GitOrigin-RevId: d5ef5356f6
release-1.1
@@ -6,11 +6,14 @@ | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain/opr/dnn/convolution.h" | |||
#include "megbrain/opr/io.h" | |||
#include "megbrain/opr/search_policy/algo_chooser.h" | |||
#include "megbrain/opr/search_policy/profiler.h" | |||
#include "megbrain/graph/grad_impl.h" | |||
#include "megbrain/system.h" | |||
@@ -19,28 +22,15 @@ | |||
#include "megdnn/oprs/utils.h" | |||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
//! fix it if there is another graceful way. | |||
#include "megdnn/oprs.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_opr_convolution) | |||
#define MIDOUT_B(...) \ | |||
MIDOUT_BEGIN(megbrain_opr_convolution, __VA_ARGS__) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
#include "../internal/megdnn_opr_wrapper.inl" | |||
#include "../internal/invoke.h" | |||
#include "../internal/megdnn_opr_wrapper.inl" | |||
#include "../search_policy/workspace_need_limit_getter.inl" | |||
#include <array> | |||
#include <chrono> | |||
#include <cstring> | |||
#include <thread> | |||
using namespace mgb; | |||
using namespace opr; | |||
using namespace cg::static_infer; | |||
@@ -48,771 +38,6 @@ using intl::WorkspaceLimitGetter; | |||
#define CACHE_KEY_VERSION "v2" | |||
#define MGB_FOREACH_FASTRUN_OPR(cb) \ | |||
cb(ConvolutionForward); \ | |||
cb(ConvBiasForward); \ | |||
cb(ConvolutionBackwardData); \ | |||
cb(ConvolutionBackwardFilter); \ | |||
cb(Convolution3DForward); \ | |||
cb(Convolution3DBackwardData); \ | |||
cb(Convolution3DBackwardFilter); \ | |||
cb(LocalShareForward); \ | |||
cb(LocalShareBackwardData); \ | |||
cb(LocalShareBackwardFilter); \ | |||
cb(DeformableConvForward); \ | |||
cb(DeformableConvBackwardFilter); \ | |||
cb(DeformableConvBackwardData); \ | |||
cb(BatchConvBiasForward); | |||
namespace mgb { | |||
namespace opr { | |||
namespace intl { | |||
#define cb(_Opr) \ | |||
template <> \ | |||
struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \ | |||
static constexpr bool val = true; \ | |||
}; | |||
MGB_FOREACH_FASTRUN_OPR(cb) | |||
#undef cb | |||
} // namespace intl | |||
} // namespace opr | |||
} // namespace mgb | |||
namespace { | |||
template <class MegDNNOpr> | |||
struct MegDNNOpr2MGBOpr; | |||
#define cb(_Opr) \ | |||
template <> \ | |||
struct MegDNNOpr2MGBOpr<megdnn::_Opr> { \ | |||
using MGBOpr = opr::_Opr; \ | |||
}; | |||
MGB_FOREACH_FASTRUN_OPR(cb) | |||
#undef cb | |||
template <typename Opr> | |||
struct OprArityTrait; | |||
template <typename Opr, int _arity_in, int _arity_out> | |||
struct OprArityTraitTmpl { | |||
static constexpr int arity_in = _arity_in; | |||
static constexpr int arity_out = _arity_out; | |||
static constexpr int arity = arity_in + arity_out; | |||
}; | |||
#define INST_ARITY(_Opr, _in, _out) \ | |||
template <> \ | |||
struct OprArityTrait<_Opr> : public OprArityTraitTmpl<_Opr, _in, _out> {}; | |||
INST_ARITY(megdnn::ConvolutionBackwardData, 2, 1); | |||
INST_ARITY(megdnn::ConvolutionBackwardFilter, 2, 1); | |||
INST_ARITY(megdnn::Convolution3DForward, 2, 1); | |||
INST_ARITY(megdnn::Convolution3DBackwardData, 2, 1); | |||
INST_ARITY(megdnn::Convolution3DBackwardFilter, 2, 1); | |||
INST_ARITY(megdnn::LocalShareForward, 2, 1); | |||
INST_ARITY(megdnn::LocalShareBackwardData, 2, 1); | |||
INST_ARITY(megdnn::LocalShareBackwardFilter, 2, 1); | |||
INST_ARITY(megdnn::Convolution, 2, 1); | |||
INST_ARITY(megdnn::DeformableConvForward, 4, 1); | |||
INST_ARITY(megdnn::DeformableConvBackwardFilter, 4, 1); | |||
INST_ARITY(megdnn::BatchConvBiasForward, 4, 1); | |||
INST_ARITY(megdnn::ConvBias, 4, 1); | |||
INST_ARITY(megdnn::DeformableConvBackwardData, 5, 3); | |||
#undef INST_ARITY | |||
template <typename Opr> | |||
constexpr bool opr_supports_preprocess() { | |||
return std::is_same<Opr, megdnn::ConvolutionForward>::value || | |||
std::is_same<Opr, megdnn::ConvBias>::value; | |||
} | |||
template <typename Opr, bool has_prep> | |||
struct PreprocessFilterImpl { | |||
using T = union {}; | |||
}; | |||
template <typename Opr> | |||
struct PreprocessFilterImpl<Opr, true> { | |||
using T = typename Opr::PreprocessedFilter; | |||
}; | |||
template <typename Opr> | |||
using PreprocessFilter = | |||
typename PreprocessFilterImpl<Opr, opr_supports_preprocess<Opr>()>::T; | |||
// timeout delta to be added with fastest known algorithm for new algos | |||
constexpr double TIMEOUT_TOLERANCE = 2; | |||
template <typename Opr> | |||
struct AlgoChooserFuncId {}; | |||
#define DEF_FUNC_ID(func) \ | |||
template <> \ | |||
struct AlgoChooserFuncId<megdnn::func> { \ | |||
__attribute__( \ | |||
(unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \ | |||
static_cast<sys::TimedFuncInvoker::FuncId>( \ | |||
MGB_HASH_STR("megdnn::" #func)); \ | |||
}; | |||
MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID) | |||
#undef DEF_FUNC_ID | |||
/* =================== TimedProfiler =================== */ | |||
/*! | |||
* \brief profile a megdnn opr conv with given param | |||
* | |||
* This class only provides static methods, and the entry point is | |||
* TimedProfiler::profile; it would run profiler in a timed environment by | |||
* sys::TimedFuncInvoker | |||
* | |||
* \tparam Opr megdnn opr impl | |||
*/ | |||
template <typename Opr> | |||
class TimedProfiler { | |||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||
using ConvTensorShapes = std::array<TensorShape, arity>; | |||
public: | |||
struct Param { | |||
char algo_name[128]; | |||
size_t workspace; | |||
DTypeEnum dtypes[arity]; | |||
CompNode::Locator comp_node_loc; | |||
ConvTensorShapes shapes; | |||
typename Opr::Param opr_param; | |||
bool allow_weight_preprocess; | |||
//! filled by profile() | |||
mutable double actual_timeout; | |||
}; | |||
struct Result { | |||
double time; | |||
}; | |||
static Maybe<Result> profile(const Param& param, double& timeout) { | |||
mgb_assert(timeout >= 0); | |||
if (!timeout) { | |||
timeout = timeout_setting; | |||
} else if (timeout_setting) { | |||
timeout = std::min(timeout, timeout_setting); | |||
} | |||
param.actual_timeout = | |||
timeout ? timeout : std::numeric_limits<double>::infinity(); | |||
auto res = sys::TimedFuncInvoker::ins().invoke( | |||
AlgoChooserFuncId<Opr>::ID, | |||
TParam::from_pod(const_cast<Param&>(param)), timeout); | |||
if (res.valid()) | |||
return res.val().template as_single_pod<Result>(); | |||
return None; | |||
} | |||
private: | |||
using TParam = sys::TimedFuncInvoker::Param; | |||
using TResult = sys::TimedFuncInvoker::Result; | |||
static const double timeout_setting; | |||
static double init_timeout_setting(); | |||
static TResult prof_impl(const TParam& raw_param); | |||
static void prof_init_device(const TParam& raw_param); | |||
}; | |||
template <typename Opr> | |||
const double TimedProfiler<Opr>::timeout_setting = | |||
TimedProfiler<Opr>::init_timeout_setting(); | |||
template <typename Opr> | |||
double TimedProfiler<Opr>::init_timeout_setting() { | |||
#if MGB_ENABLE_FASTRUN | |||
sys::TimedFuncInvoker::ins().register_func( | |||
AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl, | |||
&TimedProfiler<Opr>::prof_init_device); | |||
auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT"); | |||
if (to_set) | |||
return std::stod(to_set); | |||
#endif | |||
return 0; | |||
} | |||
#define APPLY(statement, ...) \ | |||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||
std::tuple_cat(__VA_ARGS__)) | |||
template <typename Opr> | |||
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
const TParam& raw_param) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl"))) | |||
auto&& param = raw_param.as_single_pod<Param>(); | |||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn); | |||
std::array<TensorLayout, arity> layouts; | |||
auto from_enum = [&](DTypeEnum enumv) -> DType { | |||
switch (enumv) { | |||
#define cb(_dt) \ | |||
case DTypeTrait<_dt>::enumv: \ | |||
return _dt(1.0f, static_cast<uint8_t>(0)) | |||
cb(dtype::Quantized8Asymm); | |||
#undef cb | |||
#define cb(_dt) \ | |||
case DTypeTrait<_dt>::enumv: \ | |||
return _dt(1.0f) | |||
cb(dtype::QuantizedS8); | |||
cb(dtype::QuantizedS16); | |||
cb(dtype::QuantizedS32); | |||
default: | |||
return DType::from_enum(enumv); | |||
#undef cb | |||
} | |||
}; | |||
for (int i = 0; i < arity; ++i) { | |||
layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])}; | |||
} | |||
megdnn_opr->param() = param.opr_param; | |||
{ | |||
typename Opr::Algorithm* algo = nullptr; | |||
for (auto i : APPLY(megdnn_opr->get_all_algorithms(args...), layouts)) { | |||
if (!strcmp(i->name(), param.algo_name)) { | |||
algo = i; | |||
break; | |||
} | |||
} | |||
mgb_assert(algo, "algorithm %s not found", param.algo_name); | |||
megdnn_opr->execution_policy() = {algo}; | |||
} | |||
// Allocate preprocessed weight buffers. | |||
TensorLayoutArray preprocessed_layout; | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
if (param.allow_weight_preprocess) { | |||
preprocessed_layout = APPLY( | |||
_(megdnn_opr)->deduce_preprocessed_filter_layout(args...), | |||
layouts); | |||
} | |||
}); | |||
{ | |||
// first allocate a whole chunk to avoid memory fragmentation (here we | |||
// rely on memory allocator to reuse memory) | |||
auto align = cn.get_mem_addr_alignment(); | |||
size_t tot_size = align; | |||
for (int i = 0; i < arity; ++i) { | |||
tot_size += layouts[i].span().high_byte + align; | |||
} | |||
for (const auto& layout : preprocessed_layout) { | |||
tot_size += layout.span().high_byte + align; | |||
} | |||
tot_size += param.workspace; | |||
DeviceTensorStorage storage{cn}; | |||
storage.ensure_size(tot_size); | |||
} | |||
// allocate input and output memory | |||
std::array<DeviceTensorND, arity_in> inp_val; | |||
std::array<DeviceTensorND, arity_out> out_val; | |||
DeviceTensorND workspace; | |||
for (int i = 0; i < arity_in; ++i) { | |||
inp_val[i] | |||
.comp_node(cn) | |||
.dtype(layouts[i].dtype) | |||
.resize(layouts[i]); | |||
} | |||
for (int i = 0; i < arity_out; ++i) { | |||
out_val[i] | |||
.comp_node(cn) | |||
.dtype(layouts[arity_in + i].dtype) | |||
.resize(layouts[arity_in + i]); | |||
} | |||
megdnn::Workspace mdn_workspace; | |||
// allocate workspace | |||
if (param.workspace) { | |||
workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace}); | |||
mdn_workspace.size = param.workspace; | |||
mdn_workspace.raw_ptr = workspace.raw_ptr(); | |||
} | |||
// allocate storage for preprocessed filter | |||
SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size()); | |||
for (size_t i = 0; i < preprocessed_layout.size(); i++) { | |||
flt_val[i] = {cn, preprocessed_layout[i], preprocessed_layout[i].dtype, | |||
preprocessed_layout[i].format}; | |||
} | |||
for (int i = 0; i < arity_in; ++i) { | |||
fill_zero_dev_tensor(inp_val[i]); | |||
} | |||
PreprocessFilter<Opr> prep_flt; | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
if (!preprocessed_layout.empty()) { | |||
auto&& pf = _(prep_flt); | |||
pf.algorithm_id = nullptr; | |||
pf.tensors.resize(flt_val.size()); | |||
for (size_t i = 0; i < flt_val.size(); i++) { | |||
pf.tensors[i] = flt_val[i].as_megdnn(); | |||
} | |||
APPLY(_(megdnn_opr)->exec_preprocess(args..., &pf, mdn_workspace), | |||
std::forward_as_tuple(layouts[0], inp_val[1].as_megdnn()), | |||
array_skip<2>(layouts)); | |||
} | |||
}); | |||
RealTimer timer; | |||
auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER), | |||
ev_end = cn.create_event(CompNode::Event::NEED_TIMER); | |||
ev_start->record(); | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
auto&& opr = _(megdnn_opr); | |||
PreprocessFilter<Opr>* pf = | |||
preprocessed_layout.empty() ? nullptr : &prep_flt; | |||
APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace), inp_val, | |||
out_val); | |||
}, /* else */ [&](auto _) { | |||
APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace), inp_val, | |||
out_val); | |||
}); | |||
ev_end->record(); | |||
double next_report_time = 0.5; | |||
while (!ev_end->finished()) { | |||
if (timer.get_secs() >= next_report_time) { | |||
mgb_log_warn( | |||
"profiling conv algo %s already took %.3f/%.3f secs" | |||
" (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ", | |||
param.algo_name, timer.get_secs(), param.actual_timeout); | |||
next_report_time = timer.get_secs() + 1; | |||
} | |||
using namespace std::literals; | |||
std::this_thread::sleep_for(1000us); | |||
} | |||
mgb_assert(ev_start->finished()); | |||
return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)}); | |||
MIDOUT_E | |||
}; | |||
template <typename Opr> | |||
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device"))) | |||
auto&& param = raw_param.as_single_pod<Param>(); | |||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
// wait for cuda init, so its time does not get accounted in timeout | |||
cn.sync(); | |||
MIDOUT_E | |||
} | |||
/* =================== AlgoChooser =================== */ | |||
/*! | |||
* \brief choose algorithm according to ExecutionPolicy | |||
* | |||
* This class only provides static methods, and the entry point is | |||
* AlgoChooser::setup_algo. When profiling is needed, it would first try to | |||
* retrive profiling stats from cache, and run TimedProfiler when necessary | |||
* | |||
* \tparam Opr megdnn operator impl | |||
*/ | |||
template <typename Opr> | |||
class AlgoChooser { | |||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||
using ImplAlgo = typename Opr::Algorithm*; | |||
using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr; | |||
using ConvTensorLayouts = std::array<TensorLayout, arity>; | |||
class ExeContext { | |||
const ConvTensorLayouts& m_layouts; | |||
Opr* m_megdnn_opr; | |||
const MGBOpr* m_mgb_opr; | |||
bool m_allow_weight_preprocess; | |||
public: | |||
ExeContext(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||
const MGBOpr* mgb_opr, bool allow_weight_preprocess) | |||
: m_layouts{layouts}, | |||
m_megdnn_opr{megdnn_opr}, | |||
m_mgb_opr{mgb_opr}, | |||
m_allow_weight_preprocess{allow_weight_preprocess} { | |||
mgb_assert(m_layouts.size() == layouts.size()); | |||
static_assert( | |||
std::tuple_size<ConvTensorLayouts>::value == 3 || | |||
std::tuple_size<ConvTensorLayouts>::value == 5 || | |||
std::tuple_size<ConvTensorLayouts>::value == 8, | |||
"Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for " | |||
"deformable conv)"); | |||
} | |||
Opr* megdnn_opr() const { return m_megdnn_opr; } | |||
const MGBOpr* mgb_opr() const { return m_mgb_opr; } | |||
const TensorLayout& inp_layout(size_t idx) const { | |||
return m_layouts[idx]; | |||
} | |||
const ConvTensorLayouts& layouts() const { return m_layouts; } | |||
ImplAlgo choose_by_heuristic(bool reproducible = false) const { | |||
auto opr = m_mgb_opr; | |||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||
opr->owner_graph(), opr->comp_node(), | |||
opr->execution_policy().workspace_limit); | |||
return APPLY(m_megdnn_opr->get_algorithm_heuristic( | |||
args..., workspace_limit, reproducible), | |||
m_layouts); | |||
} | |||
//! get all candidate algos, and the one choose_by_heuristic() is | |||
//! put first | |||
std::vector<ImplAlgo> get_all_candidates() const { | |||
auto heu = choose_by_heuristic(); | |||
auto&& ret = | |||
APPLY(m_megdnn_opr->get_all_algorithms(args...), m_layouts); | |||
bool found = false; | |||
for (size_t i = 0; i < ret.size(); ++i) { | |||
if (ret[i] == heu) { | |||
found = true; | |||
std::swap(ret[i], ret[0]); | |||
break; | |||
} | |||
} | |||
mgb_assert(found, | |||
"algo %s got by heuristic not found in " | |||
"candidate list", | |||
heu->name()); | |||
return std::move(ret); | |||
} | |||
//! get candidate algos with workspace limit. | |||
std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const { | |||
auto&& all_algos = get_all_candidates(); | |||
auto opr = m_mgb_opr; | |||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||
opr->owner_graph(), opr->comp_node(), | |||
opr->execution_policy().workspace_limit); | |||
std::vector<ImplAlgo> ret; | |||
for (auto&& algo : all_algos) { | |||
if (get_workspace_size_bytes(algo) <= workspace_limit) { | |||
ret.push_back(algo); | |||
} | |||
} | |||
return ret; | |||
} | |||
//! get workspace size required for specific algo | |||
size_t get_workspace_size_bytes(ImplAlgo algo) const { | |||
m_megdnn_opr->execution_policy() = {algo}; | |||
size_t result; | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
auto&& opr = _(m_megdnn_opr); | |||
auto prep = this->construct_fake_preprocess_filter(); | |||
PreprocessFilter<Opr>* prep_ptr = | |||
prep.valid() ? &prep.val() : nullptr; | |||
result = std::max( | |||
APPLY(opr->get_preprocess_workspace_in_bytes(args...), | |||
m_layouts), | |||
APPLY(opr->get_workspace_in_bytes(args..., prep_ptr), | |||
m_layouts)); | |||
}, /* else */ [&](auto _) { | |||
result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...), | |||
m_layouts); | |||
}); | |||
return result; | |||
} | |||
/*! | |||
* \brief profile a single algorithm | |||
* | |||
* This is actually a wrapper that constructs param and call | |||
* TimedProfiler<Opr>::profile for the actual profiling | |||
* | |||
* \param[in,out] timeout set the timeout, and return the actual | |||
* timeout used during profiling | |||
*/ | |||
Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo( | |||
ImplAlgo algo, double& timeout) const; | |||
private: | |||
Maybe<PreprocessFilter<Opr>> construct_fake_preprocess_filter() const { | |||
Maybe<PreprocessFilter<Opr>> result = None; | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
if (!m_allow_weight_preprocess) | |||
return; | |||
auto opr = _(m_megdnn_opr); | |||
auto layout = | |||
APPLY(opr->deduce_preprocessed_filter_layout(args...), | |||
m_layouts); | |||
if (layout.empty()) | |||
return; | |||
result = PreprocessFilter<Opr>{}; | |||
auto& res = result.val(); | |||
res.algorithm_id = nullptr; | |||
res.tensors.resize(layout.size()); | |||
for (size_t i = 0; i < layout.size(); i++) { | |||
res.tensors[i] = megdnn::TensorND(nullptr, layout[i]); | |||
} | |||
}); | |||
return result; | |||
} | |||
}; | |||
//! entrance for getting algorithm according to execution strategy | |||
static ImplAlgo get_algo(ExeContext& ctx) { | |||
using S = mixin::Convolution::ExecutionPolicy::Strategy; | |||
MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE); | |||
switch (ctx.mgb_opr()->execution_policy().strategy) { | |||
case S::HEURISTIC: | |||
return ctx.choose_by_heuristic(); | |||
case S::HEURISTIC_REPRODUCIBLE: | |||
return ctx.choose_by_heuristic(true); | |||
case S::PROFILE_HEURISTIC: { | |||
ImplAlgo algo = choose_by_profile(ctx, false, false); | |||
if (algo == nullptr) | |||
algo = ctx.choose_by_heuristic(); | |||
return algo; | |||
} | |||
#if MGB_ENABLE_FASTRUN | |||
case S::PROFILE: | |||
return choose_by_profile(ctx, false); | |||
case S::PROFILE_REPRODUCIBLE: | |||
return choose_by_profile(ctx, true); | |||
#endif | |||
default: | |||
mgb_throw(GraphError, | |||
"bad convolution ExecutionPolicy strategy"); | |||
} | |||
} | |||
static void get_origin_param_and_layouts(const ExeContext&, | |||
ConvTensorLayouts&, | |||
typename Opr::Param&) {} | |||
//! get all profile result, either by retrieving cache or profiling | |||
static AlgoChooserProfileCache::Result get_profile_result( | |||
ExeContext& ctx, bool enable_update); | |||
static ImplAlgo choose_by_profile(ExeContext& ctx, | |||
bool require_reproducible, | |||
bool enable_update = true); | |||
public: | |||
/*! | |||
* \brief setup algorithm and return workspace size | |||
*/ | |||
static size_t setup_algo(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||
const MGBOpr* mgb_opr, | |||
bool allow_weight_preprocess = false) { | |||
if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) { | |||
return 0; | |||
} | |||
ExeContext ctx(layouts, megdnn_opr, mgb_opr, allow_weight_preprocess); | |||
auto algo = get_algo(ctx); | |||
size_t workspace = ctx.get_workspace_size_bytes(algo); | |||
mgb_log_debug( | |||
"%s:tensor layouts (%s %s, %s %s)->(%s %s) :algo=%s " | |||
"workspace=%.2fMiB reproducible=%d", | |||
mgb_opr->dyn_typeinfo()->name, | |||
layouts[0].to_string().c_str(), | |||
layouts[0].dtype.name(), | |||
layouts[1].to_string().c_str(), | |||
layouts[1].dtype.name(), | |||
layouts[layouts.size() - 1].to_string().c_str(), | |||
layouts[layouts.size() - 1].dtype.name(), algo->name(), | |||
workspace / (1024 * 1024.0), algo->is_reproducible()); | |||
megdnn_opr->execution_policy() = {algo}; | |||
return workspace; | |||
} | |||
}; | |||
template <typename Opr> | |||
AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result( | |||
ExeContext& ctx, bool enable_update) { | |||
AlgoChooserProfileCache& cache = ctx.mgb_opr()->profile_cache(); | |||
ConvTensorLayouts origin_layouts = ctx.layouts(); | |||
typename Opr::Param origin_param = ctx.mgb_opr()->param(); | |||
get_origin_param_and_layouts(ctx, origin_layouts, origin_param); | |||
AlgoChooserProfileCache::Key cache_key{origin_layouts.data(), | |||
origin_layouts.size(), &origin_param, | |||
sizeof(origin_param)}; | |||
{ | |||
auto&& rst = cache.get(cache_key); | |||
if (rst.valid()) | |||
return rst.val(); | |||
} | |||
AlgoChooserProfileCache::Result prof_rst; | |||
if (!enable_update) | |||
return prof_rst; | |||
std::string str_on_inp_shape = ssprintf( | |||
"on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(), | |||
ctx.layouts()[1].to_string().c_str()); | |||
double cur_timeout = 0; | |||
RealTimer timer; | |||
for (auto algo : ctx.get_all_candidates_with_workspace_limit()) { | |||
Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst; | |||
std::string msg = ssprintf("profiling %s algorithm %s %s", | |||
ctx.mgb_opr()->dyn_typeinfo()->name, | |||
algo->name(), str_on_inp_shape.c_str()); | |||
timer.reset(); | |||
MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); } | |||
MGB_CATCH(std::exception & exc, { | |||
mgb_log_warn("caught exception during %s: %s", msg.c_str(), | |||
exc.what()); | |||
continue; | |||
}) | |||
MGB_CATCH(..., { | |||
mgb_log_warn("caught exception during %s", msg.c_str()); | |||
continue; | |||
}) | |||
if (!cur_rst.valid()) { | |||
mgb_log_warn("timeout when %s; timeout setting: %.3fsec", | |||
msg.c_str(), cur_timeout); | |||
continue; | |||
} | |||
if (!cur_timeout) { | |||
cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE; | |||
} else { | |||
cur_timeout = | |||
std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE); | |||
} | |||
auto&& rst = cur_rst.val(); | |||
mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(), | |||
rst.workspace, rst.time); | |||
prof_rst.push_back(rst); | |||
} | |||
mgb_assert(!prof_rst.empty(), "no usable convolution algorithm %s", | |||
str_on_inp_shape.c_str()); | |||
cache.put(cache_key, prof_rst); | |||
return prof_rst; | |||
} | |||
template <> | |||
void AlgoChooser<megdnn::ConvBias>::get_origin_param_and_layouts( | |||
const ExeContext& ctx, ConvTensorLayouts& layouts, | |||
megdnn::ConvBias::Param& param) { | |||
auto format = static_cast<megdnn::param::ConvBias::Format>( | |||
ctx.megdnn_opr()->param().format); | |||
size_t output_block_size = ctx.megdnn_opr()->param().output_block_size; | |||
megdnn::ConvBias::deduce_winograd_origin_layout_and_param( | |||
format, output_block_size, ctx.layouts()[0], ctx.layouts()[1], | |||
layouts[1], param); | |||
} | |||
template <typename Opr> | |||
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||
ExeContext& ctx, bool require_reproducible, bool enable_update) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile"))) | |||
auto opr = ctx.mgb_opr(); | |||
if (opr->owner_graph()->options().no_profiling_on_shape_change) { | |||
auto algo = ctx.megdnn_opr()->execution_policy().algorithm; | |||
if (algo) | |||
return algo; | |||
} | |||
std::unordered_map<std::string, ImplAlgo> algo_map; | |||
for (auto i : ctx.get_all_candidates()) { | |||
auto ins = algo_map.emplace(i->name(), i); | |||
mgb_assert(ins.second, "duplicated algo name: %s", i->name()); | |||
} | |||
auto&& prof = get_profile_result(ctx, enable_update); | |||
if (prof.empty()) | |||
return nullptr; | |||
for (auto&& i : prof) { | |||
if ((!require_reproducible || i.reproducible)) { | |||
auto iter = algo_map.find(i.algo); | |||
mgb_assert( | |||
iter != algo_map.end(), | |||
"algorithm %s exists in " | |||
"profiling result but not in algo_map; please report this " | |||
"bug; opr: %s{%s}, shapes: %s %s %s", | |||
ctx.mgb_opr()->cname(), ctx.mgb_opr()->dyn_typeinfo()->name, | |||
ctx.layouts()[0].TensorShape::to_string().c_str(), | |||
ctx.layouts()[1].TensorShape::to_string().c_str(), | |||
ctx.layouts()[2].TensorShape::to_string().c_str(), | |||
i.algo.c_str()); | |||
return iter->second; | |||
} | |||
} | |||
mgb_log_error( | |||
"Workspace requirement (%zu) could not be satisfied. Abort now to " | |||
"avoid further problems", | |||
WorkspaceLimitGetter::get_workspace_limit( | |||
opr->owner_graph(), opr->comp_node(), | |||
opr->execution_policy().workspace_limit)); | |||
mgb_trap(); | |||
MIDOUT_E | |||
} | |||
template <typename Opr> | |||
Maybe<AlgoChooserProfileCache::ResultEntry> | |||
AlgoChooser<Opr>::ExeContext::profile_single_algo(ImplAlgo algo, | |||
double& timeout) const { | |||
typename TimedProfiler<Opr>::Param param; | |||
auto name = algo->name(); | |||
// force check copy size <= dest len-1 from gcc8 for safe | |||
auto len = sizeof(param.algo_name); | |||
strncpy(param.algo_name, name, len - 1); | |||
param.algo_name[len - 1] = '\0'; | |||
mgb_assert(!param.algo_name[sizeof(param.algo_name) - 2], | |||
"algo name too long: %s; len=%zu", name, strlen(name)); | |||
param.workspace = get_workspace_size_bytes(algo); | |||
for (int i = 0; i < arity; ++i) { | |||
auto&& src = m_layouts[i]; | |||
mgb_assert(src.format.is_default() && | |||
(src.dtype.category() == DTypeCategory::FLOAT || | |||
src.dtype.category() == DTypeCategory::INT || | |||
src.dtype.category() == DTypeCategory::QUANTIZED), | |||
"unsupported layout in profiling: %s", | |||
src.to_string().c_str()); | |||
param.dtypes[i] = src.dtype.enumv(); | |||
} | |||
param.comp_node_loc = m_mgb_opr->output(0)->comp_node().locator(); | |||
mgb_assert(param.shapes.size() == m_layouts.size()); | |||
for (size_t i = 0; i < param.shapes.size(); ++i) | |||
param.shapes[i] = m_layouts[i]; | |||
param.opr_param = m_megdnn_opr->param(); | |||
param.allow_weight_preprocess = m_allow_weight_preprocess; | |||
auto rst = TimedProfiler<Opr>::profile(param, timeout); | |||
// MIOpen conv profiles all available algos when a specfic shape is | |||
// provided for the first time, which probably adds to the result time. | |||
// Therefore, a second profile execution is needed. | |||
if (strncmp(name, "MIOpen", 6) == 0) | |||
rst = TimedProfiler<Opr>::profile(param, timeout); | |||
if (!rst.valid()) | |||
return None; | |||
return AlgoChooserProfileCache::ResultEntry{ | |||
algo->name(), algo->is_reproducible(), rst.val().time, | |||
param.workspace}; | |||
} | |||
} // anonymous namespace | |||
/* ==================== misc impl ==================== */ | |||
mixin::Convolution::~Convolution() = default; | |||
@@ -913,7 +138,8 @@ public: | |||
void mixin::WeightPreprocessExecutor::mixin_update_preprocessed_filter( | |||
cg::OperatorNodeBase& opr) { | |||
if (!mixin_allow_weight_preprocess(opr)) return; | |||
if (!mixin_allow_weight_preprocess(opr)) | |||
return; | |||
auto new_layout = deduce_preprocessed_filter_layout(); | |||
if (new_layout.empty()) { | |||
@@ -939,7 +165,8 @@ void mixin::WeightPreprocessExecutor::mixin_update_preprocessed_filter( | |||
} | |||
} | |||
} | |||
if (!should_update) return; | |||
if (!should_update) | |||
return; | |||
if (!m_preprocessed_filter) { | |||
m_preprocessed_filter.reset(new PreprocessedFilter{}); | |||
@@ -1665,8 +892,7 @@ void ConvBiasForward::init_output_format() { | |||
} | |||
void ConvBiasForward::check_winograd_param_valid( | |||
const megdnn::ConvBias::WinogradParam& param, | |||
const DType& dtype) { | |||
const megdnn::ConvBias::WinogradParam& param, const DType& dtype) { | |||
if (dtype.enumv() == DTypeEnum::Float32) { | |||
mgb_assert(param.channel_block_size == 1 || | |||
param.channel_block_size == 4 || | |||
@@ -1784,20 +1010,20 @@ size_t LocalShareForward::get_workspace_size_bytes( | |||
#if MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(LocalShareForward) { | |||
mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | |||
"only float data type supported for grad"); | |||
"only float data type supported for grad"); | |||
mgb_assert(wrt_idx == 0 || wrt_idx == 1); | |||
mgb_assert(out_grad.size() == 2); | |||
if (wrt_idx == 0) { | |||
// data | |||
SymbolVar grad = LocalShareBackwardData::make( | |||
opr.input(1), out_grad[0], opr.input(0), | |||
opr.param(), opr.execution_policy()); | |||
SymbolVar grad = LocalShareBackwardData::make(opr.input(1), out_grad[0], | |||
opr.input(0), opr.param(), | |||
opr.execution_policy()); | |||
return grad.node(); | |||
} else { | |||
// filter | |||
SymbolVar grad = LocalShareBackwardFilter::make( | |||
opr.input(0), out_grad[0], opr.input(1), | |||
opr.param(), opr.execution_policy()); | |||
opr.input(0), out_grad[0], opr.input(1), opr.param(), | |||
opr.execution_policy()); | |||
return grad.node(); | |||
} | |||
} | |||
@@ -1812,7 +1038,10 @@ LocalShareBackwardData::LocalShareBackwardData(VarNode* filter, VarNode* diff, | |||
const Param& param, | |||
const ExecutionPolicy& policy, | |||
const OperatorNodeConfig& config) | |||
: Super{filter->owner_graph(), config, "local_share_bwd_data", {filter, diff}} { | |||
: Super{filter->owner_graph(), | |||
config, | |||
"local_share_bwd_data", | |||
{filter, diff}} { | |||
init_megdnn_opr(*this, param); | |||
m_policy = policy; | |||
add_input({filter, diff}); | |||
@@ -1897,25 +1126,23 @@ LocalShareBackwardFilter::LocalShareBackwardFilter( | |||
add_input({src, diff, filter}); | |||
} | |||
SymbolVar LocalShareBackwardFilter::make( | |||
SymbolVar src, SymbolVar diff, SymbolVar filter, | |||
const Param ¶m, | |||
const ExecutionPolicy &policy, | |||
const OperatorNodeConfig &config) { | |||
SymbolVar LocalShareBackwardFilter::make(SymbolVar src, SymbolVar diff, | |||
SymbolVar filter, const Param& param, | |||
const ExecutionPolicy& policy, | |||
const OperatorNodeConfig& config) { | |||
return src.insert_single_output_opr<LocalShareBackwardFilter>( | |||
src.node(), diff.node(), filter.node(), param, policy, config); | |||
} | |||
size_t LocalShareBackwardFilter::get_workspace_size_bytes( | |||
const TensorShapeArray &input_shapes, | |||
const TensorShapeArray &output_shapes) const { | |||
const TensorShapeArray& input_shapes, | |||
const TensorShapeArray& output_shapes) const { | |||
mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1); | |||
return AlgoChooser<megdnn::LocalShareBackwardFilter>::setup_algo( | |||
{TensorLayout{input_shapes[0], input(0)->dtype(), | |||
input(0)->format()}, | |||
{input_shapes[1], input(1)->dtype(), input(1)->format()}, | |||
{output_shapes[0], output(0)->dtype(), output(0)->format()}}, | |||
{input_shapes[1], input(1)->dtype(), input(1)->format()}, | |||
{output_shapes[0], output(0)->dtype(), output(0)->format()}}, | |||
megdnn_opr(), this); | |||
} | |||
@@ -1924,12 +1151,14 @@ MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) { | |||
mgb_assert(!out_grad[1]); | |||
if (wrt_idx == 0) { | |||
return LocalShareBackwardData::make(out_grad[0], opr.input(1), | |||
opr.input(0), opr.param(), opr.execution_policy()).node(); | |||
opr.input(0), opr.param(), | |||
opr.execution_policy()) | |||
.node(); | |||
} | |||
if (wrt_idx == 1) { | |||
return LocalShare::make( | |||
opr.input(0), out_grad[0], opr.param(), opr.execution_policy()). | |||
node(); | |||
return LocalShare::make(opr.input(0), out_grad[0], opr.param(), | |||
opr.execution_policy()) | |||
.node(); | |||
} | |||
return nullptr; | |||
} | |||
@@ -0,0 +1,401 @@ | |||
/** | |||
* \file src/opr/impl/search_policy/algo_chooser.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain/opr/search_policy/algo_chooser.h" | |||
#include "megbrain/opr/search_policy/profiler.h" | |||
#include "../internal/invoke.h" | |||
#include "../internal/megdnn_opr_wrapper.inl" | |||
#include "./workspace_need_limit_getter.inl" | |||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
//! fix it if there is another graceful way. | |||
#include "megdnn/oprs.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_opr_algo_chooser) | |||
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
using mgb::opr::intl::WorkspaceLimitGetter; | |||
#define APPLY(statement, ...) \ | |||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||
std::tuple_cat(__VA_ARGS__)) | |||
// timeout delta to be added with fastest known algorithm for new algos | |||
constexpr double TIMEOUT_TOLERANCE = 2; | |||
namespace mgb { | |||
namespace opr { | |||
template <typename Opr> | |||
AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result( | |||
ExeContext& ctx, bool enable_update) { | |||
AlgoChooserProfileCache& cache = ctx.mgb_opr()->profile_cache(); | |||
ConvTensorLayouts origin_layouts = ctx.layouts(); | |||
typename Opr::Param origin_param = ctx.mgb_opr()->param(); | |||
get_origin_param_and_layouts(ctx, origin_layouts, origin_param); | |||
AlgoChooserProfileCache::Key cache_key{origin_layouts.data(), | |||
origin_layouts.size(), &origin_param, | |||
sizeof(origin_param)}; | |||
{ | |||
auto&& rst = cache.get(cache_key); | |||
if (rst.valid()) | |||
return rst.val(); | |||
} | |||
AlgoChooserProfileCache::Result prof_rst; | |||
if (!enable_update) | |||
return prof_rst; | |||
std::string str_on_inp_shape = ssprintf( | |||
"on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(), | |||
ctx.layouts()[1].to_string().c_str()); | |||
double cur_timeout = 0; | |||
RealTimer timer; | |||
for (auto algo : ctx.get_all_candidates_with_workspace_limit()) { | |||
Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst; | |||
std::string msg = ssprintf("profiling %s algorithm %s %s", | |||
ctx.mgb_opr()->dyn_typeinfo()->name, | |||
algo->name(), str_on_inp_shape.c_str()); | |||
timer.reset(); | |||
MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); } | |||
MGB_CATCH(std::exception & exc, { | |||
mgb_log_warn("caught exception during %s: %s", msg.c_str(), | |||
exc.what()); | |||
continue; | |||
}) | |||
MGB_CATCH(..., { | |||
mgb_log_warn("caught exception during %s", msg.c_str()); | |||
continue; | |||
}) | |||
if (!cur_rst.valid()) { | |||
mgb_log_warn("timeout when %s; timeout setting: %.3fsec", | |||
msg.c_str(), cur_timeout); | |||
continue; | |||
} | |||
if (!cur_timeout) { | |||
cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE; | |||
} else { | |||
cur_timeout = | |||
std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE); | |||
} | |||
auto&& rst = cur_rst.val(); | |||
mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(), | |||
rst.workspace, rst.time); | |||
prof_rst.push_back(rst); | |||
} | |||
mgb_assert(!prof_rst.empty(), "no usable convolution algorithm %s", | |||
str_on_inp_shape.c_str()); | |||
cache.put(cache_key, prof_rst); | |||
return prof_rst; | |||
} | |||
template <> | |||
void AlgoChooser<megdnn::ConvBias>::get_origin_param_and_layouts( | |||
const ExeContext& ctx, ConvTensorLayouts& layouts, | |||
megdnn::ConvBias::Param& param) { | |||
auto format = static_cast<megdnn::param::ConvBias::Format>( | |||
ctx.megdnn_opr()->param().format); | |||
size_t output_block_size = ctx.megdnn_opr()->param().output_block_size; | |||
megdnn::ConvBias::deduce_winograd_origin_layout_and_param( | |||
format, output_block_size, ctx.layouts()[0], ctx.layouts()[1], | |||
layouts[1], param); | |||
} | |||
template <typename Opr> | |||
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||
ExeContext& ctx, bool require_reproducible, bool enable_update) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile"))) | |||
auto opr = ctx.mgb_opr(); | |||
if (opr->owner_graph()->options().no_profiling_on_shape_change) { | |||
auto algo = ctx.megdnn_opr()->execution_policy().algorithm; | |||
if (algo) | |||
return algo; | |||
} | |||
std::unordered_map<std::string, ImplAlgo> algo_map; | |||
for (auto i : ctx.get_all_candidates()) { | |||
auto ins = algo_map.emplace(i->name(), i); | |||
mgb_assert(ins.second, "duplicated algo name: %s", i->name()); | |||
} | |||
auto&& prof = get_profile_result(ctx, enable_update); | |||
if (prof.empty()) | |||
return nullptr; | |||
for (auto&& i : prof) { | |||
if ((!require_reproducible || i.reproducible)) { | |||
auto iter = algo_map.find(i.algo); | |||
mgb_assert(iter != algo_map.end(), | |||
"algorithm %s exists in " | |||
"profiling result but not in algo_map; please " | |||
"report this " | |||
"bug; opr: %s{%s}, shapes: %s %s %s", | |||
ctx.mgb_opr()->cname(), | |||
ctx.mgb_opr()->dyn_typeinfo()->name, | |||
ctx.layouts()[0].TensorShape::to_string().c_str(), | |||
ctx.layouts()[1].TensorShape::to_string().c_str(), | |||
ctx.layouts()[2].TensorShape::to_string().c_str(), | |||
i.algo.c_str()); | |||
return iter->second; | |||
} | |||
} | |||
mgb_log_error( | |||
"Workspace requirement (%zu) could not be satisfied. Abort now " | |||
"to " | |||
"avoid further problems", | |||
WorkspaceLimitGetter::get_workspace_limit( | |||
opr->owner_graph(), opr->comp_node(), | |||
opr->execution_policy().workspace_limit)); | |||
mgb_trap(); | |||
MIDOUT_E | |||
} | |||
template <typename Opr> | |||
size_t AlgoChooser<Opr>::setup_algo(const ConvTensorLayouts& layouts, | |||
Opr* megdnn_opr, const MGBOpr* mgb_opr, | |||
bool allow_weight_preprocess) { | |||
if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) { | |||
return 0; | |||
} | |||
ExeContext ctx(layouts, megdnn_opr, mgb_opr, allow_weight_preprocess); | |||
auto algo = get_algo(ctx); | |||
size_t workspace = ctx.get_workspace_size_bytes(algo); | |||
mgb_log_debug( | |||
"%s: tensor layouts(%s %s, %s %s) -> (%s %s): algo=%s " | |||
"workspace=%.2fMiB reproducible=%d", | |||
mgb_opr->dyn_typeinfo()->name, layouts[0].to_string().c_str(), | |||
layouts[0].dtype.name(), layouts[1].to_string().c_str(), | |||
layouts[1].dtype.name(), | |||
layouts[layouts.size() - 1].to_string().c_str(), | |||
layouts[layouts.size() - 1].dtype.name(), algo->name(), | |||
workspace / (1024 * 1024.0), algo->is_reproducible()); | |||
megdnn_opr->execution_policy() = {algo}; | |||
return workspace; | |||
} | |||
template <typename Opr> | |||
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::get_algo( | |||
ExeContext& ctx) { | |||
using S = mixin::Convolution::ExecutionPolicy::Strategy; | |||
MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE); | |||
switch (ctx.mgb_opr()->execution_policy().strategy) { | |||
case S::HEURISTIC: | |||
return ctx.choose_by_heuristic(); | |||
case S::HEURISTIC_REPRODUCIBLE: | |||
return ctx.choose_by_heuristic(true); | |||
case S::PROFILE_HEURISTIC: { | |||
ImplAlgo algo = choose_by_profile(ctx, false, false); | |||
if (algo == nullptr) | |||
algo = ctx.choose_by_heuristic(); | |||
return algo; | |||
} | |||
#if MGB_ENABLE_FASTRUN | |||
case S::PROFILE: | |||
return choose_by_profile(ctx, false); | |||
case S::PROFILE_REPRODUCIBLE: | |||
return choose_by_profile(ctx, true); | |||
#endif | |||
default: | |||
mgb_throw(GraphError, "bad convolution ExecutionPolicy strategy"); | |||
} | |||
} | |||
#define INST(Opr) \ | |||
template AlgoChooser<megdnn::Opr>::ImplAlgo \ | |||
AlgoChooser<megdnn::Opr>::get_algo(ExeContext& ctx); \ | |||
template AlgoChooserProfileCache::Result \ | |||
AlgoChooser<megdnn::Opr>::get_profile_result(ExeContext& ctx, \ | |||
bool enable_update); \ | |||
template AlgoChooser<megdnn::Opr>::ImplAlgo \ | |||
AlgoChooser<megdnn::Opr>::choose_by_profile( \ | |||
ExeContext& ctx, bool require_reproducible, bool enable_update); \ | |||
template size_t AlgoChooser<megdnn::Opr>::setup_algo( \ | |||
const ConvTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \ | |||
const MGBOpr* mgb_opr, bool allow_weight_preprocess); | |||
MGB_FOREACH_FASTRUN_OPR(INST) | |||
#undef INST | |||
//////////////////////////////// ExeContext ///////////////////////////// | |||
template <typename Opr> | |||
typename AlgoChooser<Opr>::ImplAlgo | |||
AlgoChooser<Opr>::ExeContext::choose_by_heuristic(bool reproducible) const { | |||
auto opr = m_mgb_opr; | |||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||
opr->owner_graph(), opr->comp_node(), | |||
opr->execution_policy().workspace_limit); | |||
return APPLY(m_megdnn_opr->get_algorithm_heuristic(args..., workspace_limit, | |||
reproducible), | |||
m_layouts); | |||
} | |||
template <typename Opr> | |||
std::vector<typename AlgoChooser<Opr>::ImplAlgo> | |||
AlgoChooser<Opr>::ExeContext::get_all_candidates() const { | |||
auto heu = choose_by_heuristic(); | |||
auto&& ret = APPLY(m_megdnn_opr->get_all_algorithms(args...), m_layouts); | |||
bool found = false; | |||
for (size_t i = 0; i < ret.size(); ++i) { | |||
if (ret[i] == heu) { | |||
found = true; | |||
std::swap(ret[i], ret[0]); | |||
break; | |||
} | |||
} | |||
mgb_assert(found, | |||
"algo %s got by heuristic not found in " | |||
"candidate list", heu->name()); | |||
return std::move(ret); | |||
} | |||
template <typename Opr> | |||
std::vector<typename AlgoChooser<Opr>::ImplAlgo> | |||
AlgoChooser<Opr>::ExeContext::get_all_candidates_with_workspace_limit() const { | |||
auto&& all_algos = get_all_candidates(); | |||
auto opr = m_mgb_opr; | |||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||
opr->owner_graph(), opr->comp_node(), | |||
opr->execution_policy().workspace_limit); | |||
std::vector<ImplAlgo> ret; | |||
for (auto&& algo : all_algos) { | |||
if (get_workspace_size_bytes(algo) <= workspace_limit) { | |||
ret.push_back(algo); | |||
} | |||
} | |||
return ret; | |||
} | |||
template <typename Opr> | |||
size_t AlgoChooser<Opr>::ExeContext::get_workspace_size_bytes( | |||
ImplAlgo algo) const { | |||
m_megdnn_opr->execution_policy() = {algo}; | |||
size_t result; | |||
if_constexpr<opr_supports_preprocess<Opr>()>( | |||
[&](auto _) { | |||
auto&& opr = _(m_megdnn_opr); | |||
auto prep = this->construct_fake_preprocess_filter(); | |||
PreprocessFilter<Opr>* prep_ptr = | |||
prep.valid() ? &prep.val() : nullptr; | |||
result = std::max( | |||
APPLY(opr->get_preprocess_workspace_in_bytes(args...), | |||
m_layouts), | |||
APPLY(opr->get_workspace_in_bytes(args..., prep_ptr), | |||
m_layouts)); | |||
}, | |||
/* else */ | |||
[&](auto _) { | |||
result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...), | |||
m_layouts); | |||
}); | |||
return result; | |||
} | |||
template <typename Opr> | |||
Maybe<AlgoChooserProfileCache::ResultEntry> | |||
AlgoChooser<Opr>::ExeContext::profile_single_algo(ImplAlgo algo, | |||
double& timeout) const { | |||
typename TimedProfiler<Opr>::Param param; | |||
auto name = algo->name(); | |||
// force check copy size <= dest len-1 from gcc8 for safe | |||
auto len = sizeof(param.algo_name); | |||
strncpy(param.algo_name, name, len - 1); | |||
param.algo_name[len - 1] = '\0'; | |||
mgb_assert(!param.algo_name[sizeof(param.algo_name) - 2], | |||
"algo name too long: %s; len=%zu", name, strlen(name)); | |||
param.workspace = get_workspace_size_bytes(algo); | |||
for (int i = 0; i < arity; ++i) { | |||
auto&& src = m_layouts[i]; | |||
mgb_assert(src.format.is_default() && | |||
(src.dtype.category() == DTypeCategory::FLOAT || | |||
src.dtype.category() == DTypeCategory::INT || | |||
src.dtype.category() == DTypeCategory::QUANTIZED), | |||
"unsupported layout in profiling: %s", | |||
src.to_string().c_str()); | |||
param.dtypes[i] = src.dtype.enumv(); | |||
} | |||
param.comp_node_loc = m_mgb_opr->output(0)->comp_node().locator(); | |||
mgb_assert(param.shapes.size() == m_layouts.size()); | |||
for (size_t i = 0; i < param.shapes.size(); ++i) | |||
param.shapes[i] = m_layouts[i]; | |||
param.opr_param = m_megdnn_opr->param(); | |||
param.allow_weight_preprocess = m_allow_weight_preprocess; | |||
auto rst = TimedProfiler<Opr>::profile(param, timeout); | |||
// MIOpen conv profiles all available algos when a specfic shape is | |||
// provided for the first time, which probably adds to the result time. | |||
// Therefore, a second profile execution is needed. | |||
if (strncmp(name, "MIOpen", 6) == 0) | |||
rst = TimedProfiler<Opr>::profile(param, timeout); | |||
if (!rst.valid()) | |||
return None; | |||
return AlgoChooserProfileCache::ResultEntry{ | |||
algo->name(), algo->is_reproducible(), rst.val().time, | |||
param.workspace}; | |||
} | |||
template <typename Opr> | |||
Maybe<PreprocessFilter<Opr>> | |||
AlgoChooser<Opr>::ExeContext::construct_fake_preprocess_filter() const { | |||
Maybe<PreprocessFilter<Opr>> result = None; | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
if (!m_allow_weight_preprocess) | |||
return; | |||
auto opr = _(m_megdnn_opr); | |||
auto layout = APPLY(opr->deduce_preprocessed_filter_layout(args...), | |||
m_layouts); | |||
if (layout.empty()) | |||
return; | |||
result = PreprocessFilter<Opr>{}; | |||
auto& res = result.val(); | |||
res.algorithm_id = nullptr; | |||
res.tensors.resize(layout.size()); | |||
for (size_t i = 0; i < layout.size(); i++) { | |||
res.tensors[i] = megdnn::TensorND(nullptr, layout[i]); | |||
} | |||
}); | |||
return result; | |||
} | |||
#define INST(Opr) \ | |||
template typename AlgoChooser<megdnn::Opr>::ImplAlgo \ | |||
AlgoChooser<megdnn::Opr>::ExeContext::choose_by_heuristic( \ | |||
bool reproducible) const; \ | |||
template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo> \ | |||
AlgoChooser<megdnn::Opr>::ExeContext::get_all_candidates() const; \ | |||
template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo> \ | |||
AlgoChooser<megdnn::Opr>::ExeContext:: \ | |||
get_all_candidates_with_workspace_limit() const; \ | |||
template size_t \ | |||
AlgoChooser<megdnn::Opr>::ExeContext::get_workspace_size_bytes( \ | |||
typename AlgoChooser<megdnn::Opr>::ImplAlgo algo) const; \ | |||
template Maybe<AlgoChooserProfileCache::ResultEntry> \ | |||
AlgoChooser<megdnn::Opr>::ExeContext::profile_single_algo( \ | |||
typename AlgoChooser<megdnn::Opr>::ImplAlgo algo, double& timeout) \ | |||
const; \ | |||
MGB_FOREACH_FASTRUN_OPR(INST) | |||
#undef INST | |||
} // namespace opr | |||
} // namespace mgb | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,259 @@ | |||
/** | |||
* \file src/opr/impl/search_policy/profile.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#include "megbrain/opr/search_policy/profiler.h" | |||
#include "../internal/invoke.h" | |||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||
//! fix it if there is another graceful way. | |||
#include "megdnn/oprs.h" | |||
#include "midout.h" | |||
MIDOUT_DECL(megbrain_opr_profile) | |||
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_profile, __VA_ARGS__) { | |||
#define MIDOUT_E \ | |||
} \ | |||
MIDOUT_END(); | |||
namespace mgb { | |||
namespace opr { | |||
#define APPLY(statement, ...) \ | |||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||
std::tuple_cat(__VA_ARGS__)) | |||
template <typename Opr> | |||
const double TimedProfiler<Opr>::timeout_setting = | |||
TimedProfiler<Opr>::init_timeout_setting(); | |||
template <typename Opr> | |||
double TimedProfiler<Opr>::init_timeout_setting() { | |||
#if MGB_ENABLE_FASTRUN | |||
sys::TimedFuncInvoker::ins().register_func( | |||
AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl, | |||
&TimedProfiler<Opr>::prof_init_device); | |||
auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT"); | |||
if (to_set) | |||
return std::stod(to_set); | |||
#endif | |||
return 0; | |||
} | |||
#define APPLY(statement, ...) \ | |||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||
std::tuple_cat(__VA_ARGS__)) | |||
template <typename Opr> | |||
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
const TParam& raw_param) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl"))) | |||
auto&& param = raw_param.as_single_pod<Param>(); | |||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn); | |||
std::array<TensorLayout, arity> layouts; | |||
auto from_enum = [&](DTypeEnum enumv) -> DType { | |||
switch (enumv) { | |||
#define cb(_dt) \ | |||
case DTypeTrait<_dt>::enumv: \ | |||
return _dt(1.0f, static_cast<uint8_t>(0)) | |||
cb(dtype::Quantized8Asymm); | |||
#undef cb | |||
#define cb(_dt) \ | |||
case DTypeTrait<_dt>::enumv: \ | |||
return _dt(1.0f) | |||
cb(dtype::QuantizedS8); | |||
cb(dtype::QuantizedS16); | |||
cb(dtype::QuantizedS32); | |||
default: | |||
return DType::from_enum(enumv); | |||
#undef cb | |||
} | |||
}; | |||
for (int i = 0; i < arity; ++i) { | |||
layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])}; | |||
} | |||
megdnn_opr->param() = param.opr_param; | |||
{ | |||
typename Opr::Algorithm* algo = nullptr; | |||
for (auto i : APPLY(megdnn_opr->get_all_algorithms(args...), layouts)) { | |||
if (!strcmp(i->name(), param.algo_name)) { | |||
algo = i; | |||
break; | |||
} | |||
} | |||
mgb_assert(algo, "algorithm %s not found", param.algo_name); | |||
megdnn_opr->execution_policy() = {algo}; | |||
} | |||
// Allocate preprocessed weight buffers. | |||
TensorLayoutArray preprocessed_layout; | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
if (param.allow_weight_preprocess) { | |||
preprocessed_layout = APPLY( | |||
_(megdnn_opr)->deduce_preprocessed_filter_layout(args...), | |||
layouts); | |||
} | |||
}); | |||
{ | |||
// first allocate a whole chunk to avoid memory fragmentation (here we | |||
// rely on memory allocator to reuse memory) | |||
auto align = cn.get_mem_addr_alignment(); | |||
size_t tot_size = align; | |||
for (int i = 0; i < arity; ++i) { | |||
tot_size += layouts[i].span().high_byte + align; | |||
} | |||
for (const auto& layout : preprocessed_layout) { | |||
tot_size += layout.span().high_byte + align; | |||
} | |||
tot_size += param.workspace; | |||
DeviceTensorStorage storage{cn}; | |||
storage.ensure_size(tot_size); | |||
} | |||
// allocate input and output memory | |||
std::array<DeviceTensorND, arity_in> inp_val; | |||
std::array<DeviceTensorND, arity_out> out_val; | |||
DeviceTensorND workspace; | |||
for (int i = 0; i < arity_in; ++i) { | |||
inp_val[i].comp_node(cn).dtype(layouts[i].dtype).resize(layouts[i]); | |||
} | |||
for (int i = 0; i < arity_out; ++i) { | |||
out_val[i] | |||
.comp_node(cn) | |||
.dtype(layouts[arity_in + i].dtype) | |||
.resize(layouts[arity_in + i]); | |||
} | |||
megdnn::Workspace mdn_workspace; | |||
// allocate workspace | |||
if (param.workspace) { | |||
workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace}); | |||
mdn_workspace.size = param.workspace; | |||
mdn_workspace.raw_ptr = workspace.raw_ptr(); | |||
} | |||
// allocate storage for preprocessed filter | |||
SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size()); | |||
for (size_t i = 0; i < preprocessed_layout.size(); i++) { | |||
flt_val[i] = {cn, preprocessed_layout[i], preprocessed_layout[i].dtype, | |||
preprocessed_layout[i].format}; | |||
} | |||
for (int i = 0; i < arity_in; ++i) { | |||
fill_zero_dev_tensor(inp_val[i]); | |||
} | |||
PreprocessFilter<Opr> prep_flt; | |||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||
if (!preprocessed_layout.empty()) { | |||
auto&& pf = _(prep_flt); | |||
pf.algorithm_id = nullptr; | |||
pf.tensors.resize(flt_val.size()); | |||
for (size_t i = 0; i < flt_val.size(); i++) { | |||
pf.tensors[i] = flt_val[i].as_megdnn(); | |||
} | |||
APPLY(_(megdnn_opr)->exec_preprocess(args..., &pf, mdn_workspace), | |||
std::forward_as_tuple(layouts[0], inp_val[1].as_megdnn()), | |||
array_skip<2>(layouts)); | |||
} | |||
}); | |||
RealTimer timer; | |||
auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER), | |||
ev_end = cn.create_event(CompNode::Event::NEED_TIMER); | |||
ev_start->record(); | |||
if_constexpr<opr_supports_preprocess<Opr>()>( | |||
[&](auto _) { | |||
auto&& opr = _(megdnn_opr); | |||
PreprocessFilter<Opr>* pf = | |||
preprocessed_layout.empty() ? nullptr : &prep_flt; | |||
APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace), | |||
inp_val, out_val); | |||
}, | |||
/* else */ | |||
[&](auto _) { | |||
APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace), | |||
inp_val, out_val); | |||
}); | |||
ev_end->record(); | |||
double next_report_time = 0.5; | |||
while (!ev_end->finished()) { | |||
if (timer.get_secs() >= next_report_time) { | |||
mgb_log_warn( | |||
"profiling conv algo %s already took %.3f/%.3f secs" | |||
" (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ", | |||
param.algo_name, timer.get_secs(), param.actual_timeout); | |||
next_report_time = timer.get_secs() + 1; | |||
} | |||
using namespace std::literals; | |||
std::this_thread::sleep_for(1000us); | |||
} | |||
mgb_assert(ev_start->finished()); | |||
return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)}); | |||
MIDOUT_E | |||
}; | |||
template <typename Opr> | |||
Maybe<typename TimedProfiler<Opr>::Result> TimedProfiler<Opr>::profile( | |||
const Param& param, double& timeout) { | |||
mgb_assert(timeout >= 0); | |||
if (!timeout) { | |||
timeout = timeout_setting; | |||
} else if (timeout_setting) { | |||
timeout = std::min(timeout, timeout_setting); | |||
} | |||
param.actual_timeout = | |||
timeout ? timeout : std::numeric_limits<double>::infinity(); | |||
auto res = sys::TimedFuncInvoker::ins().invoke( | |||
AlgoChooserFuncId<Opr>::ID, | |||
TParam::from_pod(const_cast<Param&>(param)), timeout); | |||
if (res.valid()) | |||
return res.val().template as_single_pod<Result>(); | |||
return None; | |||
} | |||
template <typename Opr> | |||
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) { | |||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device"))) | |||
auto&& param = raw_param.as_single_pod<Param>(); | |||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||
// wait for cuda init, so its time does not get accounted in timeout | |||
cn.sync(); | |||
MIDOUT_E | |||
} | |||
#define INST(Opr) \ | |||
template const double TimedProfiler<megdnn::Opr>::timeout_setting; \ | |||
template double TimedProfiler<megdnn::Opr>::init_timeout_setting(); \ | |||
template typename TimedProfiler<megdnn::Opr>::TResult \ | |||
TimedProfiler<megdnn::Opr>::prof_impl(const TParam& raw_param); \ | |||
template Maybe<typename TimedProfiler<megdnn::Opr>::Result> \ | |||
TimedProfiler<megdnn::Opr>::profile(const Param& param, double& timeout); \ | |||
template void TimedProfiler<megdnn::Opr>::prof_init_device( \ | |||
const TParam& raw_param); | |||
MGB_FOREACH_FASTRUN_OPR(INST) | |||
#undef INST | |||
} // namespace opr | |||
} // namespace mgb | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,36 @@ | |||
/** | |||
* \file src/opr/impl/search_policy/workspace_need_limit_getter.inl | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain/opr/search_policy/profiler.h" | |||
#include "../internal/megdnn_opr_wrapper.inl" | |||
namespace mgb { | |||
namespace opr { | |||
namespace intl { | |||
#define cb(_Opr) \ | |||
template <> \ | |||
struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \ | |||
static constexpr bool val = true; \ | |||
}; | |||
MGB_FOREACH_FASTRUN_OPR(cb) | |||
#undef cb | |||
} // namespace intl | |||
} // namespace opr | |||
} // namespace mgb | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,140 @@ | |||
/** | |||
* \file src/opr/include/megbrain/opr/search_policy/algo_chooser.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain/opr/search_policy/profiler.h" | |||
template <class MegDNNOpr> | |||
struct MegDNNOpr2MGBOpr; | |||
#define cb(_Opr) \ | |||
template <> \ | |||
struct MegDNNOpr2MGBOpr<megdnn::_Opr> { \ | |||
using MGBOpr = mgb::opr::_Opr; \ | |||
}; | |||
MGB_FOREACH_FASTRUN_OPR(cb) | |||
#undef cb | |||
namespace mgb { | |||
namespace opr { | |||
/* =================== AlgoChooser =================== */ | |||
/*! | |||
* \brief choose algorithm according to ExecutionPolicy | |||
* | |||
* This class only provides static methods, and the entry point is | |||
* AlgoChooser::setup_algo. When profiling is needed, it would first try to | |||
* retrive profiling stats from cache, and run TimedProfiler when necessary | |||
* | |||
* \tparam Opr megdnn operator impl | |||
*/ | |||
template <typename Opr> | |||
class AlgoChooser { | |||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||
using ImplAlgo = typename Opr::Algorithm*; | |||
using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr; | |||
using ConvTensorLayouts = std::array<TensorLayout, arity>; | |||
class ExeContext { | |||
const ConvTensorLayouts& m_layouts; | |||
Opr* m_megdnn_opr; | |||
const MGBOpr* m_mgb_opr; | |||
bool m_allow_weight_preprocess; | |||
public: | |||
ExeContext(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||
const MGBOpr* mgb_opr, bool allow_weight_preprocess) | |||
: m_layouts{layouts}, | |||
m_megdnn_opr{megdnn_opr}, | |||
m_mgb_opr{mgb_opr}, | |||
m_allow_weight_preprocess{allow_weight_preprocess} { | |||
mgb_assert(m_layouts.size() == layouts.size()); | |||
static_assert( | |||
std::tuple_size<ConvTensorLayouts>::value == 3 || | |||
std::tuple_size<ConvTensorLayouts>::value == 5 || | |||
std::tuple_size<ConvTensorLayouts>::value == 8, | |||
"Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for " | |||
"deformable conv)"); | |||
} | |||
Opr* megdnn_opr() const { return m_megdnn_opr; } | |||
const MGBOpr* mgb_opr() const { return m_mgb_opr; } | |||
const TensorLayout& inp_layout(size_t idx) const { | |||
return m_layouts[idx]; | |||
} | |||
const ConvTensorLayouts& layouts() const { return m_layouts; } | |||
ImplAlgo choose_by_heuristic(bool reproducible = false) const; | |||
//! get all candidate algos, and the one choose_by_heuristic() is | |||
//! put first | |||
std::vector<ImplAlgo> get_all_candidates() const; | |||
//! get candidate algos with workspace limit. | |||
std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const; | |||
//! get workspace size required for specific algo | |||
size_t get_workspace_size_bytes(ImplAlgo algo) const; | |||
/*! | |||
* \brief profile a single algorithm | |||
* | |||
* This is actually a wrapper that constructs param and call | |||
* TimedProfiler<Opr>::profile for the actual profiling | |||
* | |||
* \param[in,out] timeout set the timeout, and return the actual | |||
* timeout used during profiling | |||
*/ | |||
Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo( | |||
ImplAlgo algo, double& timeout) const; | |||
private: | |||
Maybe<PreprocessFilter<Opr>> construct_fake_preprocess_filter() const; | |||
}; | |||
//! entrance for getting algorithm according to execution strategy | |||
static ImplAlgo get_algo(ExeContext& ctx); | |||
static void get_origin_param_and_layouts(const ExeContext&, | |||
ConvTensorLayouts&, | |||
typename Opr::Param&) {} | |||
//! get all profile result, either by retrieving cache or profiling | |||
static AlgoChooserProfileCache::Result get_profile_result( | |||
ExeContext& ctx, bool enable_update); | |||
static ImplAlgo choose_by_profile(ExeContext& ctx, | |||
bool require_reproducible, | |||
bool enable_update = true); | |||
public: | |||
/*! | |||
* \brief setup algorithm and return workspace size | |||
*/ | |||
static size_t setup_algo(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||
const MGBOpr* mgb_opr, | |||
bool allow_weight_preprocess = false); | |||
}; | |||
} // namespace opr | |||
} // namespace mgb | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,160 @@ | |||
/** | |||
* \file src/opr/include/megbrain/opr/search_policy/profile.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||
* implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain/opr/dnn/convolution.h" | |||
#include "megbrain/utils/hash_ct.h" | |||
#include "megbrain/utils/timer.h" | |||
#include "megdnn/basic_types.h" | |||
#include "megdnn/oprs/nn.h" | |||
namespace mgb { | |||
namespace opr { | |||
#define MGB_FOREACH_FASTRUN_OPR(cb) \ | |||
cb(ConvolutionForward); \ | |||
cb(ConvBiasForward); \ | |||
cb(ConvolutionBackwardData); \ | |||
cb(ConvolutionBackwardFilter); \ | |||
cb(Convolution3DForward); \ | |||
cb(Convolution3DBackwardData); \ | |||
cb(Convolution3DBackwardFilter); \ | |||
cb(LocalShareForward); \ | |||
cb(LocalShareBackwardData); \ | |||
cb(LocalShareBackwardFilter); \ | |||
cb(DeformableConvForward); \ | |||
cb(DeformableConvBackwardFilter); \ | |||
cb(DeformableConvBackwardData); \ | |||
cb(BatchConvBiasForward); | |||
template <typename Opr> | |||
struct OprArityTrait; | |||
template <typename Opr, int _arity_in, int _arity_out> | |||
struct OprArityTraitTmpl { | |||
static constexpr int arity_in = _arity_in; | |||
static constexpr int arity_out = _arity_out; | |||
static constexpr int arity = arity_in + arity_out; | |||
}; | |||
#define INST_ARITY(_Opr, _in, _out) \ | |||
template <> \ | |||
struct OprArityTrait<_Opr> : public OprArityTraitTmpl<_Opr, _in, _out> {}; | |||
INST_ARITY(megdnn::ConvolutionBackwardData, 2, 1); | |||
INST_ARITY(megdnn::ConvolutionBackwardFilter, 2, 1); | |||
INST_ARITY(megdnn::Convolution3DForward, 2, 1); | |||
INST_ARITY(megdnn::Convolution3DBackwardData, 2, 1); | |||
INST_ARITY(megdnn::Convolution3DBackwardFilter, 2, 1); | |||
INST_ARITY(megdnn::LocalShareForward, 2, 1); | |||
INST_ARITY(megdnn::LocalShareBackwardData, 2, 1); | |||
INST_ARITY(megdnn::LocalShareBackwardFilter, 2, 1); | |||
INST_ARITY(megdnn::Convolution, 2, 1); | |||
INST_ARITY(megdnn::DeformableConvForward, 4, 1); | |||
INST_ARITY(megdnn::DeformableConvBackwardFilter, 4, 1); | |||
INST_ARITY(megdnn::BatchConvBiasForward, 4, 1); | |||
INST_ARITY(megdnn::ConvBias, 4, 1); | |||
INST_ARITY(megdnn::DeformableConvBackwardData, 5, 3); | |||
#undef INST_ARITY | |||
template <typename Opr> | |||
constexpr bool opr_supports_preprocess() { | |||
return std::is_same<Opr, megdnn::ConvolutionForward>::value || | |||
std::is_same<Opr, megdnn::ConvBias>::value; | |||
} | |||
template <typename Opr, bool has_prep> | |||
struct PreprocessFilterImpl { | |||
using T = union {}; | |||
}; | |||
template <typename Opr> | |||
struct PreprocessFilterImpl<Opr, true> { | |||
using T = typename Opr::PreprocessedFilter; | |||
}; | |||
template <typename Opr> | |||
using PreprocessFilter = | |||
typename PreprocessFilterImpl<Opr, opr_supports_preprocess<Opr>()>::T; | |||
template <typename Opr> | |||
struct AlgoChooserFuncId {}; | |||
#define DEF_FUNC_ID(func) \ | |||
template <> \ | |||
struct AlgoChooserFuncId<megdnn::func> { \ | |||
__attribute__( \ | |||
(unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \ | |||
static_cast<sys::TimedFuncInvoker::FuncId>( \ | |||
MGB_HASH_STR("megdnn::" #func)); \ | |||
}; | |||
MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID) | |||
#undef DEF_FUNC_ID | |||
/* =================== TimedProfiler =================== */ | |||
/*! | |||
* \brief profile a megdnn opr conv with given param | |||
* | |||
* This class only provides static methods, and the entry point is | |||
* TimedProfiler::profile; it would run profiler in a timed environment by | |||
* sys::TimedFuncInvoker | |||
* | |||
* \tparam Opr megdnn opr impl | |||
*/ | |||
template <typename Opr> | |||
class TimedProfiler { | |||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||
using ConvTensorShapes = std::array<TensorShape, arity>; | |||
public: | |||
struct Param { | |||
char algo_name[128]; | |||
size_t workspace; | |||
DTypeEnum dtypes[arity]; | |||
CompNode::Locator comp_node_loc; | |||
ConvTensorShapes shapes; | |||
typename Opr::Param opr_param; | |||
bool allow_weight_preprocess; | |||
//! filled by profile() | |||
mutable double actual_timeout; | |||
}; | |||
struct Result { | |||
double time; | |||
}; | |||
static Maybe<Result> profile(const Param& param, double& timeout); | |||
private: | |||
using TParam = sys::TimedFuncInvoker::Param; | |||
using TResult = sys::TimedFuncInvoker::Result; | |||
static const double timeout_setting; | |||
static double init_timeout_setting(); | |||
static TResult prof_impl(const TParam& raw_param); | |||
static void prof_init_device(const TParam& raw_param); | |||
}; | |||
} // namespace opr | |||
} // namespace mgb | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -593,10 +593,6 @@ namespace { | |||
struct enable_for_dtype_impl<dtype::Bool, Trait> { | |||
static constexpr bool value = Trait::ALLOW_BOOL; | |||
}; | |||
template<> | |||
struct enable_for_dtype_impl<dtype::Bool, void> { | |||
static constexpr bool value = false; | |||
}; | |||
} | |||
//! whether to enable test for specific dtype and Trait | |||