GitOrigin-RevId: fcb7974d62
release-1.8
@@ -13,6 +13,10 @@ genrule( | |||||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type simt $(@D) | CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type simt $(@D) | ||||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8816 $(@D) | CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8816 $(@D) | ||||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8832 $(@D) | CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations conv2d --type tensorop8832 $(@D) | ||||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_fprop --type simt $(@D) | |||||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_fprop --type tensorop884 $(@D) | |||||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type simt $(@D) | |||||
CUTLASS_WITH_LONG_PATH=true python3 $$GEN --operations dwconv2d_dgrad --type tensorop884 $(@D) | |||||
""", | """, | ||||
tools = ["//brain/megbrain/dnn/scripts/cutlass_generator:generator.py"], | tools = ["//brain/megbrain/dnn/scripts/cutlass_generator:generator.py"], | ||||
visibility = ["//visibility:public"], | visibility = ["//visibility:public"], | ||||
@@ -545,8 +545,9 @@ def GenerateConv2d( | |||||
epilogue: EpilogueFunctor, conv_kind: ConvKind | epilogue: EpilogueFunctor, conv_kind: ConvKind | ||||
) -> bool: | ) -> bool: | ||||
return ( | return ( | ||||
conv_kind == ConvKind.Dgrad | |||||
(conv_kind == ConvKind.Dgrad or conv_kind == ConvKind.Wgrad) | |||||
and epilogue != EpilogueFunctor.BiasAddLinearCombinationClamp | and epilogue != EpilogueFunctor.BiasAddLinearCombinationClamp | ||||
and epilogue != EpilogueFunctor.BiasAddLinearCombination | |||||
) | ) | ||||
# loop over all tile descriptions | # loop over all tile descriptions | ||||
@@ -3,6 +3,8 @@ from generator import ( | |||||
GenerateGemvOperations, | GenerateGemvOperations, | ||||
GenerateConv2dOperations, | GenerateConv2dOperations, | ||||
GenerateDeconvOperations, | GenerateDeconvOperations, | ||||
GenerateDwconv2dFpropOperations, | |||||
GenerateDwconv2dDgradOperations, | |||||
) | ) | ||||
@@ -21,6 +23,12 @@ def write_op_list(f, gen_op, gen_type): | |||||
operations = GenerateConv2dOperations(GenArg(gen_op, gen_type)) | operations = GenerateConv2dOperations(GenArg(gen_op, gen_type)) | ||||
elif gen_op == "deconv": | elif gen_op == "deconv": | ||||
operations = GenerateDeconvOperations(GenArg(gen_op, gen_type)) | operations = GenerateDeconvOperations(GenArg(gen_op, gen_type)) | ||||
elif gen_op == "dwconv2d_fprop": | |||||
operations = GenerateDwconv2dFpropOperations(GenArg(gen_op, gen_type)) | |||||
elif gen_op == "dwconv2d_dgrad": | |||||
operations = GenerateDwconv2dDgradOperations(GenArg(gen_op, gen_type)) | |||||
elif gen_op == "dwconv2d_wgrad": | |||||
pass | |||||
for op in operations: | for op in operations: | ||||
f.write(' "%s.cu",\n' % op.procedural_name()) | f.write(' "%s.cu",\n' % op.procedural_name()) | ||||
if gen_op != "gemv": | if gen_op != "gemv": | ||||
@@ -40,4 +48,8 @@ if __name__ == "__main__": | |||||
write_op_list(f, "conv2d", "simt") | write_op_list(f, "conv2d", "simt") | ||||
write_op_list(f, "conv2d", "tensorop8816") | write_op_list(f, "conv2d", "tensorop8816") | ||||
write_op_list(f, "conv2d", "tensorop8832") | write_op_list(f, "conv2d", "tensorop8832") | ||||
write_op_list(f, "dwconv2d_fprop", "simt") | |||||
write_op_list(f, "dwconv2d_fprop", "tensorop884") | |||||
write_op_list(f, "dwconv2d_dgrad", "simt") | |||||
write_op_list(f, "dwconv2d_dgrad", "tensorop884") | |||||
f.write("]") | f.write("]") |
@@ -1056,7 +1056,8 @@ def GenerateGemm_Simt(args): | |||||
return operations | return operations | ||||
def GenerateDwconv2dFprop_Simt(args): | |||||
# | |||||
def GenerateDwconv2d_Simt(args, conv_kind): | |||||
################################################################################ | ################################################################################ | ||||
# warps per threadblock | # warps per threadblock | ||||
################################################################################ | ################################################################################ | ||||
@@ -1121,10 +1122,10 @@ def GenerateDwconv2dFprop_Simt(args): | |||||
tile_descriptions = [ | tile_descriptions = [ | ||||
TileDescription([128, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), | TileDescription([128, 128, 8], 2, [4, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([128, 64, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), | TileDescription([128, 64, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([64, 128, 8], 2, [1, 4, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([64, 128, 8], 2, [2, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([128, 32, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), | TileDescription([128, 32, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([32, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), | TileDescription([32, 128, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([64, 64, 8], 2, [1, 2, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([64, 64, 8], 2, [2, 1, 1], math_inst, min_cc, max_cc), | |||||
TileDescription([32, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | TileDescription([32, 64, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([64, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | TileDescription([64, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | ||||
TileDescription([32, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | TileDescription([32, 32, 8], 2, [1, 1, 1], math_inst, min_cc, max_cc), | ||||
@@ -1232,7 +1233,7 @@ def GenerateDwconv2dFprop_Simt(args): | |||||
for alignment_src in alignment_constraints: | for alignment_src in alignment_constraints: | ||||
operations += GenerateConv2d( | operations += GenerateConv2d( | ||||
ConvType.DepthwiseConvolution, | ConvType.DepthwiseConvolution, | ||||
ConvKind.Fprop, | |||||
conv_kind, | |||||
[tile], | [tile], | ||||
layout[0], | layout[0], | ||||
layout[1], | layout[1], | ||||
@@ -1249,7 +1250,7 @@ def GenerateDwconv2dFprop_Simt(args): | |||||
# | # | ||||
def GenerateDwconv2dFprop_TensorOp_884(args): | |||||
def GenerateDwconv2d_TensorOp_884(args, conv_kind): | |||||
layouts = [(LayoutType.TensorNCHW, LayoutType.TensorNCHW)] | layouts = [(LayoutType.TensorNCHW, LayoutType.TensorNCHW)] | ||||
math_instructions = [ | math_instructions = [ | ||||
@@ -1296,7 +1297,7 @@ def GenerateDwconv2dFprop_TensorOp_884(args): | |||||
for alignment_src in alignment_constraints: | for alignment_src in alignment_constraints: | ||||
operations += GenerateConv2d( | operations += GenerateConv2d( | ||||
ConvType.DepthwiseConvolution, | ConvType.DepthwiseConvolution, | ||||
ConvKind.Fprop, | |||||
conv_kind, | |||||
tile_descriptions, | tile_descriptions, | ||||
layout[0], | layout[0], | ||||
layout[1], | layout[1], | ||||
@@ -1574,13 +1575,24 @@ def GenerateDeconvOperations(args): | |||||
def GenerateDwconv2dFpropOperations(args): | def GenerateDwconv2dFpropOperations(args): | ||||
if args.type == "simt": | if args.type == "simt": | ||||
return GenerateDwconv2dFprop_Simt(args) | |||||
return GenerateDwconv2d_Simt(args, ConvKind.Fprop) | |||||
else: | else: | ||||
assert args.type == "tensorop884", ( | assert args.type == "tensorop884", ( | ||||
"operation dwconv2d fprop only support" | "operation dwconv2d fprop only support" | ||||
"simt, tensorop884. (got:{})".format(args.type) | "simt, tensorop884. (got:{})".format(args.type) | ||||
) | ) | ||||
return GenerateDwconv2dFprop_TensorOp_884(args) | |||||
return GenerateDwconv2d_TensorOp_884(args, ConvKind.Fprop) | |||||
def GenerateDwconv2dDgradOperations(args): | |||||
if args.type == "simt": | |||||
return GenerateDwconv2d_Simt(args, ConvKind.Dgrad) | |||||
else: | |||||
assert args.type == "tensorop884", ( | |||||
"operation dwconv2d fprop only support" | |||||
"simt, tensorop884. (got:{})".format(args.type) | |||||
) | |||||
return GenerateDwconv2d_TensorOp_884(args, ConvKind.Dgrad) | |||||
def GenerateGemmOperations(args): | def GenerateGemmOperations(args): | ||||
@@ -1655,7 +1667,7 @@ if __name__ == "__main__": | |||||
elif args.operations == "dwconv2d_fprop": | elif args.operations == "dwconv2d_fprop": | ||||
operations = GenerateDwconv2dFpropOperations(args) | operations = GenerateDwconv2dFpropOperations(args) | ||||
elif args.operations == "dwconv2d_dgrad": | elif args.operations == "dwconv2d_dgrad": | ||||
pass | |||||
operations = GenerateDwconv2dDgradOperations(args) | |||||
elif args.operations == "dwconv2d_wgrad": | elif args.operations == "dwconv2d_wgrad": | ||||
pass | pass | ||||
@@ -183,6 +183,8 @@ if(MGE_WITH_CUDA) | |||||
gen_cutlass_kimpl(conv2d tensorop8832 CUTLASS_SOURCES) | gen_cutlass_kimpl(conv2d tensorop8832 CUTLASS_SOURCES) | ||||
gen_cutlass_kimpl(dwconv2d_fprop simt CUTLASS_SOURCES) | gen_cutlass_kimpl(dwconv2d_fprop simt CUTLASS_SOURCES) | ||||
gen_cutlass_kimpl(dwconv2d_fprop tensorop884 CUTLASS_SOURCES) | gen_cutlass_kimpl(dwconv2d_fprop tensorop884 CUTLASS_SOURCES) | ||||
gen_cutlass_kimpl(dwconv2d_dgrad simt CUTLASS_SOURCES) | |||||
gen_cutlass_kimpl(dwconv2d_dgrad tensorop884 CUTLASS_SOURCES) | |||||
list(APPEND SOURCES ${CUTLASS_SOURCES}) | list(APPEND SOURCES ${CUTLASS_SOURCES}) | ||||
list(APPEND SOURCES ${CUSOURCES}) | list(APPEND SOURCES ${CUSOURCES}) | ||||
endif() | endif() | ||||
@@ -304,12 +304,13 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||||
void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | ||||
using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam; | using AlgoParam = AlgoCutlassConvolutionBase::AlgoParam; | ||||
/// preferred algo | |||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | f32_implicit_bmm.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | ||||
f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | f32_implicit_bmm.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | ||||
f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | f32_implicit_bmm.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | ||||
f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | f32_implicit_bmm.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 1, 1, 1, 2}); | ||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 128, 8, 64, 32, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 64, 32, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | |||||
f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | f32_implicit_bmm.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 1, 1, 1, 2}); | ||||
f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2}); | f32_implicit_bmm.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 1, 1, 1, 2}); | ||||
f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | f32_implicit_bmm.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 1, 1, 1, 2}); | ||||
@@ -317,10 +318,11 @@ void ConvBiasForwardImpl::AlgoPack::fill_dwconv_algos() { | |||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
} | } | ||||
#if CUDA_VERSION >= 10020 | #if CUDA_VERSION >= 10020 | ||||
/// preferred algo | |||||
f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | f16_implicit_bmm.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | ||||
f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | f16_implicit_bmm.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | ||||
f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | f16_implicit_bmm.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | ||||
f16_implicit_bmm.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | f16_implicit_bmm.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | ||||
for (auto&& algo : f16_implicit_bmm) { | for (auto&& algo : f16_implicit_bmm) { | ||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
@@ -272,8 +272,10 @@ std::pair<int, int> get_tensor_alignment( | |||||
alignment_src /= src.dtype.size(1); | alignment_src /= src.dtype.size(1); | ||||
}; | }; | ||||
/// TODO: need a better way to check whether tensor core instruction is used | |||||
if (format == Format::NCHW32 || format == Format::NCHW32_NCHW4 || | if (format == Format::NCHW32 || format == Format::NCHW32_NCHW4 || | ||||
format == Format::NCHW64 || format == Format::NCHW64) { | |||||
format == Format::NCHW64 || format == Format::NCHW64 || | |||||
format == Format::NHWC) { | |||||
get_tensor_alignment_tensor_op(); | get_tensor_alignment_tensor_op(); | ||||
} else if ( | } else if ( | ||||
format == Format::NCHW4 || format == Format::NCHW4_NCHW || | format == Format::NCHW4 || format == Format::NCHW4_NCHW || | ||||
@@ -23,6 +23,7 @@ bool ConvBiasForwardImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||||
#define RETURN_IF_FALSE(stmt_) \ | #define RETURN_IF_FALSE(stmt_) \ | ||||
if (!(stmt_)) \ | if (!(stmt_)) \ | ||||
return false; | return false; | ||||
RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||||
RETURN_IF_FALSE( | RETURN_IF_FALSE( | ||||
args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | args.src_layout->is_contiguous() && args.dst_layout->is_contiguous()); | ||||
using Param = param::ConvBias; | using Param = param::ConvBias; | ||||
@@ -41,6 +41,7 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||||
all_algos.push_back(&algo); | all_algos.push_back(&algo); | ||||
int8_algos.push_back(&algo); | int8_algos.push_back(&algo); | ||||
} | } | ||||
fill_dwconv_algos(); | |||||
int8_algos.push_back(&int8_nchw_dotprod); | int8_algos.push_back(&int8_nchw_dotprod); | ||||
all_algos.push_back(&int8_nchw_dotprod); | all_algos.push_back(&int8_nchw_dotprod); | ||||
@@ -54,6 +55,39 @@ ConvolutionBackwardDataImpl::AlgoPack::AlgoPack() { | |||||
} | } | ||||
} | } | ||||
void ConvolutionBackwardDataImpl::AlgoPack::fill_dwconv_algos() { | |||||
{ | |||||
using AlgoParam = AlgoFloat32NCHWFMAImplicitBatchedGemm::AlgoParam; | |||||
/// preferred algo | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 128, 8, 32, 64, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 128, 8, 32, 64, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 64, 8, 64, 32, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{128, 32, 8, 64, 32, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 128, 8, 32, 64, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 64, 8, 32, 64, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 64, 8, 32, 64, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{32, 32, 8, 32, 32, 8, 2}); | |||||
implbmm_nchw_fma.emplace_back(AlgoParam{64, 32, 8, 64, 32, 8, 2}); | |||||
for (auto&& algo : implbmm_nchw_fma) { | |||||
all_algos.push_back(&algo); | |||||
} | |||||
} | |||||
#if CUDA_VERSION >= 10020 | |||||
{ | |||||
using AlgoParam = AlgoFloat16NCHWHMMAImplicitBatchedGemm::AlgoParam; | |||||
/// preferred algo | |||||
implbmm_nchw_hmma.emplace_back(AlgoParam{64, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 128, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 256, 32, 64, 64, 32, 8, 8, 4, 2}); | |||||
implbmm_nchw_hmma.emplace_back(AlgoParam{128, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
implbmm_nchw_hmma.emplace_back(AlgoParam{64, 64, 32, 32, 32, 32, 8, 8, 4, 2}); | |||||
for (auto&& algo : implbmm_nchw_hmma) { | |||||
all_algos.push_back(&algo); | |||||
} | |||||
} | |||||
#endif | |||||
} | |||||
MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvolutionBackwardDataImpl) | MEGDNN_DEF_GET_ALGO_FROM_DESC(ConvolutionBackwardDataImpl) | ||||
ConvolutionBackwardDataImpl::AlgoCUDNN* ConvolutionBackwardDataImpl::AlgoPack:: | ConvolutionBackwardDataImpl::AlgoCUDNN* ConvolutionBackwardDataImpl::AlgoPack:: | ||||
@@ -41,7 +41,9 @@ public: | |||||
CUDA_GROUP_CONV_GENERAL, | CUDA_GROUP_CONV_GENERAL, | ||||
CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8, | CUDA_IMPLICIT_GEMM_NCHW4_DOTPROD_INT8, | ||||
CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8, | CUDA_IMPLICIT_GEMM_NCHW_DOTPROD_INT8, | ||||
CUDA_IMPLICIT_GEMM_NHWC_IMMA_INT8 | |||||
CUDA_IMPLICIT_GEMM_NHWC_IMMA_INT8, | |||||
CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32, | |||||
CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16, | |||||
}; | }; | ||||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | ||||
@@ -315,6 +317,82 @@ private: | |||||
std::string m_name; | std::string m_name; | ||||
}; | }; | ||||
class ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm final | |||||
: public AlgoBase { | |||||
public: | |||||
struct AlgoParam { | |||||
int threadblock_m; | |||||
int threadblock_n; | |||||
int threadblock_k; | |||||
int warp_m; | |||||
int warp_n; | |||||
int warp_k; | |||||
int stage; | |||||
std::string to_string() { | |||||
return ssprintf( | |||||
"_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n, | |||||
threadblock_k, warp_m, warp_n, warp_k, stage); | |||||
} | |||||
}; | |||||
AlgoFloat32NCHWFMAImplicitBatchedGemm(AlgoParam algo_param) | |||||
: m_algo_param{algo_param}, | |||||
m_name{ssprintf( | |||||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM%s", | |||||
m_algo_param.to_string().c_str())} {} | |||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); } | |||||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_FMA_NCHW_F32) | |||||
private: | |||||
const void* get_available_op(const SizeArgs& args) const; | |||||
AlgoParam m_algo_param; | |||||
std::string m_name; | |||||
}; | |||||
class ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm final | |||||
: public AlgoBase { | |||||
public: | |||||
/// add instruction shape as member of algo param, because f16 tensor core has 2 | |||||
/// different matrix shapes (i.e. mma.884 and mma.1688) | |||||
struct AlgoParam { | |||||
int threadblock_m; | |||||
int threadblock_n; | |||||
int threadblock_k; | |||||
int warp_m; | |||||
int warp_n; | |||||
int warp_k; | |||||
int instruction_m; | |||||
int instruction_n; | |||||
int instruction_k; | |||||
int stage; | |||||
std::string to_string() { | |||||
return ssprintf( | |||||
"_%dX%dX%d_%dX%dX%d_mma%dX%dX%d_%dstage", threadblock_m, | |||||
threadblock_n, threadblock_k, warp_m, warp_n, warp_k, instruction_m, | |||||
instruction_n, instruction_k, stage); | |||||
} | |||||
}; | |||||
AlgoFloat16NCHWHMMAImplicitBatchedGemm(AlgoParam algo_param) | |||||
: m_algo_param{algo_param}, | |||||
m_name{ssprintf( | |||||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM%s", | |||||
m_algo_param.to_string().c_str())} {} | |||||
bool is_available(const SizeArgs& args) const override; | |||||
size_t get_workspace_in_bytes(const SizeArgs& args) const override { return 0; } | |||||
void exec(const ExecArgs& args) const override; | |||||
const char* name() const override { return m_name.c_str(); } | |||||
AlgoAttribute attribute() const override { return AlgoAttribute::REPRODUCIBLE; } | |||||
MEGDNN_DECL_ALGO_TYPE(CUDA_IMPLICIT_BATCHED_GEMM_HMMA_NCHW_F16) | |||||
private: | |||||
const void* get_available_op(const SizeArgs& args) const; | |||||
AlgoParam m_algo_param; | |||||
std::string m_name; | |||||
}; | |||||
class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | ||||
// defined in cudnn.cpp | // defined in cudnn.cpp | ||||
void fill_cudnn_algos(); | void fill_cudnn_algos(); | ||||
@@ -322,6 +400,7 @@ class ConvolutionBackwardDataImpl::AlgoPack : NonCopyableObj { | |||||
void fill_int8_dp4a_algos(); | void fill_int8_dp4a_algos(); | ||||
// defined in implicit_gemm_int8_nhwc_imma.cpp | // defined in implicit_gemm_int8_nhwc_imma.cpp | ||||
void fill_int8_imma_algos(); | void fill_int8_imma_algos(); | ||||
void fill_dwconv_algos(); | |||||
AlgoBase::Mapper m_all_algos_map; | AlgoBase::Mapper m_all_algos_map; | ||||
@@ -337,6 +416,8 @@ public: | |||||
std::vector<AlgoInt8NCHW4DotProdImplicitGemm> int8_nchw4_dotprod; | std::vector<AlgoInt8NCHW4DotProdImplicitGemm> int8_nchw4_dotprod; | ||||
AlgoInt8NCHWDotProdImplicitGemm int8_nchw_dotprod; | AlgoInt8NCHWDotProdImplicitGemm int8_nchw_dotprod; | ||||
std::vector<AlgoInt8NHWCIMMAImplicitGemm> int8_nhwc_imma; | std::vector<AlgoInt8NHWCIMMAImplicitGemm> int8_nhwc_imma; | ||||
std::vector<AlgoFloat32NCHWFMAImplicitBatchedGemm> implbmm_nchw_fma; | |||||
std::vector<AlgoFloat16NCHWHMMAImplicitBatchedGemm> implbmm_nchw_hmma; | |||||
std::vector<AlgoBase*> | std::vector<AlgoBase*> | ||||
//! all algorithms | //! all algorithms | ||||
@@ -0,0 +1,146 @@ | |||||
/** | |||||
* \file | |||||
* dnn/src/cuda/convolution/backward_data/implicit_batched_gemm_float16_nchw_hmma.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "src/cuda/convolution/backward_data/algo.h" | |||||
#include "src/cuda/cutlass/singleton.h" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace cutlass::library; | |||||
const void* ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm:: | |||||
get_available_op(const SizeArgs& args) const { | |||||
int alignment_diff = 0; | |||||
int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||||
for (int candidate : {16, 4, 2}) { | |||||
if (wo % candidate == 0) | |||||
alignment_diff = candidate; | |||||
} | |||||
alignment_diff /= args.diff_layout->dtype.size(1); | |||||
NumericTypeID accumulator_dtype = | |||||
args.opr->param().compute_mode == param::Convolution::ComputeMode::DEFAULT | |||||
? NumericTypeID::kF16 | |||||
: NumericTypeID::kF32; | |||||
ConvolutionKey key{ | |||||
cutlass::conv::Operator::kDgrad, | |||||
NumericTypeID::kF16, | |||||
LayoutTypeID::kTensorNCHW, | |||||
NumericTypeID::kF16, | |||||
LayoutTypeID::kTensorNCHW, | |||||
NumericTypeID::kF16, | |||||
LayoutTypeID::kTensorNCHW, | |||||
NumericTypeID::kF16, | |||||
LayoutTypeID::kTensorNCHW, | |||||
accumulator_dtype, | |||||
cutlass::conv::ConvType::kDepthwiseConvolution, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
m_algo_param.instruction_m, | |||||
m_algo_param.instruction_n, | |||||
m_algo_param.instruction_k, | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombination, | |||||
m_algo_param.stage, | |||||
cutlass::conv::SpecialOptimizeDesc::NONE, | |||||
alignment_diff, | |||||
1, | |||||
false}; | |||||
return (void*)Singleton::get().operation_table.find_op(key); | |||||
} | |||||
bool ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
#define RETURN_IF_FALSE(stmt_) \ | |||||
if (!(stmt_)) \ | |||||
return false; | |||||
RETURN_IF_FALSE(is_compute_capability_required(7, 0)); | |||||
RETURN_IF_FALSE( | |||||
args.diff_layout->is_contiguous() && args.grad_layout->is_contiguous()); | |||||
using Param = param::Convolution; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
RETURN_IF_FALSE( | |||||
param.format == Format::NCHW && | |||||
args.diff_layout->dtype.enumv() == DTypeEnum::Float16 && | |||||
args.filter_layout->dtype.enumv() == DTypeEnum::Float16 && | |||||
args.grad_layout->dtype.enumv() == DTypeEnum::Float16); | |||||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||||
// check if channelwise convolution | |||||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||||
const auto* op = get_available_op(args); | |||||
RETURN_IF_FALSE(op != nullptr); | |||||
return true; | |||||
#undef RETURN_IF_FALSE | |||||
} | |||||
void ConvolutionBackwardDataImpl::AlgoFloat16NCHWHMMAImplicitBatchedGemm::exec( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||||
wo = args.diff_layout->operator[](3); | |||||
int hi = args.grad_layout->operator[](2), wi = args.grad_layout->operator[](3); | |||||
int co = fm.group, ci = co, groups = co; | |||||
int fh = fm.spatial[0], fw = fm.spatial[1]; | |||||
int sh = fm.stride[0], sw = fm.stride[1]; | |||||
int ph = fm.padding[0], pw = fm.padding[1]; | |||||
int dh = param.dilate_h, dw = param.dilate_w; | |||||
// check if channelwise convolution | |||||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
float alpha = 1.f; | |||||
float beta = 0.f; | |||||
float gamma = 0.f; | |||||
float delta = 0.f; | |||||
const Operation* op = (const Operation*)get_available_op(args); | |||||
cutlass::conv::Conv2dProblemSize problem_size{ | |||||
n, hi, wi, ci, co, fh, fw, ho, | |||||
wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||||
1, // split k slices, always 1 | |||||
groups, // groups | |||||
}; | |||||
cutlass::library::ConvolutionArguments conv_args{ | |||||
problem_size, | |||||
args.diff_tensor->raw_ptr(), | |||||
args.filter_tensor->raw_ptr(), | |||||
nullptr, | |||||
nullptr, | |||||
args.grad_tensor->raw_ptr(), | |||||
&alpha, | |||||
&beta, | |||||
&gamma, | |||||
&delta, | |||||
nullptr, | |||||
nullptr, | |||||
nullptr, | |||||
nullptr}; | |||||
cutlass_check(op->run(&conv_args, nullptr, stream)); | |||||
after_kernel_launch(); | |||||
} | |||||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,141 @@ | |||||
/** | |||||
* \file | |||||
* dnn/src/cuda/convolution/backward_data/implicit_batched_gemm_float32_nchw_fma.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "src/cuda/convolution/backward_data/algo.h" | |||||
#include "src/cuda/cutlass/singleton.h" | |||||
#include "src/cuda/utils.h" | |||||
using namespace megdnn; | |||||
using namespace cuda; | |||||
using namespace cutlass::library; | |||||
const void* ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm:: | |||||
get_available_op(const SizeArgs& args) const { | |||||
int alignment_diff = 0; | |||||
int wo = args.diff_layout->dtype.size(args.diff_layout->operator[](3)); | |||||
for (int candidate : {16, 4}) { | |||||
if (wo % candidate == 0) | |||||
alignment_diff = candidate; | |||||
} | |||||
alignment_diff /= args.diff_layout->dtype.size(1); | |||||
ConvolutionKey key{ | |||||
cutlass::conv::Operator::kDgrad, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kTensorNCHW, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kTensorNCHW, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kTensorNCHW, | |||||
NumericTypeID::kF32, | |||||
LayoutTypeID::kTensorNCHW, | |||||
NumericTypeID::kF32, | |||||
cutlass::conv::ConvType::kDepthwiseConvolution, | |||||
m_algo_param.threadblock_m, | |||||
m_algo_param.threadblock_n, | |||||
m_algo_param.threadblock_k, | |||||
m_algo_param.warp_m, | |||||
m_algo_param.warp_n, | |||||
m_algo_param.warp_k, | |||||
1, | |||||
1, | |||||
1, | |||||
cutlass::epilogue::EpilogueType::kBiasAddLinearCombination, | |||||
m_algo_param.stage, | |||||
cutlass::conv::SpecialOptimizeDesc::NONE, | |||||
alignment_diff, | |||||
1, | |||||
false}; | |||||
return (void*)Singleton::get().operation_table.find_op(key); | |||||
} | |||||
bool ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::is_available( | |||||
const SizeArgs& args) const { | |||||
#define RETURN_IF_FALSE(stmt_) \ | |||||
if (!(stmt_)) \ | |||||
return false; | |||||
RETURN_IF_FALSE( | |||||
args.diff_layout->is_contiguous() && args.grad_layout->is_contiguous()); | |||||
using Param = param::Convolution; | |||||
using Format = Param::Format; | |||||
using Sparse = Param::Sparse; | |||||
using Mode = Param::Mode; | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
RETURN_IF_FALSE( | |||||
param.format == Format::NCHW && | |||||
args.diff_layout->dtype.enumv() == DTypeEnum::Float32 && | |||||
args.filter_layout->dtype.enumv() == DTypeEnum::Float32 && | |||||
args.grad_layout->dtype.enumv() == DTypeEnum::Float32); | |||||
RETURN_IF_FALSE(param.sparse == Sparse::GROUP); | |||||
RETURN_IF_FALSE(param.mode == Mode::CROSS_CORRELATION); | |||||
// check if channelwise convolution | |||||
RETURN_IF_FALSE(fm.icpg == 1 && fm.ocpg == 1); | |||||
const auto* op = get_available_op(args); | |||||
RETURN_IF_FALSE(op != nullptr); | |||||
return true; | |||||
#undef RETURN_IF_FALSE | |||||
} | |||||
void ConvolutionBackwardDataImpl::AlgoFloat32NCHWFMAImplicitBatchedGemm::exec( | |||||
const ExecArgs& args) const { | |||||
auto&& param = args.opr->param(); | |||||
auto&& fm = args.filter_meta; | |||||
int n = args.diff_layout->operator[](0), ho = args.diff_layout->operator[](2), | |||||
wo = args.diff_layout->operator[](3); | |||||
int hi = args.grad_layout->operator[](2), wi = args.grad_layout->operator[](3); | |||||
int co = fm.group, ci = co, groups = co; | |||||
int fh = fm.spatial[0], fw = fm.spatial[1]; | |||||
int sh = fm.stride[0], sw = fm.stride[1]; | |||||
int ph = fm.padding[0], pw = fm.padding[1]; | |||||
int dh = param.dilate_h, dw = param.dilate_w; | |||||
// check if channelwise convolution | |||||
megdnn_assert(fm.icpg == 1 && fm.ocpg == 1); | |||||
auto&& stream = cuda_stream(args.opr->handle()); | |||||
float alpha = 1.f; | |||||
float beta = 0.f; | |||||
float gamma = 0.f; | |||||
float delta = 0.f; | |||||
const Operation* op = (const Operation*)get_available_op(args); | |||||
cutlass::conv::Conv2dProblemSize problem_size{ | |||||
n, hi, wi, ci, co, fh, fw, ho, | |||||
wo, ph, pw, sh, sw, dh, dw, cutlass::conv::Mode::kCrossCorrelation, | |||||
1, // split k slices, always 1 | |||||
groups, // groups | |||||
}; | |||||
cutlass::library::ConvolutionArguments conv_args{ | |||||
problem_size, | |||||
args.diff_tensor->raw_ptr(), | |||||
args.filter_tensor->raw_ptr(), | |||||
nullptr, | |||||
nullptr, | |||||
args.grad_tensor->raw_ptr(), | |||||
&alpha, | |||||
&beta, | |||||
&gamma, | |||||
&delta, | |||||
nullptr, | |||||
nullptr, | |||||
nullptr, | |||||
nullptr}; | |||||
cutlass_check(op->run(&conv_args, nullptr, stream)); | |||||
after_kernel_launch(); | |||||
} | |||||
// vim: syntax=cpp.doxygen |
@@ -54,7 +54,7 @@ const void* ConvolutionBackwardDataImpl::AlgoInt8NCHW4DotProdImplicitGemm:: | |||||
m_algo_param.stage, | m_algo_param.stage, | ||||
special_optimization, | special_optimization, | ||||
4, | 4, | ||||
16, | |||||
4, | |||||
false}; | false}; | ||||
return (void*)Singleton::get().operation_table.find_op(key); | return (void*)Singleton::get().operation_table.find_op(key); | ||||
} | } | ||||
@@ -102,6 +102,8 @@ public: | |||||
class AlgoInt8NCHW4DotProdImplicitGemm; | class AlgoInt8NCHW4DotProdImplicitGemm; | ||||
class AlgoInt8NCHWDotProdImplicitGemm; | class AlgoInt8NCHWDotProdImplicitGemm; | ||||
class AlgoInt8NHWCIMMAImplicitGemm; | class AlgoInt8NHWCIMMAImplicitGemm; | ||||
class AlgoFloat32NCHWFMAImplicitBatchedGemm; | |||||
class AlgoFloat16NCHWHMMAImplicitBatchedGemm; | |||||
class AlgoPack; | class AlgoPack; | ||||
@@ -55,6 +55,7 @@ void initialize_all_gemm_simt_operations(Manifest& manifest); | |||||
void initialize_all_conv2d_simt_operations(Manifest& manifest); | void initialize_all_conv2d_simt_operations(Manifest& manifest); | ||||
void initialize_all_deconv_simt_operations(Manifest& manifest); | void initialize_all_deconv_simt_operations(Manifest& manifest); | ||||
void initialize_all_dwconv2d_fprop_simt_operations(Manifest& manifest); | void initialize_all_dwconv2d_fprop_simt_operations(Manifest& manifest); | ||||
void initialize_all_dwconv2d_dgrad_simt_operations(Manifest& manifest); | |||||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | ||||
void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | void initialize_all_gemm_tensorop884_operations(Manifest& manifest); | ||||
void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | void initialize_all_gemm_tensorop1688_operations(Manifest& manifest); | ||||
@@ -62,6 +63,7 @@ void initialize_all_conv2d_tensorop8816_operations(Manifest& manifest); | |||||
void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | void initialize_all_conv2d_tensorop8832_operations(Manifest& manifest); | ||||
void initialize_all_deconv_tensorop8816_operations(Manifest& manifest); | void initialize_all_deconv_tensorop8816_operations(Manifest& manifest); | ||||
void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | void initialize_all_dwconv2d_fprop_tensorop884_operations(Manifest& manifest); | ||||
void initialize_all_dwconv2d_dgrad_tensorop884_operations(Manifest& manifest); | |||||
#endif | #endif | ||||
void initialize_all(Manifest& manifest) { | void initialize_all(Manifest& manifest) { | ||||
@@ -69,6 +71,7 @@ void initialize_all(Manifest& manifest) { | |||||
initialize_all_conv2d_simt_operations(manifest); | initialize_all_conv2d_simt_operations(manifest); | ||||
initialize_all_deconv_simt_operations(manifest); | initialize_all_deconv_simt_operations(manifest); | ||||
initialize_all_dwconv2d_fprop_simt_operations(manifest); | initialize_all_dwconv2d_fprop_simt_operations(manifest); | ||||
initialize_all_dwconv2d_dgrad_simt_operations(manifest); | |||||
#if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | #if defined(CUTLASS_ARCH_MMA_SM75_SUPPORTED) && CUTLASS_ARCH_MMA_SM75_SUPPORTED | ||||
initialize_all_gemm_tensorop884_operations(manifest); | initialize_all_gemm_tensorop884_operations(manifest); | ||||
initialize_all_gemm_tensorop1688_operations(manifest); | initialize_all_gemm_tensorop1688_operations(manifest); | ||||
@@ -76,6 +79,7 @@ void initialize_all(Manifest& manifest) { | |||||
initialize_all_conv2d_tensorop8832_operations(manifest); | initialize_all_conv2d_tensorop8832_operations(manifest); | ||||
initialize_all_deconv_tensorop8816_operations(manifest); | initialize_all_deconv_tensorop8816_operations(manifest); | ||||
initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | initialize_all_dwconv2d_fprop_tensorop884_operations(manifest); | ||||
initialize_all_dwconv2d_dgrad_tensorop884_operations(manifest); | |||||
#endif | #endif | ||||
} | } | ||||
@@ -569,6 +569,7 @@ public: | |||||
}); | }); | ||||
return ret; | return ret; | ||||
} | } | ||||
megdnn_assert(false, "Expected algo not found: %s\n", policy_name.name.c_str()); | |||||
return ret; | return ret; | ||||
} | } | ||||
@@ -497,15 +497,15 @@ void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* | |||||
} | } | ||||
} // namespace | } // namespace | ||||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) \ | |||||
cb(1, 128, 128, 8, 32, 64, 8); \ | |||||
cb(2, 128, 64, 8, 64, 32, 8); \ | |||||
cb(3, 128, 32, 8, 64, 32, 8); \ | |||||
cb(4, 64, 128, 8, 64, 32, 8); \ | |||||
cb(5, 32, 128, 8, 32, 64, 8); \ | |||||
cb(6, 64, 64, 8, 64, 32, 8); \ | |||||
cb(7, 32, 64, 8, 32, 64, 8); \ | |||||
cb(8, 32, 32, 8, 32, 32, 8); \ | |||||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) \ | |||||
cb(1, 128, 128, 8, 32, 64, 8); \ | |||||
cb(2, 128, 64, 8, 64, 32, 8); \ | |||||
cb(3, 128, 32, 8, 64, 32, 8); \ | |||||
cb(4, 64, 128, 8, 32, 64, 8); \ | |||||
cb(5, 32, 128, 8, 32, 64, 8); \ | |||||
cb(6, 64, 64, 8, 32, 64, 8); \ | |||||
cb(7, 32, 64, 8, 32, 64, 8); \ | |||||
cb(8, 32, 32, 8, 32, 32, 8); \ | |||||
cb(9, 64, 32, 8, 64, 32, 8); | cb(9, 64, 32, 8, 64, 32, 8); | ||||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | #define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | ||||
@@ -516,16 +516,29 @@ void check_chanwise(DType io_type, DType comp_type, Handle* handle, const char* | |||||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | "_" #wm "X" #wn "X" #wk "_2stage"); \ | ||||
} | } | ||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) | |||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||||
#undef cb | #undef cb | ||||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL | |||||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) \ | |||||
cb(1, 128, 128, 32, 32, 32, 32); \ | |||||
cb(2, 128, 256, 32, 64, 64, 32); \ | |||||
cb(3, 128, 64, 32, 32, 32, 32); \ | |||||
cb(4, 64, 128, 32, 32, 32, 32); \ | |||||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||||
TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_FMA_##tag) { \ | |||||
check_chanwise<ConvolutionBackwardData>( \ | |||||
dtype::Float32(), dtype::Float32(), handle_cuda(), \ | |||||
"FLOAT32_NCHW_FMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | |||||
} | |||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL(cb) | |||||
#undef cb | |||||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FMA_KERNEL | |||||
#define MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) \ | |||||
cb(1, 128, 128, 32, 32, 32, 32); \ | |||||
cb(2, 128, 256, 32, 64, 64, 32); \ | |||||
cb(3, 128, 64, 32, 32, 32, 32); \ | |||||
cb(4, 64, 128, 32, 32, 32, 32); \ | |||||
cb(5, 64, 64, 32, 32, 32, 32); | cb(5, 64, 64, 32, 32, 32, 32); | ||||
// check both ioc16 and io16xc32 | // check both ioc16 and io16xc32 | ||||
@@ -541,9 +554,26 @@ MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_FMA_KERNEL(cb) | |||||
"_" #wm "X" #wn "X" #wk "_2stage"); \ | "_" #wm "X" #wn "X" #wk "_2stage"); \ | ||||
} | } | ||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL(cb) | |||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||||
#undef cb | |||||
#define cb(tag, tbm, tbn, tbk, wm, wn, wk) \ | |||||
TEST_F(CUDA, CHANWISE_CONVOLUTION_BACKWARD_DATA_CUTLASS_HMMA_##tag) { \ | |||||
check_chanwise<ConvolutionBackwardData>( \ | |||||
dtype::Float16(), dtype::Float16(), handle_cuda(), \ | |||||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||||
"_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||||
check_chanwise<ConvolutionBackwardData>( \ | |||||
dtype::Float16(), dtype::Float32(), handle_cuda(), \ | |||||
"FLOAT16_NCHW_HMMA_IMPLICIT_BATCHED_GEMM_" #tbm "X" #tbn "X" #tbk \ | |||||
"_" #wm "X" #wn "X" #wk "_mma8X8X4_2stage"); \ | |||||
} | |||||
MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_HMMA_KERNEL(cb) | |||||
#undef cb | #undef cb | ||||
#undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL | #undef MEGDNN_FOREACH_CUTLASS_CHANWISE_CONV_FWD_HMMA_KERNEL | ||||
#if MEGDNN_WITH_BENCHMARK | #if MEGDNN_WITH_BENCHMARK | ||||
@@ -1324,6 +1354,81 @@ TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_FORWARD_LARGE_KERNEL) { | |||||
// clang-format on | // clang-format on | ||||
} | } | ||||
TEST_F(CUDA, BENCHMARK_CHANWISE_CONV_BACKWARD_DATA_LARGE_KERNEL) { | |||||
CUBenchmarker<ConvolutionBackwardData> bencher(handle_cuda()); | |||||
size_t RUNS = 100; | |||||
bencher.set_display(false).set_times(RUNS); | |||||
std::unique_ptr<OprProxy<ConvolutionBackwardData>> proxy{ | |||||
new OprProxy<ConvolutionBackwardData>{true}}; | |||||
bencher.set_proxy(proxy); | |||||
Convolution::Param param; | |||||
param.format = ConvBias::Param::Format::NCHW; | |||||
param.sparse = Convolution::Param::Sparse::GROUP; | |||||
NormalRNG rng; | |||||
auto run = [&](size_t batch, size_t c, size_t ih, size_t iw, size_t f, size_t s) { | |||||
param.pad_h = f / 2; | |||||
param.pad_w = f / 2; | |||||
param.stride_h = s; | |||||
param.stride_w = s; | |||||
param.compute_mode = param::Convolution::ComputeMode::DEFAULT; | |||||
TensorShape src = {batch, c, ih, iw}, filter = {c, 1, 1, f, f}; | |||||
TensorLayout dst_layout; | |||||
auto opr = handle_cuda()->create_operator<Convolution>(); | |||||
opr->param() = param; | |||||
opr->deduce_layout( | |||||
{src, dtype::Float32()}, {filter, dtype::Float32()}, dst_layout); | |||||
float bandwith = static_cast<float>( | |||||
src.total_nr_elems() + filter.total_nr_elems() + | |||||
dst_layout.total_nr_elems()) / | |||||
(1024 * 1024 * 1024) * 1e3; | |||||
bencher.set_param(param) | |||||
.set_dtype(0, dtype::Float32()) | |||||
.set_dtype(1, dtype::Float32()) | |||||
.set_dtype(2, dtype::Float32()) | |||||
.set_rng(0, &rng) | |||||
.set_rng(1, &rng); | |||||
bencher.proxy()->target_execution_policy = {}; | |||||
auto time_in_ms_fp32 = bencher.execs({filter, src, src}) / RUNS; | |||||
bencher.set_param(param) | |||||
.set_dtype(0, dtype::Float16()) | |||||
.set_dtype(1, dtype::Float16()) | |||||
.set_dtype(2, dtype::Float16()) | |||||
.set_rng(0, &rng) | |||||
.set_rng(1, &rng); | |||||
bencher.proxy()->target_execution_policy = {}; | |||||
auto time_in_ms_fp16 = bencher.execs({filter, src, src}) / RUNS; | |||||
bencher.proxy()->target_execution_policy.algo.reset(); | |||||
param.compute_mode = param::Convolution::ComputeMode::FLOAT32; | |||||
bencher.set_param(param); | |||||
auto time_in_ms_pseudo_fp16 = bencher.execs({src, filter, {}}) / RUNS; | |||||
printf("stride=%zu src=%s, filter=%s, float32: %.2fms %.2fGB/s " | |||||
"float16: %.2fms %.2fGB/s " | |||||
"pseudo float16: %.2fms %.2fGB/s " | |||||
"speedup: " | |||||
"%0.2f (fp16/fp32) %.2f (fp16/pseudo fp16)\n", | |||||
s, src.to_string().c_str(), filter.to_string().c_str(), time_in_ms_fp32, | |||||
bandwith * 4 / time_in_ms_fp32, time_in_ms_fp16, | |||||
bandwith * 2 / time_in_ms_fp16, time_in_ms_pseudo_fp16, | |||||
bandwith * 2 / time_in_ms_pseudo_fp16, time_in_ms_fp32 / time_in_ms_fp16, | |||||
time_in_ms_pseudo_fp16 / time_in_ms_fp16); | |||||
}; | |||||
// clang-format off | |||||
for (size_t b : {32, 64}) | |||||
for (size_t f : {3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31}) { | |||||
run(b, 384, 32, 32, f, 1); | |||||
run(b, 384, 64, 64, f, 1); | |||||
} | |||||
// clang-format on | |||||
} | |||||
#endif | #endif | ||||
// vim: syntax=cpp.doxygen | // vim: syntax=cpp.doxygen |