content[0]["args"] | |||||
contents = list(map(load_trace_events, names)) | |||||
metadata_list = list(map(find_metadata, contents)) | |||||
min_local_time = min( | |||||
map(lambda x: x["localTime"], filter(lambda x: x is not None, metadata_list)) | |||||
) | |||||
events = [] | |||||
for content, metadata in zip(contents, metadata_list): | |||||
local_events = content["traceEvents"] | |||||
if len(local_events) == 0: | |||||
continue | |||||
local_time = metadata["localTime"] | |||||
time_shift = local_time - min_local_time | |||||
for event in local_events: | |||||
if "ts" in event: | |||||
event["ts"] = int(event["ts"] + time_shift) | |||||
events.extend(filter(lambda x: x["name"] != "Metadata", local_events)) | |||||
result = { | |||||
"traceEvents": events, | |||||
} | |||||
path = os.path.join(directory, "merge.chrome_timeline.json") | |||||
with open(path, "w") as f: | |||||
json.dump(result, f, ensure_ascii=False, separators=(",", ":")) | |||||
get_logger().info("profiling results written to {}".format(path)) | |||||
def is_profiling(): | |||||
return _running_profiler is not None | |||||
def _stop_current_profiler(): | |||||
global _running_profiler | |||||
if _running_profiler is not None: | |||||
_running_profiler.stop() | |||||
living_profilers = [*_living_profilers] | |||||
for profiler in living_profilers: | |||||
profiler.dump() | |||||
def merge_trace_events(sources: List[str], target: str): | |||||
names = list(map(lambda x: x + ".chrome_timeline.json", sources)) | |||||
result = [] | |||||
for name in names: | |||||
with open(name, "r", encoding="utf-8") as f: | |||||
content = json.load(f) | |||||
for entry in content: | |||||
result.append(entry) | |||||
with open(target + ".chrome_timeline.json", "w") as f: | |||||
json.dump(result, f, ensure_ascii=False, indent=4) | |||||
_atexit(_stop_current_profiler) |
@@ -13,6 +13,7 @@ | |||||
#include "megbrain/common.h" | #include "megbrain/common.h" | ||||
#include "megbrain/imperative/ops/utility.h" | #include "megbrain/imperative/ops/utility.h" | ||||
#include "megbrain/imperative/ops/backward_graph.h" | #include "megbrain/imperative/ops/backward_graph.h" | ||||
#include "megbrain/imperative/profiler.h" | |||||
#include "megbrain/opr/io.h" | #include "megbrain/opr/io.h" | ||||
#include "./tensor.h" | #include "./tensor.h" | ||||
@@ -927,9 +928,23 @@ void init_tensor(py::module m) { | |||||
m.def("pop_scope", | m.def("pop_scope", | ||||
[](std::string name) { interpreter_for_py->pop_scope(name); }); | [](std::string name) { interpreter_for_py->pop_scope(name); }); | ||||
m.def("start_profile", | m.def("start_profile", | ||||
[](std::unordered_map<std::string, int> option) { return interpreter_for_py->start_profile(option); }); | |||||
[](imperative::Profiler::options_t options) { | |||||
interpreter_for_py->sync(); | |||||
imperative::Profiler::load_options(std::move(options)); | |||||
imperative::Profiler::start_profile(); | |||||
interpreter_for_py->start_profile(); | |||||
}); | |||||
m.def("stop_profile", | m.def("stop_profile", | ||||
[](std::string basename, std::string format) { interpreter_for_py->stop_profile(basename, format); }); | |||||
[]() -> std::function<void(std::string, std::string)> { | |||||
interpreter_for_py->stop_profile(); | |||||
interpreter_for_py->sync(); | |||||
imperative::Profiler::stop_profile(); | |||||
auto results = imperative::Profiler::collect(); | |||||
auto options = imperative::Profiler::get_options(); | |||||
return [results=std::move(results), options=std::move(options)](std::string basename, std::string format){ | |||||
imperative::Profiler::dump_profile(basename, format, results, options); | |||||
}; | |||||
}); | |||||
m.def("sync", | m.def("sync", | ||||
[]() { | []() { | ||||
interpreter_for_py->sync(); | interpreter_for_py->sync(); | ||||
@@ -8,6 +8,7 @@ | |||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied | ||||
import json | import json | ||||
import os | import os | ||||
import tempfile | |||||
import pytest | import pytest | ||||
@@ -28,15 +29,18 @@ class Simple(Module): | |||||
def test_profiler(): | def test_profiler(): | ||||
profile_prefix = "pytest_profile" | |||||
tempdir = tempfile.NamedTemporaryFile() | |||||
profile_prefix = tempdir.name | |||||
profile_format = "chrome_timeline.json" | profile_format = "chrome_timeline.json" | ||||
profile_path = "{}.{}".format(profile_prefix, profile_format) | |||||
with Profiler(profile_prefix, format=profile_format): | |||||
with scope("my_scope"): | |||||
oup = Simple()(tensor([1.23], dtype="float32")) | |||||
profile_path = os.path.join( | |||||
profile_prefix, "{}.{}".format(os.getpid(), profile_format) | |||||
) | |||||
with option("enable_host_compute", 0): | |||||
with Profiler(profile_prefix, format=profile_format): | |||||
with scope("my_scope"): | |||||
oup = Simple()(tensor([1.23], dtype="float32")) | |||||
with open(profile_path, "r") as f: | with open(profile_path, "r") as f: | ||||
events = json.load(f) | events = json.load(f) | ||||
os.remove(profile_path) | |||||
prev_ts = {} | prev_ts = {} | ||||
scope_count = 0 | scope_count = 0 | ||||
for event in events: | for event in events: | ||||
@@ -13,11 +13,14 @@ | |||||
#include <string> | #include <string> | ||||
#include <variant> | #include <variant> | ||||
#include <unordered_set> | |||||
#include "megbrain/tensor.h" | #include "megbrain/tensor.h" | ||||
#include "megbrain/imperative/op_def.h" | #include "megbrain/imperative/op_def.h" | ||||
#include "megbrain/imperative/utils/to_string.h" | #include "megbrain/imperative/utils/to_string.h" | ||||
#include "./tensor_info.h" | |||||
namespace mgb::imperative { | namespace mgb::imperative { | ||||
namespace interpreter::intl { | namespace interpreter::intl { | ||||
@@ -43,7 +46,7 @@ struct Put { | |||||
}; | }; | ||||
struct ApplyOp { | struct ApplyOp { | ||||
uint64_t id; | |||||
uint64_t id; //used by profiler to identify unique apply | |||||
std::shared_ptr<OpDef> op; | std::shared_ptr<OpDef> op; | ||||
SmallVector<TensorInfo*> inputs; | SmallVector<TensorInfo*> inputs; | ||||
SmallVector<TensorInfo*> outputs; | SmallVector<TensorInfo*> outputs; | ||||
@@ -143,7 +146,7 @@ struct SetOption { | |||||
}; | }; | ||||
struct StartProfile { | struct StartProfile { | ||||
InterpreterProfiler* profiler; | |||||
std::unordered_set<TensorInfo*> capture_tensors; | |||||
template <typename TFunctor> | template <typename TFunctor> | ||||
void get_props(TFunctor&& functor) const {} | void get_props(TFunctor&& functor) const {} | ||||
@@ -154,14 +157,10 @@ struct StartProfile { | |||||
}; | }; | ||||
struct StopProfile { | struct StopProfile { | ||||
std::string basename; | |||||
std::string format; | |||||
std::unordered_set<TensorInfo*> escape_tensors; | |||||
template <typename TFunctor> | template <typename TFunctor> | ||||
void get_props(TFunctor&& functor) const { | |||||
functor("basename", basename); | |||||
functor("format", format); | |||||
} | |||||
void get_props(TFunctor&& functor) const {} | |||||
const char* get_name() const { | const char* get_name() const { | ||||
return "StopProfile"; | return "StopProfile"; | ||||
@@ -1,75 +0,0 @@ | |||||
/** | |||||
* \file imperative/src/impl/interpreter/events.h | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
*/ | |||||
#pragma once | |||||
#include "./commands.h" | |||||
#include "./tensor_info.h" | |||||
namespace mgb::imperative::interpreter::intl { | |||||
#define DEF_EVENT(X, ...) struct X##Event __VA_ARGS__; | |||||
#define DEF_DUR_EVENT(X, ...) struct X##Event __VA_ARGS__; struct X##FinishEvent __VA_ARGS__; | |||||
DEF_EVENT(Command, { | |||||
IdentifiedCommand icmd; | |||||
}); | |||||
DEF_EVENT(CommandEnqueue, :CommandEvent {}); | |||||
DEF_EVENT(CommandExecute, :CommandEvent {}); | |||||
DEF_EVENT(CommandFinish, :CommandEvent {}); | |||||
DEF_DUR_EVENT(OpExecute, { | |||||
uint64_t id; | |||||
std::shared_ptr<OpDef> op; | |||||
SmallVector<uint64_t> inputs; | |||||
SmallVector<uint64_t> outputs; | |||||
}); | |||||
DEF_DUR_EVENT(KernelExecute, { | |||||
uint64_t id; | |||||
std::shared_ptr<OpDef> op; | |||||
SmallVector<uint64_t> inputs; | |||||
SmallVector<uint64_t> outputs; | |||||
}); | |||||
DEF_EVENT(TensorDeclare, { | |||||
uint64_t tensor_id; | |||||
}); | |||||
DEF_EVENT(TensorProduce, { | |||||
uint64_t tensor_id; | |||||
TensorLayout layout; | |||||
CompNode device; | |||||
}); | |||||
DEF_EVENT(TensorErase, { | |||||
uint64_t tensor_id; | |||||
}); | |||||
DEF_EVENT(TensorGetProp, { | |||||
uint64_t tensor_id; | |||||
TensorInfo::Prop prop; | |||||
std::string prop_desc; | |||||
}); | |||||
DEF_DUR_EVENT(TensorWaitProp, { | |||||
uint64_t tensor_id; | |||||
TensorInfo::Prop prop; | |||||
std::string prop_desc; | |||||
}); | |||||
DEF_EVENT(TensorNotifyProp, { | |||||
uint64_t tensor_id; | |||||
TensorInfo::Prop prop; | |||||
std::string prop_desc; | |||||
}); | |||||
DEF_DUR_EVENT(Sync, {}); | |||||
DEF_DUR_EVENT(Scope, { | |||||
std::string name; | |||||
}); | |||||
DEF_DUR_EVENT(DeviceScope, { | |||||
std::string name; | |||||
}); | |||||
} |
@@ -20,19 +20,17 @@ | |||||
#include "megbrain/imperative/ops/opr_attr.h" | #include "megbrain/imperative/ops/opr_attr.h" | ||||
#include "megbrain/imperative/utils/to_string.h" | #include "megbrain/imperative/utils/to_string.h" | ||||
#include "../event_pool.h" | |||||
#include "../op_trait.h" | |||||
using namespace mgb; | using namespace mgb; | ||||
using namespace imperative; | using namespace imperative; | ||||
using namespace interpreter; | using namespace interpreter; | ||||
using namespace interpreter::intl; | using namespace interpreter::intl; | ||||
#define RECORD_EVENT(type, ...) \ | #define RECORD_EVENT(type, ...) \ | ||||
if (state.profiler->is_profiling()) { \ | |||||
state.profiler->record_host<type>(type{__VA_ARGS__}); \ | |||||
} \ | |||||
#define RECORD_DEVICE_EVENT(type, device, ...) \ | |||||
if (state.profiler->is_profiling()) { \ | |||||
state.profiler->record_device<type>((device), type{__VA_ARGS__}); \ | |||||
if (Profiler::is_profiling()) { \ | |||||
Profiler::record<type>(type{__VA_ARGS__}); \ | |||||
} \ | } \ | ||||
@@ -46,6 +44,10 @@ namespace { | |||||
}; | }; | ||||
} | } | ||||
namespace mgb { | |||||
using namespace profiler; | |||||
} | |||||
std::thread::id ChannelImpl::get_worker_tid() { | std::thread::id ChannelImpl::get_worker_tid() { | ||||
return m_worker_state.tid; | return m_worker_state.tid; | ||||
} | } | ||||
@@ -60,6 +62,7 @@ ChannelImpl::WorkerState& ChannelImpl::get_worker_state() { | |||||
return m_worker_state; | return m_worker_state; | ||||
} | } | ||||
// Do not use m_xxx_state directly | |||||
#define m_channel_state | #define m_channel_state | ||||
#define m_worker_state | #define m_worker_state | ||||
@@ -74,10 +77,16 @@ Interpreter& Interpreter::inst() { | |||||
Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { | Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { | ||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
auto& state = get_channel_state(); | |||||
state.scopes.push("Put"); | |||||
auto info = put_impl(value, no_cache); | |||||
state.scopes.pop("Put"); | |||||
return info; | |||||
} | |||||
TensorInfo* ChannelImpl::put_impl(const HostTensorND& value, bool no_cache) { | |||||
auto info = alloc(); | auto info = alloc(); | ||||
info->desc.layout = value.layout(); | |||||
info->desc.comp_node = value.comp_node(); | |||||
info->desc.value = value.proxy_to_default_cpu(); | |||||
init(info, {value.layout(), value.comp_node(), value.proxy_to_default_cpu()}); | |||||
info->h_value = value; | info->h_value = value; | ||||
m_buffer.enqueue(Put{info, value, no_cache}); | m_buffer.enqueue(Put{info, value, no_cache}); | ||||
if (m_async_level == 0) { | if (m_async_level == 0) { | ||||
@@ -90,11 +99,15 @@ Handle ChannelImpl::put(const HostTensorND& value, bool no_cache) { | |||||
Handle ChannelImpl::put(const DeviceTensorND& data) { | Handle ChannelImpl::put(const DeviceTensorND& data) { | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
state.scopes.push("Put"); | |||||
auto info = alloc(); | auto info = alloc(); | ||||
info->desc.layout = data.layout(); | |||||
info->desc.comp_node = data.comp_node(); | |||||
RECORD_EVENT(TensorCommandEvent, info->id, TensorCommandEvent::Put); | |||||
init(info, {data.layout(), data.comp_node()}); | |||||
info->ptr = Tensor::make(data); | info->ptr = Tensor::make(data); | ||||
RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node); | |||||
RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, data.raw_ptr()); | |||||
info->status = TensorInfo::Produced; | |||||
RECORD_EVENT(TensorCommandFinishEvent, info->id, TensorCommandFinishEvent::Put); | |||||
state.scopes.pop("Put"); | |||||
return info; | return info; | ||||
} | } | ||||
@@ -148,7 +161,7 @@ void ChannelImpl::dispatch_default_cpu( | |||||
SmallVector<Handle>* outputs) { | SmallVector<Handle>* outputs) { | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | ||||
MGB_MARK_USED_VAR(validated); | |||||
RECORD_EVENT(ShapeInferEvent, validated); | |||||
SmallVector<DeviceTensorND> input_tensornds; | SmallVector<DeviceTensorND> input_tensornds; | ||||
input_tensornds.reserve(input_descs.size()); | input_tensornds.reserve(input_descs.size()); | ||||
@@ -166,6 +179,7 @@ void ChannelImpl::dispatch_default_cpu( | |||||
if (info->ptr && info->ptr->try_get_value()) { | if (info->ptr && info->ptr->try_get_value()) { | ||||
input_tensornds.emplace_back(info->ptr->get_value().proxy_to_default_cpu()); | input_tensornds.emplace_back(info->ptr->get_value().proxy_to_default_cpu()); | ||||
} else { | } else { | ||||
// It's OK for SwapOut. We assign h_value before drop ptr | |||||
mgb_assert(!info->h_value.empty(), "inp->h_value is empty!"); | mgb_assert(!info->h_value.empty(), "inp->h_value is empty!"); | ||||
input_tensornds.emplace_back(info->h_value.proxy_to_default_cpu()); | input_tensornds.emplace_back(info->h_value.proxy_to_default_cpu()); | ||||
} | } | ||||
@@ -182,8 +196,7 @@ void ChannelImpl::dispatch_default_cpu( | |||||
output_tensornds.emplace_back(HostTensorND(output_cn, desc.layout).proxy_to_default_cpu()); | output_tensornds.emplace_back(HostTensorND(output_cn, desc.layout).proxy_to_default_cpu()); | ||||
} | } | ||||
auto apply_id = ++m_last_id; | |||||
RECORD_EVENT(OpExecuteEvent, apply_id, op, tinfo_to_tid(input_infos), {}); | |||||
uint64_t op_id = Profiler::next_id(); | |||||
OpDef::apply_on_device_tensornd(*op, input_tensornds, &output_tensornds); | OpDef::apply_on_device_tensornd(*op, input_tensornds, &output_tensornds); | ||||
@@ -193,14 +206,20 @@ void ChannelImpl::dispatch_default_cpu( | |||||
HostTensorND host_tensornd = HostTensorND::make_proxy(tensornd) | HostTensorND host_tensornd = HostTensorND::make_proxy(tensornd) | ||||
.proxy_to_comp_node(output_cn); | .proxy_to_comp_node(output_cn); | ||||
// use `put` for consistency | // use `put` for consistency | ||||
auto info = reinterpret_cast<TensorInfo*>(put(host_tensornd, false)); | |||||
auto info = reinterpret_cast<TensorInfo*>(put_impl(host_tensornd, false)); | |||||
mgb_assert(info->desc.layout.ndim != 0); | mgb_assert(info->desc.layout.ndim != 0); | ||||
output_infos.push_back(info); | output_infos.push_back(info); | ||||
outputs->push_back(info); | outputs->push_back(info); | ||||
} | } | ||||
RECORD_EVENT(OpExecuteFinishEvent, apply_id, op, | |||||
tinfo_to_tid(input_infos), tinfo_to_tid(output_infos)); | |||||
auto op_info_getter = [op]{ | |||||
std::unordered_map<std::string, std::string> op_info; | |||||
auto props = OpDef::props(*op); | |||||
for (auto&& [key, value]: props) { | |||||
op_info[key] = value; | |||||
} | |||||
return op_info; | |||||
}; | |||||
RECORD_EVENT(OpDispatchEvent, op_id, op->trait()->name, op_info_getter, tinfo_to_tid(input_infos), tinfo_to_tid(output_infos)); | |||||
} | } | ||||
void ChannelImpl::dispatch_kernel( | void ChannelImpl::dispatch_kernel( | ||||
@@ -209,15 +228,22 @@ void ChannelImpl::dispatch_kernel( | |||||
const SmallVector<LogicalTensorDesc>& input_descs, | const SmallVector<LogicalTensorDesc>& input_descs, | ||||
SmallVector<Handle>* outputs) { | SmallVector<Handle>* outputs) { | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
auto& options = state.options; | |||||
auto name = op->trait()->make_name(*op); | |||||
state.scopes.push(name); | |||||
auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | auto [output_descs, validated] = OpDef::infer_output_attrs_fallible(*op, input_descs); | ||||
RECORD_EVENT(ShapeInferEvent, validated); | |||||
ApplyOp cmd{++m_last_id, std::move(op)}; | |||||
ApplyOp cmd{Profiler::next_id(), std::move(op)}; | |||||
cmd.inputs = std::move(input_infos); | cmd.inputs = std::move(input_infos); | ||||
cmd.outputs.reserve(output_descs.size()); | cmd.outputs.reserve(output_descs.size()); | ||||
outputs->reserve(output_descs.size()); | outputs->reserve(output_descs.size()); | ||||
for (auto&& desc : output_descs) { | |||||
for (int i = 0; i < output_descs.size(); ++i) { | |||||
auto&& desc = output_descs[i]; | |||||
auto info = alloc(); | auto info = alloc(); | ||||
info->desc = desc; | |||||
init(info, desc); | |||||
// make sure desc's value is consistent with h_value | // make sure desc's value is consistent with h_value | ||||
if (!info->desc.value.empty()) { | if (!info->desc.value.empty()) { | ||||
info->h_value = HostTensorND::make_proxy(desc.value) | info->h_value = HostTensorND::make_proxy(desc.value) | ||||
@@ -226,10 +252,19 @@ void ChannelImpl::dispatch_kernel( | |||||
cmd.outputs.push_back(info); | cmd.outputs.push_back(info); | ||||
outputs->push_back(info); | outputs->push_back(info); | ||||
} | } | ||||
auto op_info_getter = [op=cmd.op]{ | |||||
std::unordered_map<std::string, std::string> op_info; | |||||
auto props = OpDef::props(*op); | |||||
for (auto&& [key, value]: props) { | |||||
op_info[key] = value; | |||||
} | |||||
return op_info; | |||||
}; | |||||
RECORD_EVENT(OpDispatchEvent, cmd.id, cmd.op->trait()->name, op_info_getter, tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||||
m_buffer.enqueue(std::move(cmd)); | m_buffer.enqueue(std::move(cmd)); | ||||
if (!validated && state.options.async_level == 1) { | |||||
if (!validated && options.async_level == 1) { | |||||
sync(); | sync(); | ||||
} else if (state.options.async_level == 0) { | |||||
} else if (options.async_level == 0) { | |||||
sync(); | sync(); | ||||
// check device error | // check device error | ||||
for (auto&& oup : *outputs) { | for (auto&& oup : *outputs) { | ||||
@@ -237,6 +272,7 @@ void ChannelImpl::dispatch_kernel( | |||||
info->ptr->comp_node().sync(); | info->ptr->comp_node().sync(); | ||||
} | } | ||||
} | } | ||||
state.scopes.pop(name); | |||||
} | } | ||||
SmallVector<Handle> ChannelImpl::apply_op( | SmallVector<Handle> ChannelImpl::apply_op( | ||||
@@ -282,31 +318,12 @@ SmallVector<Handle> ChannelImpl::apply_op( | |||||
HostTensorND ChannelImpl::get_value(Handle handle) { | HostTensorND ChannelImpl::get_value(Handle handle) { | ||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
// TODO: maybe get_value should be done on host. i.e. delete GetValue | |||||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | ||||
"invalid handle: %p", handle); | "invalid handle: %p", handle); | ||||
auto info = reinterpret_cast<TensorInfo*>(handle); | auto info = reinterpret_cast<TensorInfo*>(handle); | ||||
mgb_assert(!m_waitee); | |||||
// donnot use info->value_fetched, it's unsafe | // donnot use info->value_fetched, it's unsafe | ||||
mgb_assert(!info->invalid, "Invalid tensor, unable to get_value!"); | mgb_assert(!info->invalid, "Invalid tensor, unable to get_value!"); | ||||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||||
TensorPtr tensor_ptr = info->ptr; | |||||
auto value_fetched = [&]() { | |||||
return tensor_ptr && tensor_ptr->value_fetched(); | |||||
}; | |||||
if (!value_fetched()) { | |||||
m_waitee = info; | |||||
m_buffer.enqueue(GetValue{info}); | |||||
RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::HostValue); | |||||
m_cv.wait(lock, [&]() { | |||||
check_worker_exc_unsafe(); | |||||
tensor_ptr = info->ptr; | |||||
return value_fetched(); | |||||
}); | |||||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::HostValue); | |||||
m_waitee = nullptr; | |||||
} | |||||
return tensor_ptr->get_value(); | |||||
return wait_tensor(info, TensorProp::HostValue)->get_value(); | |||||
} | } | ||||
TensorShape ChannelImpl::get_shape(Handle handle) { | TensorShape ChannelImpl::get_shape(Handle handle) { | ||||
@@ -318,18 +335,7 @@ TensorShape ChannelImpl::get_shape(Handle handle) { | |||||
if (info->desc.layout.ndim != 0) { | if (info->desc.layout.ndim != 0) { | ||||
return info->desc.layout; | return info->desc.layout; | ||||
} | } | ||||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||||
mgb_assert(!m_waitee); | |||||
m_waitee = info; | |||||
m_buffer.flush(); | |||||
RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::Shape); | |||||
m_cv.wait(lock, [&]() { | |||||
check_worker_exc_unsafe(); | |||||
return static_cast<bool>(info->ptr); | |||||
}); | |||||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::Shape); | |||||
m_waitee = nullptr; | |||||
TensorShape ret = info->ptr->layout(); | |||||
TensorShape ret = wait_tensor(info, TensorProp::Shape)->layout(); | |||||
mgb_assert(ret.ndim != 0); | mgb_assert(ret.ndim != 0); | ||||
return ret; | return ret; | ||||
} | } | ||||
@@ -340,7 +346,7 @@ DType ChannelImpl::get_dtype(Handle handle) { | |||||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | ||||
"invalid handle: %p", handle); | "invalid handle: %p", handle); | ||||
auto info = reinterpret_cast<TensorInfo*>(handle); | auto info = reinterpret_cast<TensorInfo*>(handle); | ||||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorInfo::DType); | |||||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::DType); | |||||
auto ret = info->desc.layout.dtype; | auto ret = info->desc.layout.dtype; | ||||
mgb_assert(ret.valid()); | mgb_assert(ret.valid()); | ||||
return ret; | return ret; | ||||
@@ -352,7 +358,7 @@ CompNode ChannelImpl::get_device(Handle handle) { | |||||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | ||||
"invalid handle: %p", handle); | "invalid handle: %p", handle); | ||||
auto info = reinterpret_cast<TensorInfo*>(handle); | auto info = reinterpret_cast<TensorInfo*>(handle); | ||||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorInfo::Device); | |||||
RECORD_EVENT(TensorGetPropEvent, info->id, TensorProp::Device); | |||||
auto ret = info->desc.comp_node; | auto ret = info->desc.comp_node; | ||||
mgb_assert(ret.valid()); | mgb_assert(ret.valid()); | ||||
return ret; | return ret; | ||||
@@ -364,28 +370,14 @@ DeviceTensorND ChannelImpl::get_dev_tensor(Handle handle) { | |||||
mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | mgb_assert(m_valid_handle.find(handle) != m_valid_handle.end(), | ||||
"invalid handle: %p", handle); | "invalid handle: %p", handle); | ||||
auto info = reinterpret_cast<TensorInfo*>(handle); | auto info = reinterpret_cast<TensorInfo*>(handle); | ||||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||||
mgb_assert(!m_waitee); | |||||
m_waitee = info; | |||||
m_buffer.flush(); | |||||
RECORD_EVENT(TensorWaitPropEvent, info->id, TensorInfo::DevValue); | |||||
m_cv.wait(lock, [&]() { | |||||
check_worker_exc_unsafe(); | |||||
return static_cast<bool>(info->ptr); | |||||
}); | |||||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, TensorInfo::DevValue); | |||||
m_waitee = nullptr; | |||||
return info->ptr->dev_tensor(); | |||||
return wait_tensor(info, TensorProp::DevValue)->dev_tensor(); | |||||
} | } | ||||
void ChannelImpl::sync() { | void ChannelImpl::sync() { | ||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
m_buffer.flush(); | m_buffer.flush(); | ||||
RECORD_EVENT(SyncEvent); | |||||
m_worker.wait_all_task_finish(); | m_worker.wait_all_task_finish(); | ||||
CompNode::sync_all(); | |||||
RECORD_EVENT(SyncFinishEvent); | |||||
MGB_LOCK_GUARD(m_mutex); | MGB_LOCK_GUARD(m_mutex); | ||||
check_worker_exc_unsafe(); | check_worker_exc_unsafe(); | ||||
} | } | ||||
@@ -419,14 +411,24 @@ void ChannelImpl::set_option(std::string name, size_t value) { | |||||
TensorInfo* ChannelImpl::alloc() { | TensorInfo* ChannelImpl::alloc() { | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
MGB_LOCK_GUARD(m_mutex); | |||||
auto info = m_pool.alloc(); | |||||
m_valid_handle.insert(info); | |||||
info->id = m_last_id++; | |||||
RECORD_EVENT(TensorDeclareEvent, info->id); | |||||
auto info = [this]{ | |||||
MGB_LOCK_GUARD(m_mutex); | |||||
return m_pool.alloc(); | |||||
}(); | |||||
info->id = Profiler::next_id(); | |||||
if (Profiler::is_profiling()) { | |||||
info->name = state.scopes.next_tensor_name(); | |||||
} | |||||
return info; | return info; | ||||
} | } | ||||
void ChannelImpl::init(TensorInfo* info, LogicalTensorDesc desc) { | |||||
m_valid_handle.insert(info); | |||||
RECORD_EVENT(TensorDeclareEvent, info->id, info->name); | |||||
info->status = TensorInfo::Allocated; | |||||
info->desc = std::move(desc); | |||||
} | |||||
void ChannelImpl::do_drop(TensorInfo* ptr, bool user=false) { | void ChannelImpl::do_drop(TensorInfo* ptr, bool user=false) { | ||||
if (!ptr->producer) { | if (!ptr->producer) { | ||||
@@ -439,6 +441,7 @@ void ChannelImpl::do_drop(TensorInfo* ptr, bool user=false) { | |||||
return; | return; | ||||
} | } | ||||
ptr->evict_type = EvictType::DROP; | ptr->evict_type = EvictType::DROP; | ||||
ptr->status = TensorInfo::Dropped; | |||||
release_tensor(ptr); | release_tensor(ptr); | ||||
} | } | ||||
@@ -460,7 +463,8 @@ void ChannelImpl::free(TensorInfo* ptr) { | |||||
} | } | ||||
void ChannelImpl::recursive_free(TensorInfo* ptr) { | void ChannelImpl::recursive_free(TensorInfo* ptr) { | ||||
SmallVector<TensorInfo*> inps(0); | |||||
RECORD_EVENT(TensorCommandEvent, ptr->id, TensorCommandEvent::RecFree); | |||||
SmallVector<TensorInfo*> inps; | |||||
if (ptr->producer) { | if (ptr->producer) { | ||||
for (auto i : ptr->producer->inputs) { | for (auto i : ptr->producer->inputs) { | ||||
if (i && --i->ref_cnt == 0) { | if (i && --i->ref_cnt == 0) { | ||||
@@ -474,17 +478,23 @@ void ChannelImpl::recursive_free(TensorInfo* ptr) { | |||||
recursive_free(i); | recursive_free(i); | ||||
} | } | ||||
} | } | ||||
RECORD_EVENT(TensorCommandFinishEvent, ptr->id, TensorCommandFinishEvent::RecFree); | |||||
} | } | ||||
void ChannelImpl::real_free(TensorInfo* ptr) { | void ChannelImpl::real_free(TensorInfo* ptr) { | ||||
auto& state = get_worker_state(); | auto& state = get_worker_state(); | ||||
MGB_LOCK_GUARD(m_mutex); | MGB_LOCK_GUARD(m_mutex); | ||||
RECORD_EVENT(TensorEraseEvent, ptr->id); | |||||
if (ptr->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | if (ptr->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | ||||
m_dtr.erase_candidate(ptr); | m_dtr.erase_candidate(ptr); | ||||
} | } | ||||
detach_users(ptr); | detach_users(ptr); | ||||
ptr->detach_producer(); | ptr->detach_producer(); | ||||
bool has_value = ptr->ptr != nullptr; | |||||
if (has_value) { | |||||
RECORD_EVENT(TensorReleaseEvent, ptr->id); | |||||
} | |||||
RECORD_EVENT(TensorEraseEvent, ptr->id, ptr->ptr_use_count); | |||||
ptr->status = TensorInfo::Deleted; | |||||
m_pool.free(ptr); | m_pool.free(ptr); | ||||
} | } | ||||
@@ -496,46 +506,48 @@ ChannelImpl::~ChannelImpl() { | |||||
void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr, bool notice=true) { | void ChannelImpl::produce_tensor(TensorInfo* dest, TensorPtr ptr, bool notice=true) { | ||||
auto& state = get_worker_state(); | auto& state = get_worker_state(); | ||||
auto lock = std::unique_lock<std::mutex>(m_mutex, std::defer_lock); | |||||
std::unique_lock<std::mutex> lock{m_mutex, std::defer_lock}; | |||||
if (notice) { | if (notice) { | ||||
lock.lock(); | lock.lock(); | ||||
} | } | ||||
m_dtr.update_used_time(dest); | m_dtr.update_used_time(dest); | ||||
if (notice) { | |||||
RECORD_EVENT(TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node()); | |||||
} | |||||
dest->value_fetched = ptr->value_fetched(); | |||||
RECORD_EVENT(TensorProduceEvent, dest->id, ptr->layout(), ptr->comp_node(), ptr->dev_tensor().raw_ptr()); | |||||
// update tensor desc for static infer | // update tensor desc for static infer | ||||
dest->desc.layout = ptr->layout(); | dest->desc.layout = ptr->layout(); | ||||
dest->desc.comp_node = ptr->comp_node(); | dest->desc.comp_node = ptr->comp_node(); | ||||
dest->memory = ptr->blob()->size(); | dest->memory = ptr->blob()->size(); | ||||
dest->ptr = std::move(ptr); | dest->ptr = std::move(ptr); | ||||
dest->evict_type = EvictType::NONE; | dest->evict_type = EvictType::NONE; | ||||
dest->status = TensorInfo::Produced; | |||||
if (notice && dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | if (notice && dest->size_exceeds_thd(state.options.dtr_evictee_minimum_size)) { | ||||
m_dtr.insert_candidate(dest); | m_dtr.insert_candidate(dest); | ||||
} | } | ||||
if (notice && m_waitee == dest) { | |||||
m_cv.notify_all(); | |||||
if (notice) { | |||||
notify_tensor_unsafe(dest); | |||||
} | } | ||||
} | } | ||||
void ChannelImpl::release_tensor(TensorInfo* dest) { | void ChannelImpl::release_tensor(TensorInfo* dest) { | ||||
RECORD_EVENT(TensorReleaseEvent, dest->id); | |||||
MGB_LOCK_GUARD(m_mutex); | MGB_LOCK_GUARD(m_mutex); | ||||
dest->ptr.reset(); | dest->ptr.reset(); | ||||
} | } | ||||
void ChannelImpl::regenerate(TensorInfo* dest) { | void ChannelImpl::regenerate(TensorInfo* dest) { | ||||
RECORD_EVENT(TensorCommandEvent, dest->id, TensorCommandEvent::ReGen); | |||||
if (dest->evict_type == EvictType::DROP) { | if (dest->evict_type == EvictType::DROP) { | ||||
recompute(dest->producer); | recompute(dest->producer); | ||||
} else if (dest->evict_type == EvictType::SWAP) { | } else if (dest->evict_type == EvictType::SWAP) { | ||||
produce_tensor(dest, Tensor::make(dest->h_value)); | produce_tensor(dest, Tensor::make(dest->h_value)); | ||||
} | } | ||||
RECORD_EVENT(TensorCommandFinishEvent, dest->id, TensorCommandFinishEvent::ReGen); | |||||
} | } | ||||
void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | ||||
using namespace ranges; | using namespace ranges; | ||||
using namespace ranges::views; | using namespace ranges::views; | ||||
auto& state = get_worker_state(); | auto& state = get_worker_state(); | ||||
bool profiling_device = Profiler::is_profiling() && Profiler::get_option("profile_device", 0); | |||||
uint64_t apply_id = cmd.id; | uint64_t apply_id = cmd.id; | ||||
SmallVector<TensorPtr> tensor_inputs; | SmallVector<TensorPtr> tensor_inputs; | ||||
if (state.options.enable_dtr_auto_drop) { | if (state.options.enable_dtr_auto_drop) { | ||||
@@ -545,33 +557,50 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||||
if (!i->ptr && i->evict_type != EvictType::NONE) { | if (!i->ptr && i->evict_type != EvictType::NONE) { | ||||
regenerate(i); | regenerate(i); | ||||
} | } | ||||
// inputs.push_back(i->ptr); | |||||
m_dtr.update_used_time(i); | m_dtr.update_used_time(i); | ||||
} | } | ||||
tensor_inputs.reserve(cmd.inputs.size()); | tensor_inputs.reserve(cmd.inputs.size()); | ||||
// refcnt == 1, owners: [TensorInfo::ptr] | // refcnt == 1, owners: [TensorInfo::ptr] | ||||
for (auto i : cmd.inputs) { | for (auto i : cmd.inputs) { | ||||
mgb_assert(i->ptr, "Invalid input tensor ptr!"); | mgb_assert(i->ptr, "Invalid input tensor ptr!"); | ||||
// refcnt ++, owners: [i->ptr, tensor_inputs] | |||||
tensor_inputs.push_back(i->ptr); | tensor_inputs.push_back(i->ptr); | ||||
} | } | ||||
RECORD_EVENT(OpExecuteEvent, apply_id); | |||||
// Begin profiling operator | // Begin profiling operator | ||||
SmallVector<CompNode> devices; | |||||
if (state.profiler->is_profiling()) { | |||||
SmallVector<std::pair<CompNode, uint64_t>> kernels; | |||||
if (profiling_device) { | |||||
// Collecting devices | |||||
SmallVector<CompNode> devices; | |||||
for (auto&& i : concat(cmd.inputs, cmd.outputs)) { | for (auto&& i : concat(cmd.inputs, cmd.outputs)) { | ||||
if (i != nullptr && count(devices, i->desc.comp_node) == 0) { | if (i != nullptr && count(devices, i->desc.comp_node) == 0) { | ||||
devices.push_back(i->desc.comp_node); | devices.push_back(i->desc.comp_node); | ||||
kernels.push_back({i->desc.comp_node, Profiler::next_id()}); | |||||
} | } | ||||
} | } | ||||
} | } | ||||
for (auto* input: cmd.inputs) { | |||||
auto input_id = input->id; | |||||
RECORD_EVENT(OpInputEvent, input_id); | |||||
RECORD_EVENT(TensorUsageEvent, input_id); | |||||
RECORD_EVENT(OpInputFinishEvent, input_id); | |||||
} | |||||
// Fused by command buffer. @see: CommandBuffer::fuse_del | |||||
// Now if dest is inplacable, it's refcnt would be decreased to 1 and owned by tensor_inputs after Del. | |||||
// Note for exprs like 'y = x op x', inplace is unsupported yet but Del would be also fused. | |||||
for (auto* del : cmd.dels) { | for (auto* del : cmd.dels) { | ||||
// refcnt --, owners: [tensor_inputs] | |||||
// if it's decreased to 1, would be detected at @see: proxy_graph_detail::apply_on_physical_tensor | |||||
uint64_t del_id = del->id; | |||||
RECORD_EVENT(OpDelEvent, del_id); | |||||
free(del); | free(del); | ||||
RECORD_EVENT(OpDelFinishEvent, del_id); | |||||
} | } | ||||
RECORD_EVENT(OpExecuteEvent, apply_id, cmd.op, | |||||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||||
for (auto&& device: devices) { | |||||
sync_device_scope(device); | |||||
RECORD_DEVICE_EVENT(KernelExecuteEvent, device, apply_id, cmd.op, | |||||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||||
// Before wait | |||||
//TODO: split operator wait and execute so that OpWait could be corrected recorded. | |||||
// Before execute | |||||
for (auto&& [device, kernel_id]: kernels) { | |||||
RECORD_EVENT(KernelExecuteEvent, apply_id, kernel_id, Timer::record_event(device)); | |||||
} | } | ||||
if (state.options.enable_dtr_auto_drop && state.options.dtr_eviction_threshold > 0) { | if (state.options.enable_dtr_auto_drop && state.options.dtr_eviction_threshold > 0) { | ||||
auto_evict(); | auto_evict(); | ||||
@@ -579,20 +608,26 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||||
// Apply op | // Apply op | ||||
// Here std::move is REQUIRED for removing duplicated references. | // Here std::move is REQUIRED for removing duplicated references. | ||||
auto tensor_outputs = OpDef::apply_on_physical_tensor( | auto tensor_outputs = OpDef::apply_on_physical_tensor( | ||||
*cmd.op, tensor_inputs); | |||||
*cmd.op, std::move(tensor_inputs)); | |||||
// After execute | // After execute | ||||
for (auto&& device : devices) { | |||||
RECORD_DEVICE_EVENT(KernelExecuteFinishEvent, device, apply_id, cmd.op, | |||||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||||
for (auto&& [device, kernel_id]: kernels) { | |||||
RECORD_EVENT(KernelExecuteFinishEvent, apply_id, kernel_id, Timer::record_event(device)); | |||||
} | } | ||||
RECORD_EVENT(OpExecuteFinishEvent, apply_id, cmd.op, | |||||
tinfo_to_tid(cmd.inputs), tinfo_to_tid(cmd.outputs)); | |||||
// End profiling operator | // End profiling operator | ||||
mgb_assert(tensor_outputs.size() == cmd.outputs.size()); | mgb_assert(tensor_outputs.size() == cmd.outputs.size()); | ||||
for (size_t i = 0; i < tensor_outputs.size(); ++i) { | for (size_t i = 0; i < tensor_outputs.size(); ++i) { | ||||
auto output = cmd.outputs[i]; | auto output = cmd.outputs[i]; | ||||
if (output != nullptr && output->ptr == nullptr) { | |||||
if (output == nullptr) { | |||||
RECORD_EVENT(OpOutputEvent, 0); | |||||
RECORD_EVENT(OpOutputFinishEvent, 0); | |||||
} else if (output->ptr != nullptr) { | |||||
RECORD_EVENT(OpOutputEvent, output->id); | |||||
RECORD_EVENT(OpOutputFinishEvent, output->id); | |||||
} else { | |||||
RECORD_EVENT(OpOutputEvent, output->id); | |||||
produce_tensor(output, tensor_outputs[i]); | produce_tensor(output, tensor_outputs[i]); | ||||
RECORD_EVENT(OpOutputFinishEvent, output->id); | |||||
sample_on_device(output->desc.comp_node, false); | |||||
} | } | ||||
} | } | ||||
@@ -612,6 +647,8 @@ void ChannelImpl::do_apply_op(const ApplyOp& cmd) { | |||||
} | } | ||||
m_dtr.unpin(cmd.inputs); | m_dtr.unpin(cmd.inputs); | ||||
} | } | ||||
RECORD_EVENT(OpExecuteFinishEvent, apply_id); | |||||
// End profiling operator | |||||
} | } | ||||
void ChannelImpl::recompute(TensorInfo::ComputePath* path) { | void ChannelImpl::recompute(TensorInfo::ComputePath* path) { | ||||
@@ -637,6 +674,7 @@ void ChannelImpl::auto_evict() { | |||||
} | } | ||||
size_t current_memory = m_dtr.comp_node.get_used_memory(); | size_t current_memory = m_dtr.comp_node.get_used_memory(); | ||||
while (current_memory > state.options.dtr_eviction_threshold) { | while (current_memory > state.options.dtr_eviction_threshold) { | ||||
sample_on_device(m_dtr.comp_node, false); | |||||
auto best = m_dtr.find_best_tensor(); | auto best = m_dtr.find_best_tensor(); | ||||
if (!best) { | if (!best) { | ||||
if (!m_dtr.warn_printed) { | if (!m_dtr.warn_printed) { | ||||
@@ -656,6 +694,7 @@ void ChannelImpl::auto_evict() { | |||||
if (best->evict_type == EvictType::DROP) { | if (best->evict_type == EvictType::DROP) { | ||||
m_dtr.update_dsu_after_evict(best); | m_dtr.update_dsu_after_evict(best); | ||||
} | } | ||||
sample_on_device(m_dtr.comp_node, false); | |||||
} | } | ||||
} | } | ||||
@@ -665,6 +704,10 @@ void ChannelImpl::detach_users(TensorInfo* dest) { | |||||
SmallVector<TensorInfo*> outputs = user->outputs; | SmallVector<TensorInfo*> outputs = user->outputs; | ||||
SmallVector<TensorInfo*> inputs = user->inputs; | SmallVector<TensorInfo*> inputs = user->inputs; | ||||
for (auto* output: outputs) { | for (auto* output: outputs) { | ||||
// When a `ComputePath` is detach from it's input, | |||||
// there is no need to reserve it, | |||||
// so we detach all output of this path | |||||
// to decrease it's `ref_cnt` to zero. | |||||
if (output == nullptr) { | if (output == nullptr) { | ||||
continue; | continue; | ||||
} | } | ||||
@@ -674,63 +717,79 @@ void ChannelImpl::detach_users(TensorInfo* dest) { | |||||
input->ref_cnt --; | input->ref_cnt --; | ||||
} | } | ||||
} | } | ||||
// now user is dead | |||||
} | } | ||||
mgb_assert(dest->users.size() == 0); | |||||
//dest->users.clear(); | |||||
mgb_assert(dest->users.empty(), "ComputePath leaking"); | |||||
} | } | ||||
bool ChannelImpl::check_available() { | bool ChannelImpl::check_available() { | ||||
return !m_closed; | return !m_closed; | ||||
} | } | ||||
void ChannelImpl::sync_device_scope(CompNode device) { | |||||
auto& state = get_worker_state(); | |||||
auto& prev = state.device_scope_map[device]; | |||||
auto& current = state.scopes; | |||||
auto push_scope = [&](std::string name) { | |||||
RECORD_DEVICE_EVENT(DeviceScopeEvent, device, name); | |||||
}; | |||||
auto pop_scope = [&](std::string name) { | |||||
RECORD_DEVICE_EVENT(DeviceScopeFinishEvent, device, name); | |||||
}; | |||||
size_t similarity = 0; | |||||
for (size_t i = 0; i < prev.size() && i < current.size(); i++) { | |||||
if (prev[i] == current[i]) { | |||||
similarity++; | |||||
TensorPtr ChannelImpl::wait_tensor(TensorInfo* info, TensorProp prop) { | |||||
m_buffer.flush(); | |||||
std::unique_lock<decltype(m_mutex)> lock(m_mutex); | |||||
mgb_assert(!m_waitee, "duplicate waitee"); | |||||
m_waitee = info; | |||||
m_waitee_id = Profiler::next_id(); | |||||
RECORD_EVENT(TensorWaitPropEvent, info->id, m_waitee_id, prop); | |||||
bool require_host = prop == TensorProp::HostValue; | |||||
bool value_fetching = false; | |||||
m_cv.wait(lock, [&]() { | |||||
check_worker_exc_unsafe(); | |||||
if (require_host) { | |||||
if (info->ptr && info->ptr->value_fetched()) { | |||||
return true; | |||||
} | |||||
if (!value_fetching) { | |||||
m_buffer.enqueue(GetValue{info}); | |||||
value_fetching = true; | |||||
} | |||||
return false; | |||||
} else { | } else { | ||||
break; | |||||
return static_cast<bool>(info->ptr); | |||||
} | } | ||||
}); | |||||
RECORD_EVENT(TensorWaitPropFinishEvent, info->id, m_waitee_id, prop, m_waitee == nullptr); | |||||
if (m_waitee != nullptr) { | |||||
mgb_assert(m_waitee == info, "waitee mismatch"); | |||||
m_waitee = nullptr; | |||||
} | } | ||||
while (prev.size() > similarity) { | |||||
pop_scope(prev.back()); | |||||
prev.pop_back(); | |||||
return info->ptr; | |||||
} | |||||
void ChannelImpl::notify_tensor_unsafe(TensorInfo* info) { | |||||
if (info == m_waitee) { | |||||
m_waitee = nullptr; | |||||
RECORD_EVENT(TensorNotifyPropEvent, info->id); | |||||
m_cv.notify_all(); | |||||
} | } | ||||
while (prev.size() < current.size()) { | |||||
prev.push_back(current[prev.size()]); | |||||
push_scope(prev.back()); | |||||
} | |||||
std::unordered_set<TensorInfo*> ChannelImpl::collect_valid_tensors() { | |||||
std::unordered_set<TensorInfo*> valid_tensors; | |||||
for (auto* handle: m_valid_handle) { | |||||
auto* info = reinterpret_cast<TensorInfo*>(handle); | |||||
valid_tensors.insert(info); | |||||
//TODO: valid_tensors.insert({info, info->status}); | |||||
} | } | ||||
return valid_tensors; | |||||
} | } | ||||
void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | ||||
using namespace ranges; | using namespace ranges; | ||||
using namespace ranges::views; | using namespace ranges::views; | ||||
auto& state = get_worker_state(); | auto& state = get_worker_state(); | ||||
RECORD_EVENT(CommandExecuteEvent, icmd); | |||||
bool finished = false; | |||||
auto do_finish_command = [&]{ | |||||
if (finished) { | |||||
return; | |||||
} | |||||
RECORD_EVENT(CommandFinishEvent, icmd); | |||||
finished = true; | |||||
}; | |||||
auto& options = state.options; | |||||
//TODO: remove std::visit for support osx 10.12 | //TODO: remove std::visit for support osx 10.12 | ||||
auto cmd_visitor = [&](const auto& cmd) { | auto cmd_visitor = [&](const auto& cmd) { | ||||
using T = std::decay_t<decltype(cmd)>; | using T = std::decay_t<decltype(cmd)>; | ||||
if constexpr (std::is_same_v<T, Put>) { | if constexpr (std::is_same_v<T, Put>) { | ||||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Put); | |||||
auto value = cmd.no_cache ? std::make_shared<Tensor>(cmd.value) : Tensor::make(cmd.value); | auto value = cmd.no_cache ? std::make_shared<Tensor>(cmd.value) : Tensor::make(cmd.value); | ||||
produce_tensor(cmd.dest, std::move(value)); | produce_tensor(cmd.dest, std::move(value)); | ||||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::Put); | |||||
sample_on_device(cmd.dest->desc.comp_node, false); | |||||
} else if constexpr (std::is_same_v<T, ApplyOp>) { | } else if constexpr (std::is_same_v<T, ApplyOp>) { | ||||
do_apply_op(cmd); | do_apply_op(cmd); | ||||
for (size_t i = 0; i < cmd.outputs.size(); ++i) { | for (size_t i = 0; i < cmd.outputs.size(); ++i) { | ||||
@@ -739,7 +798,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||||
continue; | continue; | ||||
} | } | ||||
if (state.options.enable_dtr_auto_drop) { | if (state.options.enable_dtr_auto_drop) { | ||||
cmd.outputs[i]->dsu_ptr = std::make_shared<DsuNode>(output->compute_time); | |||||
output->dsu_ptr = std::make_shared<DsuNode>(output->compute_time); | |||||
} | } | ||||
} | } | ||||
if (state.options.enable_drop && state.options.record_computing_path) { | if (state.options.enable_drop && state.options.record_computing_path) { | ||||
@@ -765,6 +824,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||||
bool cross_cn = any_of(concat(cmd.inputs, cmd.outputs), is_cross_cn); | bool cross_cn = any_of(concat(cmd.inputs, cmd.outputs), is_cross_cn); | ||||
bool inplace = any_of(cartesian_product(cmd.inputs, cmd.outputs), is_inplace); | bool inplace = any_of(cartesian_product(cmd.inputs, cmd.outputs), is_inplace); | ||||
if (!inplace && !cross_cn && !m_dtr.is_bad_op(get_name(*cmd.op))) { | if (!inplace && !cross_cn && !m_dtr.is_bad_op(get_name(*cmd.op))) { | ||||
TensorInfo::ComputePath::make(cmd.id, cmd.op, cmd.inputs, cmd.outputs); | TensorInfo::ComputePath::make(cmd.id, cmd.op, cmd.inputs, cmd.outputs); | ||||
size_t detach_cnt = 0; | size_t detach_cnt = 0; | ||||
@@ -780,7 +840,12 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||||
} | } | ||||
} | } | ||||
} else if constexpr (std::is_same_v<T, Del>) { | } else if constexpr (std::is_same_v<T, Del>) { | ||||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Del); | |||||
CompNode device = cmd.dest->desc.comp_node; | |||||
uint64_t tensor_id = cmd.dest->id; | |||||
free(cmd.dest); | free(cmd.dest); | ||||
RECORD_EVENT(TensorCommandFinishEvent, tensor_id, TensorCommandFinishEvent::Del); | |||||
sample_on_device(device, false); | |||||
} else if constexpr (std::is_same_v<T, GetValue>) { | } else if constexpr (std::is_same_v<T, GetValue>) { | ||||
if (!cmd.dest->ptr && cmd.dest->evict_type != EvictType::NONE) { | if (!cmd.dest->ptr && cmd.dest->evict_type != EvictType::NONE) { | ||||
regenerate(cmd.dest); | regenerate(cmd.dest); | ||||
@@ -788,50 +853,62 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||||
mgb_assert(cmd.dest->ptr, "Invalid tensor ptr!"); | mgb_assert(cmd.dest->ptr, "Invalid tensor ptr!"); | ||||
cmd.dest->ptr->fetch_value(); | cmd.dest->ptr->fetch_value(); | ||||
MGB_LOCK_GUARD(m_mutex); | MGB_LOCK_GUARD(m_mutex); | ||||
cmd.dest->value_fetched = true; | |||||
if (m_waitee == cmd.dest) { | |||||
m_cv.notify_all(); | |||||
} | |||||
notify_tensor_unsafe(cmd.dest); | |||||
} else if constexpr (std::is_same_v<T, SwapIn>) { | } else if constexpr (std::is_same_v<T, SwapIn>) { | ||||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::SwapIn); | |||||
produce_tensor(cmd.dest, Tensor::make(cmd.dest->h_value)); | produce_tensor(cmd.dest, Tensor::make(cmd.dest->h_value)); | ||||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::SwapIn); | |||||
sample_on_device(cmd.dest->desc.comp_node, false); | |||||
} else if constexpr (std::is_same_v<T, SwapOut>) { | } else if constexpr (std::is_same_v<T, SwapOut>) { | ||||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::SwapOut); | |||||
cmd.dest->h_value = cmd.dest->ptr->get_value(); | cmd.dest->h_value = cmd.dest->ptr->get_value(); | ||||
if (cmd.dest->evict_type == EvictType::NONE) { | if (cmd.dest->evict_type == EvictType::NONE) { | ||||
release_tensor(cmd.dest); | |||||
cmd.dest->evict_type = EvictType::SWAP; | cmd.dest->evict_type = EvictType::SWAP; | ||||
cmd.dest->status = TensorInfo::Swapped; | |||||
release_tensor(cmd.dest); | |||||
} | } | ||||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::SwapOut); | |||||
sample_on_device(cmd.dest->desc.comp_node, false); | |||||
} else if constexpr (std::is_same_v<T, Drop>) { | } else if constexpr (std::is_same_v<T, Drop>) { | ||||
RECORD_EVENT(TensorCommandEvent, cmd.dest->id, TensorCommandEvent::Drop); | |||||
do_drop(cmd.dest, true); | do_drop(cmd.dest, true); | ||||
RECORD_EVENT(TensorCommandFinishEvent, cmd.dest->id, TensorCommandFinishEvent::Drop); | |||||
} else if constexpr (std::is_same_v<T, SetOption>) { | } else if constexpr (std::is_same_v<T, SetOption>) { | ||||
state.options.set_option(cmd.key, cmd.value); | |||||
options.set_option(cmd.key, cmd.value); | |||||
} else if constexpr (std::is_same_v<T, StartProfile>) { | } else if constexpr (std::is_same_v<T, StartProfile>) { | ||||
RECORD_EVENT(StartProfileEvent); | |||||
CompNode::sync_all(); | CompNode::sync_all(); | ||||
state.profiler.reset(cmd.profiler); | |||||
for (auto* info: cmd.capture_tensors) { | |||||
RECORD_EVENT(TensorDeclareEvent, info->id, info->name); | |||||
if (info->status == TensorInfo::Produced) { | |||||
// TODO: handle swap/drop | |||||
RECORD_EVENT(TensorProduceEvent, info->id, info->desc.layout, info->desc.comp_node, info->ptr->dev_tensor().raw_ptr()); | |||||
} | |||||
} | |||||
CompNode::foreach([&](CompNode device){ | |||||
if (Profiler::get_option("sample_rate", 0)) { | |||||
sample_on_device(device, true); | |||||
} | |||||
}); | |||||
RECORD_EVENT(StartProfileFinishEvent); | |||||
} else if constexpr (std::is_same_v<T, StopProfile>) { | } else if constexpr (std::is_same_v<T, StopProfile>) { | ||||
for (auto&& [device, scopes]: state.device_scope_map) { | |||||
MGB_MARK_USED_VAR(scopes); | |||||
sync_device_scope(device); | |||||
RECORD_EVENT(StopProfileEvent); | |||||
for (auto* info: cmd.escape_tensors) { | |||||
bool has_value = info->status == TensorInfo::Produced; | |||||
if (has_value) { | |||||
RECORD_EVENT(TensorReleaseEvent, info->id); | |||||
} | |||||
RECORD_EVENT(TensorEraseEvent, info->id); | |||||
} | } | ||||
do_finish_command(); | |||||
auto profiler = std::make_unique<InterpreterProfiler>(); | |||||
std::swap(profiler, state.profiler); | |||||
auto records = profiler->stop(); | |||||
auto worker_tid = get_worker_tid(); | |||||
auto host_map = [worker_tid](std::thread::id tid) { | |||||
if (tid == worker_tid) { | |||||
return "worker"; | |||||
} else { | |||||
return "unknown"; | |||||
CompNode::foreach([&](CompNode device){ | |||||
if (Profiler::get_option("sample_rate", 0)) { | |||||
sample_on_device(device, true); | |||||
} | } | ||||
}; | |||||
}); | |||||
RECORD_EVENT(StopProfileFinishEvent); | |||||
} else if constexpr (std::is_same_v<T, PushScope>) { | } else if constexpr (std::is_same_v<T, PushScope>) { | ||||
state.scopes.push_back(cmd.scope_name); | |||||
do_finish_command(); | |||||
RECORD_EVENT(ScopeEvent, cmd.scope_name); | RECORD_EVENT(ScopeEvent, cmd.scope_name); | ||||
} else if constexpr (std::is_same_v<T, PopScope>) { | } else if constexpr (std::is_same_v<T, PopScope>) { | ||||
mgb_assert(state.scopes.back() == cmd.scope_name, "scope name mismatch"); | |||||
state.scopes.pop_back(); | |||||
do_finish_command(); | |||||
RECORD_EVENT(ScopeFinishEvent, cmd.scope_name); | RECORD_EVENT(ScopeFinishEvent, cmd.scope_name); | ||||
} else { | } else { | ||||
static_assert(!std::is_same_v<T, T>); | static_assert(!std::is_same_v<T, T>); | ||||
@@ -839,7 +916,7 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||||
}; | }; | ||||
std::visit([&](const auto& cmd){ | std::visit([&](const auto& cmd){ | ||||
using T = std::decay_t<decltype(cmd)>; | using T = std::decay_t<decltype(cmd)>; | ||||
if (!state.options.catch_worker_execption) { | |||||
if (!options.catch_worker_execption) { | |||||
cmd_visitor(cmd); | cmd_visitor(cmd); | ||||
return; | return; | ||||
} | } | ||||
@@ -855,10 +932,12 @@ void ChannelImpl::process_one_task(IdentifiedCommand& icmd) { | |||||
cmd.dest->invalid = true; | cmd.dest->invalid = true; | ||||
} | } | ||||
m_worker_exc = std::current_exception(); | m_worker_exc = std::current_exception(); | ||||
m_cv.notify_all(); | |||||
RECORD_EVENT(WorkerExceptionEvent); | |||||
if (m_waitee) { | |||||
notify_tensor_unsafe(m_waitee); | |||||
} | |||||
} | } | ||||
}, icmd.second); | }, icmd.second); | ||||
do_finish_command(); | |||||
} | } | ||||
void ChannelImpl::check_worker_exc_unsafe() { | void ChannelImpl::check_worker_exc_unsafe() { | ||||
@@ -888,17 +967,17 @@ void ChannelImpl::CommandBuffer::flush() { | |||||
void ChannelImpl::CommandBuffer::flush(Handle pos) { | void ChannelImpl::CommandBuffer::flush(Handle pos) { | ||||
auto& state = m_owner->get_channel_state(); | auto& state = m_owner->get_channel_state(); | ||||
for (auto iter = m_commands.begin(); iter != pos; ++iter) { | for (auto iter = m_commands.begin(); iter != pos; ++iter) { | ||||
// mgb_log_debug("%s Flushed", to_string(*iter).c_str()); | |||||
IdentifiedCommand icmd{++m_owner->m_last_id, std::move(*iter)}; | |||||
RECORD_EVENT(CommandEnqueueEvent, icmd); | |||||
m_owner->m_worker.add_task(std::move(icmd)); | |||||
if (Profiler::is_profiling()) { | |||||
mgb_log_debug("%s Flushed", to_string(*iter).c_str()); | |||||
} | |||||
m_owner->m_worker.add_task(IdentifiedCommand{Profiler::next_id(), std::move(*iter)}); | |||||
} | } | ||||
m_commands.erase(m_commands.begin(), pos); | m_commands.erase(m_commands.begin(), pos); | ||||
} | } | ||||
auto ChannelImpl::CommandBuffer::flush_pos_for(const Command& cmd) -> Handle { | auto ChannelImpl::CommandBuffer::flush_pos_for(const Command& cmd) -> Handle { | ||||
auto& state = m_owner->get_channel_state(); | auto& state = m_owner->get_channel_state(); | ||||
return std::visit([&, this](const auto& cmd) { | |||||
return std::visit([this, &state](const auto& cmd) { | |||||
using T = std::decay_t<decltype(cmd)>; | using T = std::decay_t<decltype(cmd)>; | ||||
if constexpr (std::is_same_v<T, ApplyOp>) { | if constexpr (std::is_same_v<T, ApplyOp>) { | ||||
auto* op_type = cmd.op->dyn_typeinfo(); | auto* op_type = cmd.op->dyn_typeinfo(); | ||||
@@ -986,46 +1065,37 @@ auto ChannelImpl::CommandBuffer::find_produce(TensorInfo* dest, Range range) | |||||
}); | }); | ||||
} | } | ||||
void ChannelImpl::start_profile(std::unordered_map<std::string, int> option) { | |||||
void ChannelImpl::start_profile() { | |||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
auto& state = get_channel_state(); | |||||
auto profiler_option = InterpreterProfiler::Option::from_dict(option); | |||||
auto profiler = std::make_unique<InterpreterProfiler>(); | |||||
profiler->set_option(profiler_option); | |||||
profiler->start(InterpreterProfiler::topic_to_mask(profiler_option.topic)); | |||||
std::swap(profiler, state.profiler); | |||||
m_buffer.enqueue(StartProfile{state.profiler.get()}); | |||||
auto capture_tensors = collect_valid_tensors(); | |||||
if (capture_tensors.size() > 0) { | |||||
m_buffer.enqueue(StartProfile{std::move(capture_tensors)}); | |||||
} | |||||
} | } | ||||
void ChannelImpl::stop_profile(std::string basename, std::string format) { | |||||
void ChannelImpl::stop_profile() { | |||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
auto& state = get_channel_state(); | |||||
m_buffer.flush(); | m_buffer.flush(); | ||||
auto profiler = std::make_unique<InterpreterProfiler>(); | |||||
std::swap(profiler, state.profiler); | |||||
profiler.release(); | |||||
m_buffer.enqueue(StopProfile{basename, format}); | |||||
auto escape_tensors = collect_valid_tensors(); | |||||
if (escape_tensors.size() > 0) { | |||||
m_buffer.enqueue(StopProfile{std::move(escape_tensors)}); | |||||
} | |||||
} | } | ||||
void ChannelImpl::push_scope(std::string name) { | void ChannelImpl::push_scope(std::string name) { | ||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
state.scopes.push(name); | |||||
RECORD_EVENT(ScopeEvent, name); | RECORD_EVENT(ScopeEvent, name); | ||||
if (state.profiler->is_profiling()) { | |||||
state.scopes.push_back(name); | |||||
m_buffer.enqueue(PushScope{name}); | |||||
} | |||||
m_buffer.enqueue(PushScope{name}); | |||||
} | } | ||||
void ChannelImpl::pop_scope(std::string name) { | void ChannelImpl::pop_scope(std::string name) { | ||||
mgb_assert(check_available(), "Channel already closed"); | mgb_assert(check_available(), "Channel already closed"); | ||||
auto& state = get_channel_state(); | auto& state = get_channel_state(); | ||||
state.scopes.pop(name); | |||||
RECORD_EVENT(ScopeFinishEvent, name); | RECORD_EVENT(ScopeFinishEvent, name); | ||||
if (state.profiler->is_profiling()) { | |||||
mgb_assert((!state.scopes.empty()) && state.scopes.back() == name, "scope name mismatch"); | |||||
state.scopes.pop_back(); | |||||
m_buffer.enqueue(PopScope{name}); | |||||
} | |||||
m_buffer.enqueue(PopScope{name}); | |||||
} | } | ||||
void ChannelImpl::assert_in_channel() { | void ChannelImpl::assert_in_channel() { | ||||
@@ -1036,6 +1106,19 @@ void ChannelImpl::assert_in_worker() { | |||||
mgb_assert(get_worker_tid() == std::this_thread::get_id(), "this method can only be called in worker thread"); | mgb_assert(get_worker_tid() == std::this_thread::get_id(), "this method can only be called in worker thread"); | ||||
} | } | ||||
void ChannelImpl::sample_on_device(CompNode device, bool force) { | |||||
if (!force) { | |||||
thread_local int last_sample_id = 0; | |||||
int sample_rate = Profiler::is_profiling() ? Profiler::get_option("sample_rate", 0) : 0; | |||||
if (!sample_rate || ((++last_sample_id) % sample_rate != 0)) { | |||||
return; | |||||
} | |||||
} | |||||
RECORD_EVENT(SampleDeviceEvent, device); | |||||
auto [total, free] = device.get_mem_status_bytes(); | |||||
RECORD_EVENT(SampleDeviceFinishEvent, device, total, free); | |||||
} | |||||
void ChannelImpl::DynamicSublinear::pin(const SmallVector<TensorInfo*>& vec) { | void ChannelImpl::DynamicSublinear::pin(const SmallVector<TensorInfo*>& vec) { | ||||
for (auto i : vec) { | for (auto i : vec) { | ||||
i->pin(); | i->pin(); | ||||
@@ -24,10 +24,10 @@ | |||||
#include "megbrain/imperative/profiler.h" | #include "megbrain/imperative/profiler.h" | ||||
#include "./commands.h" | #include "./commands.h" | ||||
#include "./events.h" | |||||
#include "./tensor_info.h" | #include "./tensor_info.h" | ||||
#include "./option_manager.h" | #include "./option_manager.h" | ||||
#include "./profiler.h" | |||||
#include "../profiler/events.h" | |||||
namespace mgb::imperative::interpreter::intl { | namespace mgb::imperative::interpreter::intl { | ||||
@@ -37,7 +37,6 @@ struct InterpreterImpl : Interpreter { | |||||
std::unique_ptr<Channel> create_channel() override; | std::unique_ptr<Channel> create_channel() override; | ||||
}; | }; | ||||
struct ChannelImpl : Interpreter::Channel { | struct ChannelImpl : Interpreter::Channel { | ||||
ChannelImpl(); | ChannelImpl(); | ||||
~ChannelImpl() override; | ~ChannelImpl() override; | ||||
@@ -67,19 +66,27 @@ struct ChannelImpl : Interpreter::Channel { | |||||
size_t get_option(std::string name) override; | size_t get_option(std::string name) override; | ||||
void set_option(std::string name, size_t value) override; | void set_option(std::string name, size_t value) override; | ||||
void start_profile(std::unordered_map<std::string, int> option) override; | |||||
void stop_profile(std::string basename, std::string format) override; | |||||
void start_profile() override; | |||||
void stop_profile() override; | |||||
void push_scope(std::string) override; | void push_scope(std::string) override; | ||||
void pop_scope(std::string) override; | void pop_scope(std::string) override; | ||||
private: | private: | ||||
struct WorkQueue; | |||||
struct State; | |||||
TensorInfo* alloc(); | TensorInfo* alloc(); | ||||
void init(TensorInfo*, LogicalTensorDesc desc); | |||||
void free(TensorInfo*); | void free(TensorInfo*); | ||||
void real_free(TensorInfo*); | void real_free(TensorInfo*); | ||||
void recursive_free(TensorInfo*); | void recursive_free(TensorInfo*); | ||||
void do_drop(TensorInfo*, bool); | void do_drop(TensorInfo*, bool); | ||||
void detach_users(TensorInfo*); | void detach_users(TensorInfo*); | ||||
TensorInfo* put_impl(const HostTensorND& value, bool no_cache); | |||||
TensorPtr wait_tensor(TensorInfo* info, profiler::TensorProp prop); | |||||
void notify_tensor_unsafe(TensorInfo* info); | |||||
void process_one_task(IdentifiedCommand&); | void process_one_task(IdentifiedCommand&); | ||||
void check_worker_exc_unsafe(); | void check_worker_exc_unsafe(); | ||||
@@ -105,24 +112,31 @@ private: | |||||
bool check_available(); | bool check_available(); | ||||
void push_scope(std::string, State&); | |||||
void pop_scope(std::string, State&); | |||||
void assert_in_channel(); | void assert_in_channel(); | ||||
void assert_in_worker(); | void assert_in_worker(); | ||||
std::thread::id get_worker_tid(); | std::thread::id get_worker_tid(); | ||||
void sync_device_scope(CompNode device); | |||||
template <typename TCommand> | template <typename TCommand> | ||||
void enqueue_command(TCommand&& cmd) { | void enqueue_command(TCommand&& cmd) { | ||||
m_buffer.enqueue(Command{std::forward<TCommand>(cmd)}); | m_buffer.enqueue(Command{std::forward<TCommand>(cmd)}); | ||||
} | } | ||||
void sample_on_device(CompNode device, bool force); | |||||
// valid => status != Deleted | |||||
std::unordered_set<TensorInfo*> collect_valid_tensors(); | |||||
std::mutex m_mutex; | std::mutex m_mutex; | ||||
std::condition_variable m_cv; | std::condition_variable m_cv; | ||||
MemPool<TensorInfo> m_pool; | MemPool<TensorInfo> m_pool; | ||||
std::unordered_set<Handle> m_valid_handle; | std::unordered_set<Handle> m_valid_handle; | ||||
TensorInfo* m_waitee = nullptr; | TensorInfo* m_waitee = nullptr; | ||||
uint64_t m_waitee_id = 0; | |||||
std::exception_ptr m_worker_exc; | std::exception_ptr m_worker_exc; | ||||
std::atomic_uint64_t m_last_id = 0; | |||||
std::function<void(std::string, std::string)> m_profile_dump_callback; | |||||
bool m_closed = false; | bool m_closed = false; | ||||
@@ -191,27 +205,98 @@ private: | |||||
//! level 0: both sync. | //! level 0: both sync. | ||||
int m_async_level = 2; | int m_async_level = 2; | ||||
struct State { | |||||
OptionManager options; | |||||
std::vector<std::string> scopes; | |||||
std::unique_ptr<InterpreterProfiler> profiler; | |||||
struct Scope { | |||||
std::string name; | |||||
std::unordered_map<std::string, std::unique_ptr<Scope>> children; | |||||
size_t version = 0; | |||||
size_t parent_version = 0; | |||||
size_t tensor_count = 0; | |||||
Scope* active_child = nullptr; | |||||
Scope* parent = nullptr; | |||||
Scope* enter(std::string name) { | |||||
auto& child = children[name]; | |||||
if (!child) { | |||||
child = std::make_unique<Scope>(); | |||||
child->name = name; | |||||
child->parent = this; | |||||
} | |||||
if (version != child->parent_version) { | |||||
child->version = 0; | |||||
child->parent_version = version; | |||||
} else { | |||||
child->version++; | |||||
} | |||||
child->tensor_count = 0; | |||||
return active_child = child.get(); | |||||
} | |||||
State() { | |||||
profiler = std::make_unique<InterpreterProfiler>(); | |||||
Scope* exit(std::string name) { | |||||
mgb_assert(this->name == name, "scope name mismatch"); | |||||
parent->active_child = nullptr; | |||||
return parent; | |||||
} | } | ||||
}; | }; | ||||
struct ChannelState: State {}; | |||||
class ScopeManager { | |||||
private: | |||||
Scope m_root; | |||||
Scope* m_current_scope = &m_root; | |||||
public: | |||||
class ScopeGuard{ | |||||
private: | |||||
ScopeManager* m_manager; | |||||
std::string m_name; | |||||
public: | |||||
ScopeGuard(ScopeManager* manager, std::string name): m_manager{manager}, m_name{name} { | |||||
m_manager->push(m_name); | |||||
} | |||||
~ScopeGuard() { | |||||
m_manager->pop(m_name); | |||||
} | |||||
}; | |||||
void push(std::string name) { | |||||
m_current_scope = m_current_scope->enter(name); | |||||
} | |||||
void pop(std::string name) { | |||||
m_current_scope = m_current_scope->exit(name); | |||||
} | |||||
std::string next_tensor_name() { | |||||
std::string builder; | |||||
Scope* scope = &m_root; | |||||
while (true) { | |||||
builder.append(scope->name); | |||||
if (scope->version != 0) { | |||||
builder.append(ssprintf("(%ld)", scope->version)); | |||||
} | |||||
if (scope != &m_root) { | |||||
builder.append("."); | |||||
} | |||||
if (scope->active_child == nullptr) { | |||||
builder.append(ssprintf(":%%%ld", scope->tensor_count++)); | |||||
break; | |||||
} else { | |||||
scope = scope->active_child; | |||||
} | |||||
} | |||||
return builder; | |||||
} | |||||
}; | |||||
struct WorkerState: State { | |||||
struct State { | |||||
std::thread::id tid; | std::thread::id tid; | ||||
CompNode::UnorderedMap<std::vector<std::string>> device_scope_map; | |||||
OptionManager options; | |||||
}; | }; | ||||
struct ChannelState: State { | |||||
ScopeManager scopes; | |||||
}; | |||||
struct WorkerState: State {}; | |||||
ChannelState m_channel_state; | ChannelState m_channel_state; | ||||
WorkerState m_worker_state; | WorkerState m_worker_state; | ||||
/*! | /*! | ||||
* \brief A framework of dynamic sublienar memory optimization | * \brief A framework of dynamic sublienar memory optimization | ||||
* | * | ||||
@@ -327,7 +412,6 @@ private: | |||||
// assert thread id when call get_xxx_state to avoid misuse | // assert thread id when call get_xxx_state to avoid misuse | ||||
ChannelState& get_channel_state(); | ChannelState& get_channel_state(); | ||||
WorkerState& get_worker_state(); | WorkerState& get_worker_state(); | ||||
}; | }; | ||||
} // namespace mgb::imperative::interpreter::intl | } // namespace mgb::imperative::interpreter::intl |
@@ -1,93 +0,0 @@ | |||||
/** | |||||
* \file imperative/src/impl/interpreter/profiler.h | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
*/ | |||||
#pragma once | |||||
#include "megbrain/imperative/profiler.h" | |||||
#include "./commands.h" | |||||
#include "./events.h" | |||||
#include "./option_manager.h" | |||||
namespace mgb::imperative::interpreter::intl { | |||||
class InterpreterProfiler: public Profiler< | |||||
CommandEnqueueEvent, CommandExecuteEvent, CommandFinishEvent, | |||||
OpExecuteEvent, OpExecuteFinishEvent, | |||||
KernelExecuteEvent, KernelExecuteFinishEvent, | |||||
TensorDeclareEvent, TensorProduceEvent, TensorEraseEvent, | |||||
TensorGetPropEvent, TensorWaitPropEvent, TensorNotifyPropEvent, TensorWaitPropFinishEvent, | |||||
SyncEvent, SyncFinishEvent, | |||||
ScopeEvent, ScopeFinishEvent, | |||||
DeviceScopeEvent, DeviceScopeFinishEvent> { | |||||
public: | |||||
enum Topic { | |||||
Command = 0b000001, | |||||
Operator = 0b000010, | |||||
TensorLifetime = 0b000100, | |||||
TensorProp = 0b001000, | |||||
Sync = 0b010000, | |||||
Scope = 0b100000, | |||||
}; | |||||
struct Option { | |||||
Topic topic; | |||||
bool align_time; | |||||
bool show_operator_name; | |||||
static Option from_dict(std::unordered_map<std::string, int> dict) { | |||||
Option option; | |||||
option.topic = Topic(dict.at("topic")); | |||||
option.align_time = bool(dict.at("align_time")); | |||||
option.show_operator_name = bool(dict.at("show_operator_name")); | |||||
return option; | |||||
} | |||||
}; | |||||
Option get_option() const { | |||||
return m_option; | |||||
} | |||||
void set_option(const Option& option) { | |||||
m_option = option; | |||||
} | |||||
static Mask topic_to_mask(Topic topic) { | |||||
Mask result; | |||||
if (topic & Command) { | |||||
result |= mask_of<CommandEnqueueEvent, CommandExecuteEvent, CommandFinishEvent>(); | |||||
} | |||||
if (topic & Operator) { | |||||
result |= mask_of<OpExecuteEvent, OpExecuteFinishEvent>(); | |||||
result |= mask_of<KernelExecuteEvent, KernelExecuteFinishEvent>(); | |||||
} | |||||
if (topic & TensorLifetime) { | |||||
result |= mask_of<TensorDeclareEvent, TensorProduceEvent, TensorEraseEvent>(); | |||||
} | |||||
if (topic & TensorProp) { | |||||
result |= mask_of<TensorGetPropEvent, TensorWaitPropEvent, TensorNotifyPropEvent, TensorWaitPropFinishEvent>(); | |||||
} | |||||
if (topic & Sync) { | |||||
result |= mask_of<SyncEvent, SyncFinishEvent>(); | |||||
} | |||||
if (topic & Scope) { | |||||
result |= mask_of<ScopeEvent, ScopeFinishEvent>(); | |||||
result |= mask_of<DeviceScopeEvent, DeviceScopeFinishEvent>(); | |||||
} | |||||
return result; | |||||
} | |||||
private: | |||||
Option m_option; | |||||
}; | |||||
} |
@@ -27,19 +27,19 @@ enum EvictType { | |||||
/*! | /*! | ||||
* \brief an identifier to specify a component of evicted tensors | * \brief an identifier to specify a component of evicted tensors | ||||
* | |||||
* | |||||
* Each component tracks the sum of the compute costs of its elements, with the | * Each component tracks the sum of the compute costs of its elements, with the | ||||
* union of two components having the sum of each constituent cost. | * union of two components having the sum of each constituent cost. | ||||
*/ | */ | ||||
struct DsuNode { | struct DsuNode { | ||||
DsuNode(double _t): t(_t) {} | DsuNode(double _t): t(_t) {} | ||||
std::shared_ptr<DsuNode> parent; | std::shared_ptr<DsuNode> parent; | ||||
bool is_root() { | bool is_root() { | ||||
return !bool(parent); | return !bool(parent); | ||||
} | } | ||||
double t; | double t; | ||||
}; | }; | ||||
@@ -47,25 +47,33 @@ struct TensorInfo; | |||||
using TensorInfoPtr = std::shared_ptr<TensorInfo>; | using TensorInfoPtr = std::shared_ptr<TensorInfo>; | ||||
struct TensorInfo { | struct TensorInfo { | ||||
enum Prop { | |||||
Device, Shape, DType, DevValue, HostValue | |||||
enum Status { | |||||
InvalidStatus, Allocated, Produced, Swapped, Dropped, Deleted, | |||||
}; | }; | ||||
uint64_t id; | |||||
uint64_t id = -1; | |||||
std::string name; | |||||
// Most attrs of TensorInfo, except `ptr` and `h_value`, | |||||
// were visited read and written in main thread. | |||||
// Lock interpreter when visiting `ptr`. | |||||
TensorPtr ptr; | TensorPtr ptr; | ||||
LogicalTensorDesc desc; | LogicalTensorDesc desc; | ||||
double compute_time; | double compute_time; | ||||
size_t memory; | size_t memory; | ||||
double last_used_time; | double last_used_time; | ||||
// FIXME: broken by drop | |||||
bool value_fetched = false; | |||||
bool invalid = false; | bool invalid = false; | ||||
bool allow_delete = false; | bool allow_delete = false; | ||||
EvictType evict_type = NONE; | EvictType evict_type = NONE; | ||||
// Status should be only modified in worker thread | |||||
Status status = InvalidStatus; | |||||
// Used by HostCompute and Memory Swap. | |||||
// HostCompute and Swap does not happen in one thread. | |||||
// Maybe a barrier is needed. | |||||
HostTensorND h_value; | HostTensorND h_value; | ||||
// reserved for auto drop | // reserved for auto drop | ||||
@@ -74,6 +82,10 @@ struct TensorInfo { | |||||
size_t ref_cnt = 0; | size_t ref_cnt = 0; | ||||
std::shared_ptr<DsuNode> dsu_ptr; | std::shared_ptr<DsuNode> dsu_ptr; | ||||
// Not reference count, inc when used as input | |||||
size_t ptr_use_count = 0; | |||||
// Used by `Drop` action | |||||
struct ComputePath { | struct ComputePath { | ||||
uint64_t id; | uint64_t id; | ||||
std::shared_ptr<OpDef> op; | std::shared_ptr<OpDef> op; | ||||
@@ -111,7 +123,7 @@ struct TensorInfo { | |||||
return path; | return path; | ||||
} | } | ||||
}* producer = nullptr; | }* producer = nullptr; | ||||
double eval_func(double cost, double free_mem, double cur_time, | double eval_func(double cost, double free_mem, double cur_time, | ||||
double param_cost, double param_mem, double param_time, double param_recompute_times) { | double param_cost, double param_mem, double param_time, double param_recompute_times) { | ||||
return pow(cost + 1e-3, param_cost) * pow(param_recompute_times, (double)recompute_times) | return pow(cost + 1e-3, param_cost) * pow(param_recompute_times, (double)recompute_times) | ||||
@@ -126,20 +138,24 @@ struct TensorInfo { | |||||
--pinned; | --pinned; | ||||
} | } | ||||
void detach_producer() { | |||||
// returns true if producer is deleted | |||||
bool detach_producer() { | |||||
if (!producer) { | if (!producer) { | ||||
return; | |||||
return false; | |||||
} | } | ||||
auto output = std::find(producer->outputs.begin(), producer->outputs.end(), this); | auto output = std::find(producer->outputs.begin(), producer->outputs.end(), this); | ||||
mgb_assert(output != producer->outputs.end()); | mgb_assert(output != producer->outputs.end()); | ||||
*output = nullptr; | *output = nullptr; | ||||
bool deleted = false; | |||||
if (producer->ref_cnt() == 0) { | if (producer->ref_cnt() == 0) { | ||||
for (auto* input: producer->unique_inputs) { | for (auto* input: producer->unique_inputs) { | ||||
input->users.erase(std::find(input->users.begin(), input->users.end(), producer)); | input->users.erase(std::find(input->users.begin(), input->users.end(), producer)); | ||||
} | } | ||||
delete producer; | delete producer; | ||||
deleted = true; | |||||
} | } | ||||
producer = nullptr; | producer = nullptr; | ||||
return deleted; | |||||
} | } | ||||
bool size_exceeds_thd(size_t thd) { | bool size_exceeds_thd(size_t thd) { | ||||
@@ -150,26 +166,4 @@ struct TensorInfo { | |||||
}; | }; | ||||
} | } | ||||
template <> | |||||
struct ToStringTrait<interpreter::intl::TensorInfo::Prop>{ | |||||
using TensorInfo = interpreter::intl::TensorInfo; | |||||
std::string operator()(TensorInfo::Prop prop) const { | |||||
switch(prop) { | |||||
case TensorInfo::DType: | |||||
return "dtype"; | |||||
case TensorInfo::DevValue: | |||||
return "dev_value"; | |||||
case TensorInfo::Device: | |||||
return "device"; | |||||
case TensorInfo::HostValue: | |||||
return "host_value"; | |||||
case TensorInfo::Shape: | |||||
return "shape"; | |||||
default: | |||||
return "unknown"; | |||||
} | |||||
} | |||||
}; | |||||
} | } |
@@ -22,47 +22,58 @@ | |||||
#include "./event_pool.h" | #include "./event_pool.h" | ||||
#include "./op_trait.h" | #include "./op_trait.h" | ||||
#include "./profiler/formats.h" | |||||
namespace mgb { | namespace mgb { | ||||
namespace imperative { | namespace imperative { | ||||
namespace { | |||||
DeviceTimer::SharedEvent alloc_recorded_event(CompNode device) { | |||||
auto event = EventPool::with_timer().alloc_shared(device); | |||||
event->record(); | |||||
return event; | |||||
uint64_t Timer::get_nsecs() { | |||||
using namespace std::chrono; | |||||
auto finish = steady_clock::now(); | |||||
auto duration = duration_cast<nanoseconds>(finish - m_start); | |||||
return duration.count(); | |||||
} | } | ||||
} // namespace | |||||
DeviceTimer::SharedEvent DeviceTimer::get_device_time(CompNode device) { | |||||
return alloc_recorded_event(device); | |||||
uint64_t Timer::get_started_at() { | |||||
return m_started_at; | |||||
} | } | ||||
SmallVector<DeviceTimer::SharedEvent> DeviceTimer::get_all(SmallVector<CompNode> device_list) { | |||||
SmallVector<DeviceTimer::SharedEvent> results; | |||||
for (auto&& device: device_list) { | |||||
results.push_back(alloc_recorded_event(device)); | |||||
} | |||||
return results; | |||||
void Timer::reset() { | |||||
using namespace std::chrono; | |||||
m_start = steady_clock::now(); | |||||
auto now_ns = duration_cast<nanoseconds>(std::chrono::system_clock::now().time_since_epoch()); | |||||
m_started_at = now_ns.count(); | |||||
} | } | ||||
double HostTimer::get_msecs() { | |||||
using namespace std::chrono; | |||||
auto finish = steady_clock::now(); | |||||
auto duration = duration_cast<microseconds>(finish - m_start); | |||||
return (double)duration.count() / 1e3; | |||||
std::shared_ptr<CompNode::Event> Timer::record_event(CompNode device) { | |||||
auto event = EventPool::with_timer().alloc_shared(device); | |||||
event->record(); | |||||
return event; | |||||
} | } | ||||
double HostTimer::get_started_at() { | |||||
return m_started_at; | |||||
Profiler::options_t Profiler::sm_profile_options; | |||||
std::mutex Profiler::sm_mutex; | |||||
std::unordered_map<std::thread::id, Profiler*> Profiler::sm_profilers; | |||||
Timer Profiler::sm_timer; | |||||
std::atomic_uint64_t Profiler::sm_last_id = 0; | |||||
bool Profiler::sm_profiling = false; | |||||
thread_local std::unique_ptr<Profiler> Profiler::tm_profiler = std::make_unique<Profiler>(); | |||||
std::atomic_size_t Profiler::sm_preferred_capacity; | |||||
auto Profiler::get_thread_dict() -> thread_dict_t { | |||||
MGB_LOCK_GUARD(sm_mutex); | |||||
thread_dict_t thread_dict; | |||||
for (auto&& [tid, profiler]: sm_profilers) { | |||||
thread_dict[tid] = profiler->m_thread_name; | |||||
} | |||||
return thread_dict; | |||||
} | } | ||||
void HostTimer::reset() { | |||||
using namespace std::chrono; | |||||
m_start = steady_clock::now(); | |||||
auto now_us = duration_cast<microseconds>(std::chrono::system_clock::now().time_since_epoch()); | |||||
m_started_at = (double)(now_us.count()) / 1e3; | |||||
void Profiler::dump_profile(std::string basename, std::string format, results_t results, options_t options) { | |||||
auto thread_dict = get_thread_dict(); | |||||
{ | |||||
mgb_log_error("unsupported profiling format %s", format.c_str()); | |||||
} | |||||
} | } | ||||
} // namespace imperative | } // namespace imperative | ||||
@@ -1,145 +0,0 @@ | |||||
#include <string> | |||||
#include <memory> | |||||
#include "megbrain/utils/json.h" | |||||
namespace mgb { | |||||
namespace imperative { | |||||
class ChromeTraceEvent { | |||||
public: | |||||
ChromeTraceEvent& name(std::string name) { | |||||
m_name = std::move(name); | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& tid(uint64_t tid) { | |||||
m_tid = std::move(tid); | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& cat(std::string cat) { | |||||
m_cat = std::move(cat); | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& pid(uint64_t pid) { | |||||
m_pid = pid; | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& id(uint64_t id) { | |||||
m_id = id; | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& idx(uint64_t idx) { | |||||
m_idx = idx; | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& ts(double ts) { | |||||
m_ts = ts; | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& dur(double dur) { | |||||
m_dur = dur; | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& ph(char ph) { | |||||
m_ph = ph; | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& bp(char bp) { | |||||
m_bp = bp; | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& args(std::shared_ptr<json::Object> args) { | |||||
m_args = std::move(args); | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& arg(std::string key, std::string value) { | |||||
if (!m_args) { | |||||
m_args = json::Object::make(); | |||||
} | |||||
(*m_args)[key] = json::String::make(value); | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& arg(std::string key, double value) { | |||||
if (!m_args) { | |||||
m_args = json::Object::make(); | |||||
} | |||||
(*m_args)[key] = json::Number::make(value); | |||||
return *this; | |||||
} | |||||
ChromeTraceEvent& arg(std::string key, std::shared_ptr<json::Value> value) { | |||||
if (!m_args) { | |||||
m_args = json::Object::make(); | |||||
} | |||||
(*m_args)[key] = value; | |||||
return *this; | |||||
} | |||||
std::shared_ptr<json::Object> to_json() const { | |||||
auto result = json::Object::make(); | |||||
auto prop_str = [&](auto key, auto value) { | |||||
if (value.empty()) { | |||||
return; | |||||
} | |||||
(*result)[key] = json::String::make(value); | |||||
}; | |||||
auto prop_num = [&](auto key, auto value) { | |||||
if (!value) { | |||||
return; | |||||
} | |||||
(*result)[key] = json::Number::make(value.value()); | |||||
}; | |||||
auto prop_char = [&](auto key, auto value) { | |||||
if (!value) { | |||||
return; | |||||
} | |||||
(*result)[key] = json::String::make(std::string{} + value.value()); | |||||
}; | |||||
prop_str("name", m_name); | |||||
prop_num("tid", m_tid); | |||||
prop_str("cat", m_cat); | |||||
prop_num("pid", m_pid); | |||||
prop_num("id", m_id); | |||||
prop_num("idx", m_idx); | |||||
prop_num("ts", m_ts); | |||||
prop_num("dur", m_dur); | |||||
prop_char("ph", m_ph); | |||||
prop_char("bp", m_bp); | |||||
if (m_args) { | |||||
(*result)["args"] = m_args; | |||||
} | |||||
return result; | |||||
} | |||||
private: | |||||
std::string m_name; | |||||
std::string m_cat; | |||||
std::optional<uint64_t> m_tid; | |||||
std::optional<uint64_t> m_pid; | |||||
std::optional<uint64_t> m_id; | |||||
std::optional<uint64_t> m_idx; | |||||
std::optional<double> m_ts; | |||||
std::optional<double> m_dur; | |||||
std::optional<char> m_ph; | |||||
std::optional<char> m_bp; | |||||
std::shared_ptr<json::Object> m_args; | |||||
}; | |||||
class ChromeTraceEventList { | |||||
public: | |||||
ChromeTraceEvent& new_event() { | |||||
m_content.emplace_back(); | |||||
return m_content.back(); | |||||
} | |||||
std::shared_ptr<json::Array> to_json() const { | |||||
auto result = json::Array::make(); | |||||
for (auto&& event: m_content) { | |||||
result->add(event.to_json()); | |||||
} | |||||
return result; | |||||
} | |||||
private: | |||||
std::vector<ChromeTraceEvent> m_content; | |||||
}; | |||||
} // namespace imperative | |||||
} // namespace mgb |
@@ -0,0 +1,186 @@ | |||||
/** | |||||
* \file imperative/src/impl/interpreter/events.h | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
*/ | |||||
#pragma once | |||||
#include "megbrain/utils/small_vector.h" | |||||
#include "../op_trait.h" | |||||
namespace mgb::imperative::profiler { | |||||
enum class TensorProp { | |||||
InvalidProp, Device, Shape, DType, DevValue, HostValue, | |||||
}; | |||||
using OpParams = std::unordered_map<std::string, std::string>; | |||||
} | |||||
namespace mgb::imperative { | |||||
template <> | |||||
struct ToStringTrait<profiler::TensorProp>{ | |||||
using TensorProp = profiler::TensorProp; | |||||
std::string operator()(TensorProp prop) const { | |||||
switch(prop) { | |||||
case TensorProp::DType: | |||||
return "dtype"; | |||||
case TensorProp::DevValue: | |||||
return "dev_value"; | |||||
case TensorProp::Device: | |||||
return "device"; | |||||
case TensorProp::HostValue: | |||||
return "host_value"; | |||||
case TensorProp::Shape: | |||||
return "shape"; | |||||
default: | |||||
return "unknown"; | |||||
} | |||||
} | |||||
}; | |||||
} | |||||
namespace mgb::imperative::profiler { | |||||
#define DEF_EVENT(X, ...) struct X##Event __VA_ARGS__; | |||||
#define DEF_DUR_EVENT(X, ...) struct X##Event __VA_ARGS__; struct X##FinishEvent __VA_ARGS__; | |||||
DEF_EVENT(OpDispatch, { | |||||
uint64_t op_id; | |||||
std::string op_name; | |||||
std::function<OpParams()> op_params; | |||||
SmallVector<uint64_t> inputs; | |||||
SmallVector<uint64_t> outputs; | |||||
}); | |||||
DEF_DUR_EVENT(OpInput, { | |||||
uint64_t tensor_id; | |||||
TensorShape shape; | |||||
}); | |||||
DEF_DUR_EVENT(OpDel, { | |||||
uint64_t tensor_id; | |||||
TensorShape shape; | |||||
}); | |||||
DEF_DUR_EVENT(OpOutput, { | |||||
uint64_t tensor_id; | |||||
TensorShape shape; | |||||
}); | |||||
DEF_DUR_EVENT(OpExecute, { | |||||
uint64_t op_id; | |||||
}); | |||||
DEF_DUR_EVENT(OpPostExecute, { | |||||
uint64_t op_id; | |||||
}); | |||||
DEF_DUR_EVENT(KernelExecute, { | |||||
uint64_t op_id; | |||||
uint64_t kernel_id; | |||||
std::shared_ptr<CompNode::Event> event; | |||||
}); | |||||
DEF_EVENT(TensorDeclare, { | |||||
uint64_t tensor_id; | |||||
std::string name; | |||||
}); | |||||
DEF_EVENT(TensorProduce, { | |||||
uint64_t tensor_id; | |||||
TensorLayout layout; | |||||
CompNode device; | |||||
void* ptr; | |||||
}); | |||||
DEF_EVENT(TensorUsage, { | |||||
uint64_t tensor_id; | |||||
}); | |||||
DEF_EVENT(TensorRelease, { | |||||
uint64_t tensor_id; | |||||
}); | |||||
DEF_EVENT(TensorErase, { | |||||
uint64_t tensor_id; | |||||
size_t use_count; | |||||
}); | |||||
DEF_EVENT(TensorGetProp, { | |||||
uint64_t tensor_id; | |||||
TensorProp prop; | |||||
}); | |||||
DEF_EVENT(TensorNotifyProp, { | |||||
uint64_t tensor_id; | |||||
uint64_t wait_id; | |||||
TensorProp prop; | |||||
}); | |||||
DEF_EVENT(TensorWaitProp, { | |||||
uint64_t tensor_id; | |||||
uint64_t wait_id; | |||||
TensorProp prop; | |||||
}); | |||||
DEF_EVENT(TensorWaitPropFinish, { | |||||
uint64_t tensor_id; | |||||
uint64_t wait_id; | |||||
TensorProp prop; | |||||
bool notified; | |||||
}); | |||||
DEF_DUR_EVENT(SampleDevice, { | |||||
CompNode device; | |||||
size_t total_memory; | |||||
size_t free_memory; | |||||
}); | |||||
DEF_EVENT(WorkerException, {}); | |||||
DEF_EVENT(ShapeInfer, { | |||||
bool success; | |||||
}); | |||||
DEF_DUR_EVENT(Scope, { | |||||
std::string name; | |||||
}); | |||||
DEF_DUR_EVENT(DeviceScope, { | |||||
std::string name; | |||||
std::shared_ptr<CompNode::Event> event; | |||||
}); | |||||
DEF_DUR_EVENT(Sync, {}); | |||||
DEF_DUR_EVENT(StartProfile, { | |||||
size_t capture_count; | |||||
}); | |||||
DEF_DUR_EVENT(StopProfile, { | |||||
size_t escape_count; | |||||
}); | |||||
DEF_DUR_EVENT(TensorCommand, { | |||||
enum Kind { | |||||
Put, Del, SwapIn, SwapOut, Drop, ReGen, RecFree, GetValue | |||||
}; | |||||
uint64_t tensor_id; | |||||
Kind kind; | |||||
}); | |||||
#undef DEF_EVENT | |||||
#undef DEF_DUR_EVENT | |||||
} |
@@ -1,5 +1,5 @@ | |||||
/** | /** | ||||
* \file imperative/src/impl/interpreter/profiler.cpp | |||||
* \file imperative/src/impl/interpreter/profiler.h | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | ||||
* | * | ||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | * Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | ||||
@@ -9,22 +9,12 @@ | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
*/ | */ | ||||
#include "./profiler.h" | |||||
#pragma once | |||||
#include <sstream> | |||||
#include <cinttypes> | |||||
#include <unordered_set> | |||||
#if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__)) | |||||
#include <unistd.h> | |||||
#elif defined(_WIN32) | |||||
#include <process.h> | |||||
#else | |||||
#error Unsupported platform | |||||
#endif | |||||
#include "../op_trait.h" | |||||
namespace mgb::imperative::interpreter::intl { | |||||
#include "megbrain/imperative/profiler.h" | |||||
namespace mgb::imperative::profiler { | |||||
} | } |
@@ -6,6 +6,8 @@ | |||||
#include "megbrain/tensor.h" | #include "megbrain/tensor.h" | ||||
#include "./events.h" | |||||
namespace mgb::imperative::profiler { | namespace mgb::imperative::profiler { | ||||
struct ProfileDeviceState { | struct ProfileDeviceState { | ||||
@@ -53,6 +55,7 @@ struct ProfileStaticsState { | |||||
struct ProfileOperatorState { | struct ProfileOperatorState { | ||||
uint64_t id; | uint64_t id; | ||||
std::string name; | std::string name; | ||||
OpParams params; | |||||
SmallVector<uint64_t> inputs; | SmallVector<uint64_t> inputs; | ||||
SmallVector<uint64_t> outputs; | SmallVector<uint64_t> outputs; | ||||
CompNode device; | CompNode device; | ||||
@@ -47,8 +47,8 @@ struct Interpreter { | |||||
virtual size_t get_option(std::string name) = 0; | virtual size_t get_option(std::string name) = 0; | ||||
virtual void set_option(std::string name, size_t value) = 0; | virtual void set_option(std::string name, size_t value) = 0; | ||||
virtual void start_profile(std::unordered_map<std::string, int> option) = 0; | |||||
virtual void stop_profile(std::string basename, std::string format) = 0; | |||||
virtual void start_profile() = 0; | |||||
virtual void stop_profile() = 0; | |||||
virtual void push_scope(std::string name) = 0; | virtual void push_scope(std::string name) = 0; | ||||
virtual void pop_scope(std::string name) = 0; | virtual void pop_scope(std::string name) = 0; | ||||
@@ -17,6 +17,9 @@ | |||||
#include <fstream> | #include <fstream> | ||||
#include <chrono> | #include <chrono> | ||||
#include <bitset> | #include <bitset> | ||||
#include <deque> | |||||
#include <any> | |||||
#include <typeindex> | |||||
#include "megbrain/comp_node.h" | #include "megbrain/comp_node.h" | ||||
#include "megbrain/graph/event.h" | #include "megbrain/graph/event.h" | ||||
@@ -29,165 +32,188 @@ | |||||
namespace mgb { | namespace mgb { | ||||
namespace imperative { | namespace imperative { | ||||
class DeviceTimer { | |||||
public: | |||||
using SharedEvent = std::shared_ptr<CompNode::Event>; | |||||
DeviceTimer() = default; | |||||
SharedEvent get_device_time(CompNode device); | |||||
SmallVector<SharedEvent> get_all(SmallVector<CompNode> device_list); | |||||
}; | |||||
class HostTimer { | |||||
class Timer { | |||||
public: | public: | ||||
void reset(); | void reset(); | ||||
double get_msecs(); | |||||
double get_started_at(); | |||||
uint64_t get_nsecs(); | |||||
uint64_t get_started_at(); | |||||
static std::shared_ptr<CompNode::Event> record_event(CompNode device); | |||||
private: | private: | ||||
decltype(std::chrono::steady_clock::now()) m_start; | decltype(std::chrono::steady_clock::now()) m_start; | ||||
double m_started_at; | |||||
uint64_t m_started_at; | |||||
}; | }; | ||||
class ProfilerBase { | |||||
class Profiler { | |||||
public: | public: | ||||
using Host = std::thread::id; | |||||
using Device = CompNode; | |||||
struct HostInstant { | |||||
Host tid; | |||||
double time; | |||||
void wait() const {} | |||||
struct Record { | |||||
uint64_t id; | |||||
uint64_t time; //in ns | |||||
std::any data; | |||||
}; | }; | ||||
struct DeviceInstant { | |||||
double before; | |||||
std::shared_ptr<CompNode::Event> event; | |||||
double after; | |||||
void wait() const { | |||||
event->host_wait(); | |||||
} | |||||
enum Status: uint8_t { | |||||
Running = 0, | |||||
Recording = 1, | |||||
Collecting = 2, | |||||
}; | }; | ||||
using ProfileCollector = std::function<void(std::thread::id, Record)>; | |||||
using option_t = uint64_t; | |||||
using options_t = std::unordered_map<std::string, option_t>; | |||||
using result_t = std::pair<std::thread::id, Record>; | |||||
using results_t = std::vector<result_t>; | |||||
using thread_dict_t = std::unordered_map<std::thread::id, std::string>; | |||||
private: | |||||
std::thread::id m_thread_id; | |||||
std::vector<Record> m_records; | |||||
std::atomic<Status> m_status = Running; | |||||
uint64_t m_last_time = 0; | |||||
std::string m_thread_name; | |||||
static options_t sm_profile_options; | |||||
static std::mutex sm_mutex; | |||||
static std::unordered_map<std::thread::id, Profiler*> sm_profilers; | |||||
static Timer sm_timer; | |||||
static std::atomic_uint64_t sm_last_id; | |||||
static std::atomic_size_t sm_preferred_capacity; | |||||
static bool sm_profiling; | |||||
static constexpr bool sm_debug = false; | |||||
thread_local static std::unique_ptr<Profiler> tm_profiler; | |||||
public: | |||||
Profiler() { | |||||
m_thread_id = std::this_thread::get_id(); | |||||
MGB_LOCK_GUARD(sm_mutex); | |||||
if (sm_profilers.size() == 0) { | |||||
reset(); | |||||
} | |||||
mgb_assert(sm_profilers.count(m_thread_id) == 0); | |||||
sm_profilers[m_thread_id] = this; | |||||
} | |||||
~Profiler() { | |||||
MGB_LOCK_GUARD(sm_mutex); | |||||
mgb_assert(sm_profilers.count(m_thread_id) == 1); | |||||
sm_profilers.erase(m_thread_id); | |||||
} | |||||
public: | |||||
static Profiler& get_instance() { | |||||
return *tm_profiler; | |||||
} | |||||
using Instant = std::variant<HostInstant, DeviceInstant>; | |||||
static void reset() { | |||||
mgb_assert(sm_profilers.size() == 0, "profiler already running"); | |||||
sm_timer.reset(); | |||||
} | |||||
template <typename TEvent> | |||||
struct EventRecord { | |||||
Instant instant; | |||||
TEvent data; | |||||
static uint64_t next_id() { | |||||
return sm_last_id++; | |||||
} | |||||
const HostInstant& host() const { | |||||
return std::get<HostInstant>(instant); | |||||
template <typename T, typename... TArgs> | |||||
static uint64_t record(TArgs&&... args) { | |||||
auto& profiler = get_instance(); | |||||
auto last_time = profiler.m_last_time; | |||||
if constexpr (sm_debug) { | |||||
Status expected = Running; | |||||
mgb_assert(profiler.m_status.compare_exchange_strong(expected, Recording)); | |||||
} | } | ||||
const DeviceInstant& device() const { | |||||
return std::get<DeviceInstant>(instant); | |||||
uint64_t id = next_id(); | |||||
uint64_t time = sm_timer.get_nsecs(); | |||||
time = std::max(time, last_time + 2000); | |||||
profiler.m_last_time = time; | |||||
profiler.m_records.push_back({id, time, T{std::forward<TArgs>(args)...}}); | |||||
if constexpr (sm_debug) { | |||||
Status expected = Recording; | |||||
mgb_assert(profiler.m_status.compare_exchange_strong(expected, Running)); | |||||
} | } | ||||
return id; | |||||
} | |||||
void wait() const { | |||||
std::visit([&](const auto& instant){ instant.wait(); }, instant); | |||||
static results_t collect() { | |||||
MGB_LOCK_GUARD(sm_mutex); | |||||
if constexpr (sm_debug) { | |||||
for (auto&& [tid, profiler]: sm_profilers) { | |||||
Status expected = Running; | |||||
mgb_assert(profiler->m_status.compare_exchange_strong(expected, Collecting)); | |||||
} | |||||
} | } | ||||
}; | |||||
protected: | |||||
HostInstant record_host() { | |||||
return {std::this_thread::get_id(), m_host_timer.get_msecs()}; | |||||
std::vector<std::pair<std::thread::id, Record>> profile_data; | |||||
for (auto&& [tid, profiler]: sm_profilers) { | |||||
sm_preferred_capacity = std::max(sm_preferred_capacity.load(), profiler->m_records.size()); | |||||
for (auto& record: profiler->m_records) { | |||||
profile_data.push_back({tid, std::move(record)}); | |||||
} | |||||
profiler->m_records.clear(); | |||||
profiler->m_records.reserve(sm_preferred_capacity); | |||||
} | |||||
std::sort(profile_data.begin(), profile_data.end(), [](auto& lhs, auto& rhs){ | |||||
return lhs.second.id < rhs.second.id; | |||||
}); | |||||
if constexpr (sm_debug) { | |||||
for (auto&& [tid, profiler]: sm_profilers) { | |||||
Status expected = Collecting; | |||||
mgb_assert(profiler->m_status.compare_exchange_strong(expected, Running)); | |||||
} | |||||
} | |||||
return profile_data; | |||||
} | } | ||||
DeviceInstant record_device(Device device) { | |||||
auto before = m_host_timer.get_msecs(); | |||||
auto event = m_device_timer.get_device_time(device); | |||||
auto after = m_host_timer.get_msecs(); | |||||
return {before, event, after}; | |||||
static option_t get_option(std::string key, option_t default_val) { | |||||
if (!sm_profile_options.count(key)) { | |||||
return default_val; | |||||
} | |||||
return sm_profile_options.at(key); | |||||
} | } | ||||
protected: | |||||
std::atomic_int64_t m_last_id = 0; | |||||
HostTimer m_host_timer; | |||||
DeviceTimer m_device_timer; | |||||
Spinlock m_lock; | |||||
}; | |||||
static void load_options(options_t options) { | |||||
sm_profile_options = std::move(options); | |||||
} | |||||
template <typename... TEvents> | |||||
class Profiler: public ProfilerBase { | |||||
public: | |||||
using Record = std::variant<EventRecord<TEvents>...>; | |||||
using Mask = std::bitset<sizeof...(TEvents)>; | |||||
static options_t get_options() { | |||||
return sm_profile_options; | |||||
} | |||||
struct Data { | |||||
std::vector<Record> records; | |||||
double started_at; | |||||
}; | |||||
static bool is_profiling() { | |||||
return sm_profiling; | |||||
} | |||||
template <typename TEvent, size_t index = 0> | |||||
static constexpr size_t index_of() { | |||||
if constexpr (index == std::variant_size_v<Record>) { | |||||
return index; | |||||
} else if constexpr (std::is_same_v<EventRecord<TEvent>, std::variant_alternative_t<index, Record>>) { | |||||
return index; | |||||
} else { | |||||
return index_of<TEvent, index+1>(); | |||||
} | |||||
}; | |||||
static void start_profile() { | |||||
mgb_assert(!sm_profiling); | |||||
sm_profiling = true; | |||||
} | |||||
template <typename... TEvents2> | |||||
static Mask mask_of() { | |||||
return Mask{} | (Mask{}.set(index_of<TEvents2>()) |...); | |||||
static void stop_profile() { | |||||
mgb_assert(sm_profiling); | |||||
sm_profiling = false; | |||||
} | } | ||||
enum Status { | |||||
NotStarted, Profiling, Stopped | |||||
}; | |||||
static thread_dict_t get_thread_dict(); | |||||
static void dump_profile(std::string basename, std::string format, results_t results, options_t options); | |||||
}; | |||||
class ProfileDataCollector { | |||||
public: | public: | ||||
template <typename TEvent, typename... TArgs> | |||||
void record_host(TArgs&&... args) { | |||||
MGB_LOCK_GUARD(m_lock); | |||||
if (!m_event_mask.test(index_of<TEvent>())) { | |||||
return; | |||||
} | |||||
mgb_assert(m_status != Stopped, "record after stop"); | |||||
auto instant = HostInstant{std::this_thread::get_id(), m_host_timer.get_msecs()}; | |||||
m_record_list.emplace_back(EventRecord<TEvent>{std::move(instant), {std::forward<TArgs>(args)...}}); | |||||
template <typename T> | |||||
using SubCollector = std::function<void(uint64_t, std::thread::id, uint64_t, T)>; | |||||
private: | |||||
std::unordered_map<std::type_index, SubCollector<std::any>> m_collectors; | |||||
public: | |||||
template <typename T> | |||||
ProfileDataCollector& handle(SubCollector<T> collector) { | |||||
auto erased = [collector](uint64_t id, std::thread::id tid, uint64_t time, std::any data){ | |||||
collector(id, tid, time, std::any_cast<T>(std::move(data))); | |||||
}; | |||||
m_collectors[typeid(T)] = erased; | |||||
return *this; | |||||
} | } | ||||
template <typename TEvent, typename... TArgs> | |||||
void record_device(Device device, TArgs&&... args) { | |||||
MGB_LOCK_GUARD(m_lock); | |||||
if (!m_event_mask.test(index_of<TEvent>())) { | |||||
void operator()(uint64_t id, std::thread::id tid, uint64_t time, std::any event) { | |||||
std::type_index type = event.type(); | |||||
if (m_collectors.count(type) == 0) { | |||||
return; | return; | ||||
} | } | ||||
mgb_assert(m_status != Stopped, "record after stop"); | |||||
auto before = m_host_timer.get_msecs(); | |||||
auto event = m_device_timer.get_device_time(device); | |||||
auto after = m_host_timer.get_msecs(); | |||||
auto instant = DeviceInstant{before, event, after}; | |||||
m_record_list.emplace_back(EventRecord<TEvent>{std::move(instant), {std::forward<TArgs>(args)...}}); | |||||
} | |||||
// unsafe | |||||
bool is_profiling() { | |||||
return m_status == Profiling; | |||||
} | |||||
void start(Mask mask) { | |||||
MGB_LOCK_GUARD(m_lock); | |||||
mgb_assert(m_status == NotStarted, "profiler already started"); | |||||
m_status = Profiling; | |||||
m_event_mask = mask; | |||||
m_host_timer.reset(); | |||||
} | |||||
Data stop() { | |||||
MGB_LOCK_GUARD(m_lock); | |||||
mgb_assert(m_status == Profiling, "profiler not active"); | |||||
m_status = Stopped; | |||||
for (auto&& record: m_record_list) { | |||||
std::visit([&](const auto& record){ | |||||
record.wait(); | |||||
}, record); | |||||
} | |||||
auto records = std::move(m_record_list); | |||||
return { records, m_host_timer.get_started_at() }; | |||||
auto& handler = m_collectors.at(type); | |||||
handler(id, tid, time, std::move(event)); | |||||
} | } | ||||
protected: | |||||
std::vector<Record> m_record_list; | |||||
Mask m_event_mask; | |||||
std::atomic<Status> m_status = NotStarted; | |||||
}; | }; | ||||
} // namespace imperative | } // namespace imperative | ||||