GitOrigin-RevId: d5ef5356f6
release-1.1
@@ -6,11 +6,14 @@ | |||||
* | * | ||||
* Unless required by applicable law or agreed to in writing, | * Unless required by applicable law or agreed to in writing, | ||||
* software distributed under the License is distributed on an | * software distributed under the License is distributed on an | ||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | */ | ||||
#include "megbrain/opr/dnn/convolution.h" | #include "megbrain/opr/dnn/convolution.h" | ||||
#include "megbrain/opr/io.h" | #include "megbrain/opr/io.h" | ||||
#include "megbrain/opr/search_policy/algo_chooser.h" | |||||
#include "megbrain/opr/search_policy/profiler.h" | |||||
#include "megbrain/graph/grad_impl.h" | #include "megbrain/graph/grad_impl.h" | ||||
#include "megbrain/system.h" | #include "megbrain/system.h" | ||||
@@ -19,28 +22,15 @@ | |||||
#include "megdnn/oprs/utils.h" | #include "megdnn/oprs/utils.h" | ||||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||||
//! fix it if there is another graceful way. | |||||
#include "megdnn/oprs.h" | |||||
#include "midout.h" | |||||
MIDOUT_DECL(megbrain_opr_convolution) | |||||
#define MIDOUT_B(...) \ | |||||
MIDOUT_BEGIN(megbrain_opr_convolution, __VA_ARGS__) { | |||||
#define MIDOUT_E \ | |||||
} \ | |||||
MIDOUT_END(); | |||||
#include "../internal/megdnn_opr_wrapper.inl" | |||||
#include "../internal/invoke.h" | #include "../internal/invoke.h" | ||||
#include "../internal/megdnn_opr_wrapper.inl" | |||||
#include "../search_policy/workspace_need_limit_getter.inl" | |||||
#include <array> | #include <array> | ||||
#include <chrono> | #include <chrono> | ||||
#include <cstring> | #include <cstring> | ||||
#include <thread> | #include <thread> | ||||
using namespace mgb; | using namespace mgb; | ||||
using namespace opr; | using namespace opr; | ||||
using namespace cg::static_infer; | using namespace cg::static_infer; | ||||
@@ -48,771 +38,6 @@ using intl::WorkspaceLimitGetter; | |||||
#define CACHE_KEY_VERSION "v2" | #define CACHE_KEY_VERSION "v2" | ||||
#define MGB_FOREACH_FASTRUN_OPR(cb) \ | |||||
cb(ConvolutionForward); \ | |||||
cb(ConvBiasForward); \ | |||||
cb(ConvolutionBackwardData); \ | |||||
cb(ConvolutionBackwardFilter); \ | |||||
cb(Convolution3DForward); \ | |||||
cb(Convolution3DBackwardData); \ | |||||
cb(Convolution3DBackwardFilter); \ | |||||
cb(LocalShareForward); \ | |||||
cb(LocalShareBackwardData); \ | |||||
cb(LocalShareBackwardFilter); \ | |||||
cb(DeformableConvForward); \ | |||||
cb(DeformableConvBackwardFilter); \ | |||||
cb(DeformableConvBackwardData); \ | |||||
cb(BatchConvBiasForward); | |||||
namespace mgb { | |||||
namespace opr { | |||||
namespace intl { | |||||
#define cb(_Opr) \ | |||||
template <> \ | |||||
struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \ | |||||
static constexpr bool val = true; \ | |||||
}; | |||||
MGB_FOREACH_FASTRUN_OPR(cb) | |||||
#undef cb | |||||
} // namespace intl | |||||
} // namespace opr | |||||
} // namespace mgb | |||||
namespace { | |||||
template <class MegDNNOpr> | |||||
struct MegDNNOpr2MGBOpr; | |||||
#define cb(_Opr) \ | |||||
template <> \ | |||||
struct MegDNNOpr2MGBOpr<megdnn::_Opr> { \ | |||||
using MGBOpr = opr::_Opr; \ | |||||
}; | |||||
MGB_FOREACH_FASTRUN_OPR(cb) | |||||
#undef cb | |||||
template <typename Opr> | |||||
struct OprArityTrait; | |||||
template <typename Opr, int _arity_in, int _arity_out> | |||||
struct OprArityTraitTmpl { | |||||
static constexpr int arity_in = _arity_in; | |||||
static constexpr int arity_out = _arity_out; | |||||
static constexpr int arity = arity_in + arity_out; | |||||
}; | |||||
#define INST_ARITY(_Opr, _in, _out) \ | |||||
template <> \ | |||||
struct OprArityTrait<_Opr> : public OprArityTraitTmpl<_Opr, _in, _out> {}; | |||||
INST_ARITY(megdnn::ConvolutionBackwardData, 2, 1); | |||||
INST_ARITY(megdnn::ConvolutionBackwardFilter, 2, 1); | |||||
INST_ARITY(megdnn::Convolution3DForward, 2, 1); | |||||
INST_ARITY(megdnn::Convolution3DBackwardData, 2, 1); | |||||
INST_ARITY(megdnn::Convolution3DBackwardFilter, 2, 1); | |||||
INST_ARITY(megdnn::LocalShareForward, 2, 1); | |||||
INST_ARITY(megdnn::LocalShareBackwardData, 2, 1); | |||||
INST_ARITY(megdnn::LocalShareBackwardFilter, 2, 1); | |||||
INST_ARITY(megdnn::Convolution, 2, 1); | |||||
INST_ARITY(megdnn::DeformableConvForward, 4, 1); | |||||
INST_ARITY(megdnn::DeformableConvBackwardFilter, 4, 1); | |||||
INST_ARITY(megdnn::BatchConvBiasForward, 4, 1); | |||||
INST_ARITY(megdnn::ConvBias, 4, 1); | |||||
INST_ARITY(megdnn::DeformableConvBackwardData, 5, 3); | |||||
#undef INST_ARITY | |||||
template <typename Opr> | |||||
constexpr bool opr_supports_preprocess() { | |||||
return std::is_same<Opr, megdnn::ConvolutionForward>::value || | |||||
std::is_same<Opr, megdnn::ConvBias>::value; | |||||
} | |||||
template <typename Opr, bool has_prep> | |||||
struct PreprocessFilterImpl { | |||||
using T = union {}; | |||||
}; | |||||
template <typename Opr> | |||||
struct PreprocessFilterImpl<Opr, true> { | |||||
using T = typename Opr::PreprocessedFilter; | |||||
}; | |||||
template <typename Opr> | |||||
using PreprocessFilter = | |||||
typename PreprocessFilterImpl<Opr, opr_supports_preprocess<Opr>()>::T; | |||||
// timeout delta to be added with fastest known algorithm for new algos | |||||
constexpr double TIMEOUT_TOLERANCE = 2; | |||||
template <typename Opr> | |||||
struct AlgoChooserFuncId {}; | |||||
#define DEF_FUNC_ID(func) \ | |||||
template <> \ | |||||
struct AlgoChooserFuncId<megdnn::func> { \ | |||||
__attribute__( \ | |||||
(unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \ | |||||
static_cast<sys::TimedFuncInvoker::FuncId>( \ | |||||
MGB_HASH_STR("megdnn::" #func)); \ | |||||
}; | |||||
MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID) | |||||
#undef DEF_FUNC_ID | |||||
/* =================== TimedProfiler =================== */ | |||||
/*! | |||||
* \brief profile a megdnn opr conv with given param | |||||
* | |||||
* This class only provides static methods, and the entry point is | |||||
* TimedProfiler::profile; it would run profiler in a timed environment by | |||||
* sys::TimedFuncInvoker | |||||
* | |||||
* \tparam Opr megdnn opr impl | |||||
*/ | |||||
template <typename Opr> | |||||
class TimedProfiler { | |||||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||||
using ConvTensorShapes = std::array<TensorShape, arity>; | |||||
public: | |||||
struct Param { | |||||
char algo_name[128]; | |||||
size_t workspace; | |||||
DTypeEnum dtypes[arity]; | |||||
CompNode::Locator comp_node_loc; | |||||
ConvTensorShapes shapes; | |||||
typename Opr::Param opr_param; | |||||
bool allow_weight_preprocess; | |||||
//! filled by profile() | |||||
mutable double actual_timeout; | |||||
}; | |||||
struct Result { | |||||
double time; | |||||
}; | |||||
static Maybe<Result> profile(const Param& param, double& timeout) { | |||||
mgb_assert(timeout >= 0); | |||||
if (!timeout) { | |||||
timeout = timeout_setting; | |||||
} else if (timeout_setting) { | |||||
timeout = std::min(timeout, timeout_setting); | |||||
} | |||||
param.actual_timeout = | |||||
timeout ? timeout : std::numeric_limits<double>::infinity(); | |||||
auto res = sys::TimedFuncInvoker::ins().invoke( | |||||
AlgoChooserFuncId<Opr>::ID, | |||||
TParam::from_pod(const_cast<Param&>(param)), timeout); | |||||
if (res.valid()) | |||||
return res.val().template as_single_pod<Result>(); | |||||
return None; | |||||
} | |||||
private: | |||||
using TParam = sys::TimedFuncInvoker::Param; | |||||
using TResult = sys::TimedFuncInvoker::Result; | |||||
static const double timeout_setting; | |||||
static double init_timeout_setting(); | |||||
static TResult prof_impl(const TParam& raw_param); | |||||
static void prof_init_device(const TParam& raw_param); | |||||
}; | |||||
template <typename Opr> | |||||
const double TimedProfiler<Opr>::timeout_setting = | |||||
TimedProfiler<Opr>::init_timeout_setting(); | |||||
template <typename Opr> | |||||
double TimedProfiler<Opr>::init_timeout_setting() { | |||||
#if MGB_ENABLE_FASTRUN | |||||
sys::TimedFuncInvoker::ins().register_func( | |||||
AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl, | |||||
&TimedProfiler<Opr>::prof_init_device); | |||||
auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT"); | |||||
if (to_set) | |||||
return std::stod(to_set); | |||||
#endif | |||||
return 0; | |||||
} | |||||
#define APPLY(statement, ...) \ | |||||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||||
std::tuple_cat(__VA_ARGS__)) | |||||
template <typename Opr> | |||||
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||||
const TParam& raw_param) { | |||||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl"))) | |||||
auto&& param = raw_param.as_single_pod<Param>(); | |||||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||||
auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn); | |||||
std::array<TensorLayout, arity> layouts; | |||||
auto from_enum = [&](DTypeEnum enumv) -> DType { | |||||
switch (enumv) { | |||||
#define cb(_dt) \ | |||||
case DTypeTrait<_dt>::enumv: \ | |||||
return _dt(1.0f, static_cast<uint8_t>(0)) | |||||
cb(dtype::Quantized8Asymm); | |||||
#undef cb | |||||
#define cb(_dt) \ | |||||
case DTypeTrait<_dt>::enumv: \ | |||||
return _dt(1.0f) | |||||
cb(dtype::QuantizedS8); | |||||
cb(dtype::QuantizedS16); | |||||
cb(dtype::QuantizedS32); | |||||
default: | |||||
return DType::from_enum(enumv); | |||||
#undef cb | |||||
} | |||||
}; | |||||
for (int i = 0; i < arity; ++i) { | |||||
layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])}; | |||||
} | |||||
megdnn_opr->param() = param.opr_param; | |||||
{ | |||||
typename Opr::Algorithm* algo = nullptr; | |||||
for (auto i : APPLY(megdnn_opr->get_all_algorithms(args...), layouts)) { | |||||
if (!strcmp(i->name(), param.algo_name)) { | |||||
algo = i; | |||||
break; | |||||
} | |||||
} | |||||
mgb_assert(algo, "algorithm %s not found", param.algo_name); | |||||
megdnn_opr->execution_policy() = {algo}; | |||||
} | |||||
// Allocate preprocessed weight buffers. | |||||
TensorLayoutArray preprocessed_layout; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
if (param.allow_weight_preprocess) { | |||||
preprocessed_layout = APPLY( | |||||
_(megdnn_opr)->deduce_preprocessed_filter_layout(args...), | |||||
layouts); | |||||
} | |||||
}); | |||||
{ | |||||
// first allocate a whole chunk to avoid memory fragmentation (here we | |||||
// rely on memory allocator to reuse memory) | |||||
auto align = cn.get_mem_addr_alignment(); | |||||
size_t tot_size = align; | |||||
for (int i = 0; i < arity; ++i) { | |||||
tot_size += layouts[i].span().high_byte + align; | |||||
} | |||||
for (const auto& layout : preprocessed_layout) { | |||||
tot_size += layout.span().high_byte + align; | |||||
} | |||||
tot_size += param.workspace; | |||||
DeviceTensorStorage storage{cn}; | |||||
storage.ensure_size(tot_size); | |||||
} | |||||
// allocate input and output memory | |||||
std::array<DeviceTensorND, arity_in> inp_val; | |||||
std::array<DeviceTensorND, arity_out> out_val; | |||||
DeviceTensorND workspace; | |||||
for (int i = 0; i < arity_in; ++i) { | |||||
inp_val[i] | |||||
.comp_node(cn) | |||||
.dtype(layouts[i].dtype) | |||||
.resize(layouts[i]); | |||||
} | |||||
for (int i = 0; i < arity_out; ++i) { | |||||
out_val[i] | |||||
.comp_node(cn) | |||||
.dtype(layouts[arity_in + i].dtype) | |||||
.resize(layouts[arity_in + i]); | |||||
} | |||||
megdnn::Workspace mdn_workspace; | |||||
// allocate workspace | |||||
if (param.workspace) { | |||||
workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace}); | |||||
mdn_workspace.size = param.workspace; | |||||
mdn_workspace.raw_ptr = workspace.raw_ptr(); | |||||
} | |||||
// allocate storage for preprocessed filter | |||||
SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size()); | |||||
for (size_t i = 0; i < preprocessed_layout.size(); i++) { | |||||
flt_val[i] = {cn, preprocessed_layout[i], preprocessed_layout[i].dtype, | |||||
preprocessed_layout[i].format}; | |||||
} | |||||
for (int i = 0; i < arity_in; ++i) { | |||||
fill_zero_dev_tensor(inp_val[i]); | |||||
} | |||||
PreprocessFilter<Opr> prep_flt; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
if (!preprocessed_layout.empty()) { | |||||
auto&& pf = _(prep_flt); | |||||
pf.algorithm_id = nullptr; | |||||
pf.tensors.resize(flt_val.size()); | |||||
for (size_t i = 0; i < flt_val.size(); i++) { | |||||
pf.tensors[i] = flt_val[i].as_megdnn(); | |||||
} | |||||
APPLY(_(megdnn_opr)->exec_preprocess(args..., &pf, mdn_workspace), | |||||
std::forward_as_tuple(layouts[0], inp_val[1].as_megdnn()), | |||||
array_skip<2>(layouts)); | |||||
} | |||||
}); | |||||
RealTimer timer; | |||||
auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER), | |||||
ev_end = cn.create_event(CompNode::Event::NEED_TIMER); | |||||
ev_start->record(); | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
auto&& opr = _(megdnn_opr); | |||||
PreprocessFilter<Opr>* pf = | |||||
preprocessed_layout.empty() ? nullptr : &prep_flt; | |||||
APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace), inp_val, | |||||
out_val); | |||||
}, /* else */ [&](auto _) { | |||||
APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace), inp_val, | |||||
out_val); | |||||
}); | |||||
ev_end->record(); | |||||
double next_report_time = 0.5; | |||||
while (!ev_end->finished()) { | |||||
if (timer.get_secs() >= next_report_time) { | |||||
mgb_log_warn( | |||||
"profiling conv algo %s already took %.3f/%.3f secs" | |||||
" (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ", | |||||
param.algo_name, timer.get_secs(), param.actual_timeout); | |||||
next_report_time = timer.get_secs() + 1; | |||||
} | |||||
using namespace std::literals; | |||||
std::this_thread::sleep_for(1000us); | |||||
} | |||||
mgb_assert(ev_start->finished()); | |||||
return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)}); | |||||
MIDOUT_E | |||||
}; | |||||
template <typename Opr> | |||||
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) { | |||||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device"))) | |||||
auto&& param = raw_param.as_single_pod<Param>(); | |||||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||||
// wait for cuda init, so its time does not get accounted in timeout | |||||
cn.sync(); | |||||
MIDOUT_E | |||||
} | |||||
/* =================== AlgoChooser =================== */ | |||||
/*! | |||||
* \brief choose algorithm according to ExecutionPolicy | |||||
* | |||||
* This class only provides static methods, and the entry point is | |||||
* AlgoChooser::setup_algo. When profiling is needed, it would first try to | |||||
* retrive profiling stats from cache, and run TimedProfiler when necessary | |||||
* | |||||
* \tparam Opr megdnn operator impl | |||||
*/ | |||||
template <typename Opr> | |||||
class AlgoChooser { | |||||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||||
using ImplAlgo = typename Opr::Algorithm*; | |||||
using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr; | |||||
using ConvTensorLayouts = std::array<TensorLayout, arity>; | |||||
class ExeContext { | |||||
const ConvTensorLayouts& m_layouts; | |||||
Opr* m_megdnn_opr; | |||||
const MGBOpr* m_mgb_opr; | |||||
bool m_allow_weight_preprocess; | |||||
public: | |||||
ExeContext(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||||
const MGBOpr* mgb_opr, bool allow_weight_preprocess) | |||||
: m_layouts{layouts}, | |||||
m_megdnn_opr{megdnn_opr}, | |||||
m_mgb_opr{mgb_opr}, | |||||
m_allow_weight_preprocess{allow_weight_preprocess} { | |||||
mgb_assert(m_layouts.size() == layouts.size()); | |||||
static_assert( | |||||
std::tuple_size<ConvTensorLayouts>::value == 3 || | |||||
std::tuple_size<ConvTensorLayouts>::value == 5 || | |||||
std::tuple_size<ConvTensorLayouts>::value == 8, | |||||
"Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for " | |||||
"deformable conv)"); | |||||
} | |||||
Opr* megdnn_opr() const { return m_megdnn_opr; } | |||||
const MGBOpr* mgb_opr() const { return m_mgb_opr; } | |||||
const TensorLayout& inp_layout(size_t idx) const { | |||||
return m_layouts[idx]; | |||||
} | |||||
const ConvTensorLayouts& layouts() const { return m_layouts; } | |||||
ImplAlgo choose_by_heuristic(bool reproducible = false) const { | |||||
auto opr = m_mgb_opr; | |||||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||||
opr->owner_graph(), opr->comp_node(), | |||||
opr->execution_policy().workspace_limit); | |||||
return APPLY(m_megdnn_opr->get_algorithm_heuristic( | |||||
args..., workspace_limit, reproducible), | |||||
m_layouts); | |||||
} | |||||
//! get all candidate algos, and the one choose_by_heuristic() is | |||||
//! put first | |||||
std::vector<ImplAlgo> get_all_candidates() const { | |||||
auto heu = choose_by_heuristic(); | |||||
auto&& ret = | |||||
APPLY(m_megdnn_opr->get_all_algorithms(args...), m_layouts); | |||||
bool found = false; | |||||
for (size_t i = 0; i < ret.size(); ++i) { | |||||
if (ret[i] == heu) { | |||||
found = true; | |||||
std::swap(ret[i], ret[0]); | |||||
break; | |||||
} | |||||
} | |||||
mgb_assert(found, | |||||
"algo %s got by heuristic not found in " | |||||
"candidate list", | |||||
heu->name()); | |||||
return std::move(ret); | |||||
} | |||||
//! get candidate algos with workspace limit. | |||||
std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const { | |||||
auto&& all_algos = get_all_candidates(); | |||||
auto opr = m_mgb_opr; | |||||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||||
opr->owner_graph(), opr->comp_node(), | |||||
opr->execution_policy().workspace_limit); | |||||
std::vector<ImplAlgo> ret; | |||||
for (auto&& algo : all_algos) { | |||||
if (get_workspace_size_bytes(algo) <= workspace_limit) { | |||||
ret.push_back(algo); | |||||
} | |||||
} | |||||
return ret; | |||||
} | |||||
//! get workspace size required for specific algo | |||||
size_t get_workspace_size_bytes(ImplAlgo algo) const { | |||||
m_megdnn_opr->execution_policy() = {algo}; | |||||
size_t result; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
auto&& opr = _(m_megdnn_opr); | |||||
auto prep = this->construct_fake_preprocess_filter(); | |||||
PreprocessFilter<Opr>* prep_ptr = | |||||
prep.valid() ? &prep.val() : nullptr; | |||||
result = std::max( | |||||
APPLY(opr->get_preprocess_workspace_in_bytes(args...), | |||||
m_layouts), | |||||
APPLY(opr->get_workspace_in_bytes(args..., prep_ptr), | |||||
m_layouts)); | |||||
}, /* else */ [&](auto _) { | |||||
result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...), | |||||
m_layouts); | |||||
}); | |||||
return result; | |||||
} | |||||
/*! | |||||
* \brief profile a single algorithm | |||||
* | |||||
* This is actually a wrapper that constructs param and call | |||||
* TimedProfiler<Opr>::profile for the actual profiling | |||||
* | |||||
* \param[in,out] timeout set the timeout, and return the actual | |||||
* timeout used during profiling | |||||
*/ | |||||
Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo( | |||||
ImplAlgo algo, double& timeout) const; | |||||
private: | |||||
Maybe<PreprocessFilter<Opr>> construct_fake_preprocess_filter() const { | |||||
Maybe<PreprocessFilter<Opr>> result = None; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
if (!m_allow_weight_preprocess) | |||||
return; | |||||
auto opr = _(m_megdnn_opr); | |||||
auto layout = | |||||
APPLY(opr->deduce_preprocessed_filter_layout(args...), | |||||
m_layouts); | |||||
if (layout.empty()) | |||||
return; | |||||
result = PreprocessFilter<Opr>{}; | |||||
auto& res = result.val(); | |||||
res.algorithm_id = nullptr; | |||||
res.tensors.resize(layout.size()); | |||||
for (size_t i = 0; i < layout.size(); i++) { | |||||
res.tensors[i] = megdnn::TensorND(nullptr, layout[i]); | |||||
} | |||||
}); | |||||
return result; | |||||
} | |||||
}; | |||||
//! entrance for getting algorithm according to execution strategy | |||||
static ImplAlgo get_algo(ExeContext& ctx) { | |||||
using S = mixin::Convolution::ExecutionPolicy::Strategy; | |||||
MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE); | |||||
switch (ctx.mgb_opr()->execution_policy().strategy) { | |||||
case S::HEURISTIC: | |||||
return ctx.choose_by_heuristic(); | |||||
case S::HEURISTIC_REPRODUCIBLE: | |||||
return ctx.choose_by_heuristic(true); | |||||
case S::PROFILE_HEURISTIC: { | |||||
ImplAlgo algo = choose_by_profile(ctx, false, false); | |||||
if (algo == nullptr) | |||||
algo = ctx.choose_by_heuristic(); | |||||
return algo; | |||||
} | |||||
#if MGB_ENABLE_FASTRUN | |||||
case S::PROFILE: | |||||
return choose_by_profile(ctx, false); | |||||
case S::PROFILE_REPRODUCIBLE: | |||||
return choose_by_profile(ctx, true); | |||||
#endif | |||||
default: | |||||
mgb_throw(GraphError, | |||||
"bad convolution ExecutionPolicy strategy"); | |||||
} | |||||
} | |||||
static void get_origin_param_and_layouts(const ExeContext&, | |||||
ConvTensorLayouts&, | |||||
typename Opr::Param&) {} | |||||
//! get all profile result, either by retrieving cache or profiling | |||||
static AlgoChooserProfileCache::Result get_profile_result( | |||||
ExeContext& ctx, bool enable_update); | |||||
static ImplAlgo choose_by_profile(ExeContext& ctx, | |||||
bool require_reproducible, | |||||
bool enable_update = true); | |||||
public: | |||||
/*! | |||||
* \brief setup algorithm and return workspace size | |||||
*/ | |||||
static size_t setup_algo(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||||
const MGBOpr* mgb_opr, | |||||
bool allow_weight_preprocess = false) { | |||||
if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) { | |||||
return 0; | |||||
} | |||||
ExeContext ctx(layouts, megdnn_opr, mgb_opr, allow_weight_preprocess); | |||||
auto algo = get_algo(ctx); | |||||
size_t workspace = ctx.get_workspace_size_bytes(algo); | |||||
mgb_log_debug( | |||||
"%s:tensor layouts (%s %s, %s %s)->(%s %s) :algo=%s " | |||||
"workspace=%.2fMiB reproducible=%d", | |||||
mgb_opr->dyn_typeinfo()->name, | |||||
layouts[0].to_string().c_str(), | |||||
layouts[0].dtype.name(), | |||||
layouts[1].to_string().c_str(), | |||||
layouts[1].dtype.name(), | |||||
layouts[layouts.size() - 1].to_string().c_str(), | |||||
layouts[layouts.size() - 1].dtype.name(), algo->name(), | |||||
workspace / (1024 * 1024.0), algo->is_reproducible()); | |||||
megdnn_opr->execution_policy() = {algo}; | |||||
return workspace; | |||||
} | |||||
}; | |||||
template <typename Opr> | |||||
AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result( | |||||
ExeContext& ctx, bool enable_update) { | |||||
AlgoChooserProfileCache& cache = ctx.mgb_opr()->profile_cache(); | |||||
ConvTensorLayouts origin_layouts = ctx.layouts(); | |||||
typename Opr::Param origin_param = ctx.mgb_opr()->param(); | |||||
get_origin_param_and_layouts(ctx, origin_layouts, origin_param); | |||||
AlgoChooserProfileCache::Key cache_key{origin_layouts.data(), | |||||
origin_layouts.size(), &origin_param, | |||||
sizeof(origin_param)}; | |||||
{ | |||||
auto&& rst = cache.get(cache_key); | |||||
if (rst.valid()) | |||||
return rst.val(); | |||||
} | |||||
AlgoChooserProfileCache::Result prof_rst; | |||||
if (!enable_update) | |||||
return prof_rst; | |||||
std::string str_on_inp_shape = ssprintf( | |||||
"on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(), | |||||
ctx.layouts()[1].to_string().c_str()); | |||||
double cur_timeout = 0; | |||||
RealTimer timer; | |||||
for (auto algo : ctx.get_all_candidates_with_workspace_limit()) { | |||||
Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst; | |||||
std::string msg = ssprintf("profiling %s algorithm %s %s", | |||||
ctx.mgb_opr()->dyn_typeinfo()->name, | |||||
algo->name(), str_on_inp_shape.c_str()); | |||||
timer.reset(); | |||||
MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); } | |||||
MGB_CATCH(std::exception & exc, { | |||||
mgb_log_warn("caught exception during %s: %s", msg.c_str(), | |||||
exc.what()); | |||||
continue; | |||||
}) | |||||
MGB_CATCH(..., { | |||||
mgb_log_warn("caught exception during %s", msg.c_str()); | |||||
continue; | |||||
}) | |||||
if (!cur_rst.valid()) { | |||||
mgb_log_warn("timeout when %s; timeout setting: %.3fsec", | |||||
msg.c_str(), cur_timeout); | |||||
continue; | |||||
} | |||||
if (!cur_timeout) { | |||||
cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE; | |||||
} else { | |||||
cur_timeout = | |||||
std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE); | |||||
} | |||||
auto&& rst = cur_rst.val(); | |||||
mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(), | |||||
rst.workspace, rst.time); | |||||
prof_rst.push_back(rst); | |||||
} | |||||
mgb_assert(!prof_rst.empty(), "no usable convolution algorithm %s", | |||||
str_on_inp_shape.c_str()); | |||||
cache.put(cache_key, prof_rst); | |||||
return prof_rst; | |||||
} | |||||
template <> | |||||
void AlgoChooser<megdnn::ConvBias>::get_origin_param_and_layouts( | |||||
const ExeContext& ctx, ConvTensorLayouts& layouts, | |||||
megdnn::ConvBias::Param& param) { | |||||
auto format = static_cast<megdnn::param::ConvBias::Format>( | |||||
ctx.megdnn_opr()->param().format); | |||||
size_t output_block_size = ctx.megdnn_opr()->param().output_block_size; | |||||
megdnn::ConvBias::deduce_winograd_origin_layout_and_param( | |||||
format, output_block_size, ctx.layouts()[0], ctx.layouts()[1], | |||||
layouts[1], param); | |||||
} | |||||
template <typename Opr> | |||||
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||||
ExeContext& ctx, bool require_reproducible, bool enable_update) { | |||||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile"))) | |||||
auto opr = ctx.mgb_opr(); | |||||
if (opr->owner_graph()->options().no_profiling_on_shape_change) { | |||||
auto algo = ctx.megdnn_opr()->execution_policy().algorithm; | |||||
if (algo) | |||||
return algo; | |||||
} | |||||
std::unordered_map<std::string, ImplAlgo> algo_map; | |||||
for (auto i : ctx.get_all_candidates()) { | |||||
auto ins = algo_map.emplace(i->name(), i); | |||||
mgb_assert(ins.second, "duplicated algo name: %s", i->name()); | |||||
} | |||||
auto&& prof = get_profile_result(ctx, enable_update); | |||||
if (prof.empty()) | |||||
return nullptr; | |||||
for (auto&& i : prof) { | |||||
if ((!require_reproducible || i.reproducible)) { | |||||
auto iter = algo_map.find(i.algo); | |||||
mgb_assert( | |||||
iter != algo_map.end(), | |||||
"algorithm %s exists in " | |||||
"profiling result but not in algo_map; please report this " | |||||
"bug; opr: %s{%s}, shapes: %s %s %s", | |||||
ctx.mgb_opr()->cname(), ctx.mgb_opr()->dyn_typeinfo()->name, | |||||
ctx.layouts()[0].TensorShape::to_string().c_str(), | |||||
ctx.layouts()[1].TensorShape::to_string().c_str(), | |||||
ctx.layouts()[2].TensorShape::to_string().c_str(), | |||||
i.algo.c_str()); | |||||
return iter->second; | |||||
} | |||||
} | |||||
mgb_log_error( | |||||
"Workspace requirement (%zu) could not be satisfied. Abort now to " | |||||
"avoid further problems", | |||||
WorkspaceLimitGetter::get_workspace_limit( | |||||
opr->owner_graph(), opr->comp_node(), | |||||
opr->execution_policy().workspace_limit)); | |||||
mgb_trap(); | |||||
MIDOUT_E | |||||
} | |||||
template <typename Opr> | |||||
Maybe<AlgoChooserProfileCache::ResultEntry> | |||||
AlgoChooser<Opr>::ExeContext::profile_single_algo(ImplAlgo algo, | |||||
double& timeout) const { | |||||
typename TimedProfiler<Opr>::Param param; | |||||
auto name = algo->name(); | |||||
// force check copy size <= dest len-1 from gcc8 for safe | |||||
auto len = sizeof(param.algo_name); | |||||
strncpy(param.algo_name, name, len - 1); | |||||
param.algo_name[len - 1] = '\0'; | |||||
mgb_assert(!param.algo_name[sizeof(param.algo_name) - 2], | |||||
"algo name too long: %s; len=%zu", name, strlen(name)); | |||||
param.workspace = get_workspace_size_bytes(algo); | |||||
for (int i = 0; i < arity; ++i) { | |||||
auto&& src = m_layouts[i]; | |||||
mgb_assert(src.format.is_default() && | |||||
(src.dtype.category() == DTypeCategory::FLOAT || | |||||
src.dtype.category() == DTypeCategory::INT || | |||||
src.dtype.category() == DTypeCategory::QUANTIZED), | |||||
"unsupported layout in profiling: %s", | |||||
src.to_string().c_str()); | |||||
param.dtypes[i] = src.dtype.enumv(); | |||||
} | |||||
param.comp_node_loc = m_mgb_opr->output(0)->comp_node().locator(); | |||||
mgb_assert(param.shapes.size() == m_layouts.size()); | |||||
for (size_t i = 0; i < param.shapes.size(); ++i) | |||||
param.shapes[i] = m_layouts[i]; | |||||
param.opr_param = m_megdnn_opr->param(); | |||||
param.allow_weight_preprocess = m_allow_weight_preprocess; | |||||
auto rst = TimedProfiler<Opr>::profile(param, timeout); | |||||
// MIOpen conv profiles all available algos when a specfic shape is | |||||
// provided for the first time, which probably adds to the result time. | |||||
// Therefore, a second profile execution is needed. | |||||
if (strncmp(name, "MIOpen", 6) == 0) | |||||
rst = TimedProfiler<Opr>::profile(param, timeout); | |||||
if (!rst.valid()) | |||||
return None; | |||||
return AlgoChooserProfileCache::ResultEntry{ | |||||
algo->name(), algo->is_reproducible(), rst.val().time, | |||||
param.workspace}; | |||||
} | |||||
} // anonymous namespace | |||||
/* ==================== misc impl ==================== */ | /* ==================== misc impl ==================== */ | ||||
mixin::Convolution::~Convolution() = default; | mixin::Convolution::~Convolution() = default; | ||||
@@ -913,7 +138,8 @@ public: | |||||
void mixin::WeightPreprocessExecutor::mixin_update_preprocessed_filter( | void mixin::WeightPreprocessExecutor::mixin_update_preprocessed_filter( | ||||
cg::OperatorNodeBase& opr) { | cg::OperatorNodeBase& opr) { | ||||
if (!mixin_allow_weight_preprocess(opr)) return; | |||||
if (!mixin_allow_weight_preprocess(opr)) | |||||
return; | |||||
auto new_layout = deduce_preprocessed_filter_layout(); | auto new_layout = deduce_preprocessed_filter_layout(); | ||||
if (new_layout.empty()) { | if (new_layout.empty()) { | ||||
@@ -939,7 +165,8 @@ void mixin::WeightPreprocessExecutor::mixin_update_preprocessed_filter( | |||||
} | } | ||||
} | } | ||||
} | } | ||||
if (!should_update) return; | |||||
if (!should_update) | |||||
return; | |||||
if (!m_preprocessed_filter) { | if (!m_preprocessed_filter) { | ||||
m_preprocessed_filter.reset(new PreprocessedFilter{}); | m_preprocessed_filter.reset(new PreprocessedFilter{}); | ||||
@@ -1665,8 +892,7 @@ void ConvBiasForward::init_output_format() { | |||||
} | } | ||||
void ConvBiasForward::check_winograd_param_valid( | void ConvBiasForward::check_winograd_param_valid( | ||||
const megdnn::ConvBias::WinogradParam& param, | |||||
const DType& dtype) { | |||||
const megdnn::ConvBias::WinogradParam& param, const DType& dtype) { | |||||
if (dtype.enumv() == DTypeEnum::Float32) { | if (dtype.enumv() == DTypeEnum::Float32) { | ||||
mgb_assert(param.channel_block_size == 1 || | mgb_assert(param.channel_block_size == 1 || | ||||
param.channel_block_size == 4 || | param.channel_block_size == 4 || | ||||
@@ -1784,20 +1010,20 @@ size_t LocalShareForward::get_workspace_size_bytes( | |||||
#if MGB_ENABLE_GRAD | #if MGB_ENABLE_GRAD | ||||
MGB_IMPL_OPR_GRAD(LocalShareForward) { | MGB_IMPL_OPR_GRAD(LocalShareForward) { | ||||
mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | mgb_assert(opr.input(0)->dtype().category() == DTypeCategory::FLOAT, | ||||
"only float data type supported for grad"); | |||||
"only float data type supported for grad"); | |||||
mgb_assert(wrt_idx == 0 || wrt_idx == 1); | mgb_assert(wrt_idx == 0 || wrt_idx == 1); | ||||
mgb_assert(out_grad.size() == 2); | mgb_assert(out_grad.size() == 2); | ||||
if (wrt_idx == 0) { | if (wrt_idx == 0) { | ||||
// data | // data | ||||
SymbolVar grad = LocalShareBackwardData::make( | |||||
opr.input(1), out_grad[0], opr.input(0), | |||||
opr.param(), opr.execution_policy()); | |||||
SymbolVar grad = LocalShareBackwardData::make(opr.input(1), out_grad[0], | |||||
opr.input(0), opr.param(), | |||||
opr.execution_policy()); | |||||
return grad.node(); | return grad.node(); | ||||
} else { | } else { | ||||
// filter | // filter | ||||
SymbolVar grad = LocalShareBackwardFilter::make( | SymbolVar grad = LocalShareBackwardFilter::make( | ||||
opr.input(0), out_grad[0], opr.input(1), | |||||
opr.param(), opr.execution_policy()); | |||||
opr.input(0), out_grad[0], opr.input(1), opr.param(), | |||||
opr.execution_policy()); | |||||
return grad.node(); | return grad.node(); | ||||
} | } | ||||
} | } | ||||
@@ -1812,7 +1038,10 @@ LocalShareBackwardData::LocalShareBackwardData(VarNode* filter, VarNode* diff, | |||||
const Param& param, | const Param& param, | ||||
const ExecutionPolicy& policy, | const ExecutionPolicy& policy, | ||||
const OperatorNodeConfig& config) | const OperatorNodeConfig& config) | ||||
: Super{filter->owner_graph(), config, "local_share_bwd_data", {filter, diff}} { | |||||
: Super{filter->owner_graph(), | |||||
config, | |||||
"local_share_bwd_data", | |||||
{filter, diff}} { | |||||
init_megdnn_opr(*this, param); | init_megdnn_opr(*this, param); | ||||
m_policy = policy; | m_policy = policy; | ||||
add_input({filter, diff}); | add_input({filter, diff}); | ||||
@@ -1897,25 +1126,23 @@ LocalShareBackwardFilter::LocalShareBackwardFilter( | |||||
add_input({src, diff, filter}); | add_input({src, diff, filter}); | ||||
} | } | ||||
SymbolVar LocalShareBackwardFilter::make( | |||||
SymbolVar src, SymbolVar diff, SymbolVar filter, | |||||
const Param ¶m, | |||||
const ExecutionPolicy &policy, | |||||
const OperatorNodeConfig &config) { | |||||
SymbolVar LocalShareBackwardFilter::make(SymbolVar src, SymbolVar diff, | |||||
SymbolVar filter, const Param& param, | |||||
const ExecutionPolicy& policy, | |||||
const OperatorNodeConfig& config) { | |||||
return src.insert_single_output_opr<LocalShareBackwardFilter>( | return src.insert_single_output_opr<LocalShareBackwardFilter>( | ||||
src.node(), diff.node(), filter.node(), param, policy, config); | src.node(), diff.node(), filter.node(), param, policy, config); | ||||
} | } | ||||
size_t LocalShareBackwardFilter::get_workspace_size_bytes( | size_t LocalShareBackwardFilter::get_workspace_size_bytes( | ||||
const TensorShapeArray &input_shapes, | |||||
const TensorShapeArray &output_shapes) const { | |||||
const TensorShapeArray& input_shapes, | |||||
const TensorShapeArray& output_shapes) const { | |||||
mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1); | mgb_assert(input_shapes.size() == 3 && output_shapes.size() == 1); | ||||
return AlgoChooser<megdnn::LocalShareBackwardFilter>::setup_algo( | return AlgoChooser<megdnn::LocalShareBackwardFilter>::setup_algo( | ||||
{TensorLayout{input_shapes[0], input(0)->dtype(), | {TensorLayout{input_shapes[0], input(0)->dtype(), | ||||
input(0)->format()}, | input(0)->format()}, | ||||
{input_shapes[1], input(1)->dtype(), input(1)->format()}, | |||||
{output_shapes[0], output(0)->dtype(), output(0)->format()}}, | |||||
{input_shapes[1], input(1)->dtype(), input(1)->format()}, | |||||
{output_shapes[0], output(0)->dtype(), output(0)->format()}}, | |||||
megdnn_opr(), this); | megdnn_opr(), this); | ||||
} | } | ||||
@@ -1924,12 +1151,14 @@ MGB_IMPL_OPR_GRAD(LocalShareBackwardFilter) { | |||||
mgb_assert(!out_grad[1]); | mgb_assert(!out_grad[1]); | ||||
if (wrt_idx == 0) { | if (wrt_idx == 0) { | ||||
return LocalShareBackwardData::make(out_grad[0], opr.input(1), | return LocalShareBackwardData::make(out_grad[0], opr.input(1), | ||||
opr.input(0), opr.param(), opr.execution_policy()).node(); | |||||
opr.input(0), opr.param(), | |||||
opr.execution_policy()) | |||||
.node(); | |||||
} | } | ||||
if (wrt_idx == 1) { | if (wrt_idx == 1) { | ||||
return LocalShare::make( | |||||
opr.input(0), out_grad[0], opr.param(), opr.execution_policy()). | |||||
node(); | |||||
return LocalShare::make(opr.input(0), out_grad[0], opr.param(), | |||||
opr.execution_policy()) | |||||
.node(); | |||||
} | } | ||||
return nullptr; | return nullptr; | ||||
} | } | ||||
@@ -0,0 +1,401 @@ | |||||
/** | |||||
* \file src/opr/impl/search_policy/algo_chooser.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "megbrain/opr/search_policy/algo_chooser.h" | |||||
#include "megbrain/opr/search_policy/profiler.h" | |||||
#include "../internal/invoke.h" | |||||
#include "../internal/megdnn_opr_wrapper.inl" | |||||
#include "./workspace_need_limit_getter.inl" | |||||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||||
//! fix it if there is another graceful way. | |||||
#include "megdnn/oprs.h" | |||||
#include "midout.h" | |||||
MIDOUT_DECL(megbrain_opr_algo_chooser) | |||||
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_algo_chooser, __VA_ARGS__) { | |||||
#define MIDOUT_E \ | |||||
} \ | |||||
MIDOUT_END(); | |||||
using mgb::opr::intl::WorkspaceLimitGetter; | |||||
#define APPLY(statement, ...) \ | |||||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||||
std::tuple_cat(__VA_ARGS__)) | |||||
// timeout delta to be added with fastest known algorithm for new algos | |||||
constexpr double TIMEOUT_TOLERANCE = 2; | |||||
namespace mgb { | |||||
namespace opr { | |||||
template <typename Opr> | |||||
AlgoChooserProfileCache::Result AlgoChooser<Opr>::get_profile_result( | |||||
ExeContext& ctx, bool enable_update) { | |||||
AlgoChooserProfileCache& cache = ctx.mgb_opr()->profile_cache(); | |||||
ConvTensorLayouts origin_layouts = ctx.layouts(); | |||||
typename Opr::Param origin_param = ctx.mgb_opr()->param(); | |||||
get_origin_param_and_layouts(ctx, origin_layouts, origin_param); | |||||
AlgoChooserProfileCache::Key cache_key{origin_layouts.data(), | |||||
origin_layouts.size(), &origin_param, | |||||
sizeof(origin_param)}; | |||||
{ | |||||
auto&& rst = cache.get(cache_key); | |||||
if (rst.valid()) | |||||
return rst.val(); | |||||
} | |||||
AlgoChooserProfileCache::Result prof_rst; | |||||
if (!enable_update) | |||||
return prof_rst; | |||||
std::string str_on_inp_shape = ssprintf( | |||||
"on input layouts (%s, %s)", ctx.layouts()[0].to_string().c_str(), | |||||
ctx.layouts()[1].to_string().c_str()); | |||||
double cur_timeout = 0; | |||||
RealTimer timer; | |||||
for (auto algo : ctx.get_all_candidates_with_workspace_limit()) { | |||||
Maybe<AlgoChooserProfileCache::ResultEntry> cur_rst; | |||||
std::string msg = ssprintf("profiling %s algorithm %s %s", | |||||
ctx.mgb_opr()->dyn_typeinfo()->name, | |||||
algo->name(), str_on_inp_shape.c_str()); | |||||
timer.reset(); | |||||
MGB_TRY { cur_rst = ctx.profile_single_algo(algo, cur_timeout); } | |||||
MGB_CATCH(std::exception & exc, { | |||||
mgb_log_warn("caught exception during %s: %s", msg.c_str(), | |||||
exc.what()); | |||||
continue; | |||||
}) | |||||
MGB_CATCH(..., { | |||||
mgb_log_warn("caught exception during %s", msg.c_str()); | |||||
continue; | |||||
}) | |||||
if (!cur_rst.valid()) { | |||||
mgb_log_warn("timeout when %s; timeout setting: %.3fsec", | |||||
msg.c_str(), cur_timeout); | |||||
continue; | |||||
} | |||||
if (!cur_timeout) { | |||||
cur_timeout = timer.get_secs() + TIMEOUT_TOLERANCE; | |||||
} else { | |||||
cur_timeout = | |||||
std::min(cur_timeout, timer.get_secs() + TIMEOUT_TOLERANCE); | |||||
} | |||||
auto&& rst = cur_rst.val(); | |||||
mgb_log_debug("%s: workspace: %zu; time: %.3gsec", msg.c_str(), | |||||
rst.workspace, rst.time); | |||||
prof_rst.push_back(rst); | |||||
} | |||||
mgb_assert(!prof_rst.empty(), "no usable convolution algorithm %s", | |||||
str_on_inp_shape.c_str()); | |||||
cache.put(cache_key, prof_rst); | |||||
return prof_rst; | |||||
} | |||||
template <> | |||||
void AlgoChooser<megdnn::ConvBias>::get_origin_param_and_layouts( | |||||
const ExeContext& ctx, ConvTensorLayouts& layouts, | |||||
megdnn::ConvBias::Param& param) { | |||||
auto format = static_cast<megdnn::param::ConvBias::Format>( | |||||
ctx.megdnn_opr()->param().format); | |||||
size_t output_block_size = ctx.megdnn_opr()->param().output_block_size; | |||||
megdnn::ConvBias::deduce_winograd_origin_layout_and_param( | |||||
format, output_block_size, ctx.layouts()[0], ctx.layouts()[1], | |||||
layouts[1], param); | |||||
} | |||||
template <typename Opr> | |||||
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::choose_by_profile( | |||||
ExeContext& ctx, bool require_reproducible, bool enable_update) { | |||||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("AlgoChooser::choose_by_profile"))) | |||||
auto opr = ctx.mgb_opr(); | |||||
if (opr->owner_graph()->options().no_profiling_on_shape_change) { | |||||
auto algo = ctx.megdnn_opr()->execution_policy().algorithm; | |||||
if (algo) | |||||
return algo; | |||||
} | |||||
std::unordered_map<std::string, ImplAlgo> algo_map; | |||||
for (auto i : ctx.get_all_candidates()) { | |||||
auto ins = algo_map.emplace(i->name(), i); | |||||
mgb_assert(ins.second, "duplicated algo name: %s", i->name()); | |||||
} | |||||
auto&& prof = get_profile_result(ctx, enable_update); | |||||
if (prof.empty()) | |||||
return nullptr; | |||||
for (auto&& i : prof) { | |||||
if ((!require_reproducible || i.reproducible)) { | |||||
auto iter = algo_map.find(i.algo); | |||||
mgb_assert(iter != algo_map.end(), | |||||
"algorithm %s exists in " | |||||
"profiling result but not in algo_map; please " | |||||
"report this " | |||||
"bug; opr: %s{%s}, shapes: %s %s %s", | |||||
ctx.mgb_opr()->cname(), | |||||
ctx.mgb_opr()->dyn_typeinfo()->name, | |||||
ctx.layouts()[0].TensorShape::to_string().c_str(), | |||||
ctx.layouts()[1].TensorShape::to_string().c_str(), | |||||
ctx.layouts()[2].TensorShape::to_string().c_str(), | |||||
i.algo.c_str()); | |||||
return iter->second; | |||||
} | |||||
} | |||||
mgb_log_error( | |||||
"Workspace requirement (%zu) could not be satisfied. Abort now " | |||||
"to " | |||||
"avoid further problems", | |||||
WorkspaceLimitGetter::get_workspace_limit( | |||||
opr->owner_graph(), opr->comp_node(), | |||||
opr->execution_policy().workspace_limit)); | |||||
mgb_trap(); | |||||
MIDOUT_E | |||||
} | |||||
template <typename Opr> | |||||
size_t AlgoChooser<Opr>::setup_algo(const ConvTensorLayouts& layouts, | |||||
Opr* megdnn_opr, const MGBOpr* mgb_opr, | |||||
bool allow_weight_preprocess) { | |||||
if (WorkspaceLimitGetter::is_prealloc_run(mgb_opr->owner_graph())) { | |||||
return 0; | |||||
} | |||||
ExeContext ctx(layouts, megdnn_opr, mgb_opr, allow_weight_preprocess); | |||||
auto algo = get_algo(ctx); | |||||
size_t workspace = ctx.get_workspace_size_bytes(algo); | |||||
mgb_log_debug( | |||||
"%s: tensor layouts(%s %s, %s %s) -> (%s %s): algo=%s " | |||||
"workspace=%.2fMiB reproducible=%d", | |||||
mgb_opr->dyn_typeinfo()->name, layouts[0].to_string().c_str(), | |||||
layouts[0].dtype.name(), layouts[1].to_string().c_str(), | |||||
layouts[1].dtype.name(), | |||||
layouts[layouts.size() - 1].to_string().c_str(), | |||||
layouts[layouts.size() - 1].dtype.name(), algo->name(), | |||||
workspace / (1024 * 1024.0), algo->is_reproducible()); | |||||
megdnn_opr->execution_policy() = {algo}; | |||||
return workspace; | |||||
} | |||||
template <typename Opr> | |||||
typename AlgoChooser<Opr>::ImplAlgo AlgoChooser<Opr>::get_algo( | |||||
ExeContext& ctx) { | |||||
using S = mixin::Convolution::ExecutionPolicy::Strategy; | |||||
MGB_MARK_USED_VAR(TIMEOUT_TOLERANCE); | |||||
switch (ctx.mgb_opr()->execution_policy().strategy) { | |||||
case S::HEURISTIC: | |||||
return ctx.choose_by_heuristic(); | |||||
case S::HEURISTIC_REPRODUCIBLE: | |||||
return ctx.choose_by_heuristic(true); | |||||
case S::PROFILE_HEURISTIC: { | |||||
ImplAlgo algo = choose_by_profile(ctx, false, false); | |||||
if (algo == nullptr) | |||||
algo = ctx.choose_by_heuristic(); | |||||
return algo; | |||||
} | |||||
#if MGB_ENABLE_FASTRUN | |||||
case S::PROFILE: | |||||
return choose_by_profile(ctx, false); | |||||
case S::PROFILE_REPRODUCIBLE: | |||||
return choose_by_profile(ctx, true); | |||||
#endif | |||||
default: | |||||
mgb_throw(GraphError, "bad convolution ExecutionPolicy strategy"); | |||||
} | |||||
} | |||||
#define INST(Opr) \ | |||||
template AlgoChooser<megdnn::Opr>::ImplAlgo \ | |||||
AlgoChooser<megdnn::Opr>::get_algo(ExeContext& ctx); \ | |||||
template AlgoChooserProfileCache::Result \ | |||||
AlgoChooser<megdnn::Opr>::get_profile_result(ExeContext& ctx, \ | |||||
bool enable_update); \ | |||||
template AlgoChooser<megdnn::Opr>::ImplAlgo \ | |||||
AlgoChooser<megdnn::Opr>::choose_by_profile( \ | |||||
ExeContext& ctx, bool require_reproducible, bool enable_update); \ | |||||
template size_t AlgoChooser<megdnn::Opr>::setup_algo( \ | |||||
const ConvTensorLayouts& layouts, megdnn::Opr* megdnn_opr, \ | |||||
const MGBOpr* mgb_opr, bool allow_weight_preprocess); | |||||
MGB_FOREACH_FASTRUN_OPR(INST) | |||||
#undef INST | |||||
//////////////////////////////// ExeContext ///////////////////////////// | |||||
template <typename Opr> | |||||
typename AlgoChooser<Opr>::ImplAlgo | |||||
AlgoChooser<Opr>::ExeContext::choose_by_heuristic(bool reproducible) const { | |||||
auto opr = m_mgb_opr; | |||||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||||
opr->owner_graph(), opr->comp_node(), | |||||
opr->execution_policy().workspace_limit); | |||||
return APPLY(m_megdnn_opr->get_algorithm_heuristic(args..., workspace_limit, | |||||
reproducible), | |||||
m_layouts); | |||||
} | |||||
template <typename Opr> | |||||
std::vector<typename AlgoChooser<Opr>::ImplAlgo> | |||||
AlgoChooser<Opr>::ExeContext::get_all_candidates() const { | |||||
auto heu = choose_by_heuristic(); | |||||
auto&& ret = APPLY(m_megdnn_opr->get_all_algorithms(args...), m_layouts); | |||||
bool found = false; | |||||
for (size_t i = 0; i < ret.size(); ++i) { | |||||
if (ret[i] == heu) { | |||||
found = true; | |||||
std::swap(ret[i], ret[0]); | |||||
break; | |||||
} | |||||
} | |||||
mgb_assert(found, | |||||
"algo %s got by heuristic not found in " | |||||
"candidate list", heu->name()); | |||||
return std::move(ret); | |||||
} | |||||
template <typename Opr> | |||||
std::vector<typename AlgoChooser<Opr>::ImplAlgo> | |||||
AlgoChooser<Opr>::ExeContext::get_all_candidates_with_workspace_limit() const { | |||||
auto&& all_algos = get_all_candidates(); | |||||
auto opr = m_mgb_opr; | |||||
auto workspace_limit = WorkspaceLimitGetter::get_workspace_limit( | |||||
opr->owner_graph(), opr->comp_node(), | |||||
opr->execution_policy().workspace_limit); | |||||
std::vector<ImplAlgo> ret; | |||||
for (auto&& algo : all_algos) { | |||||
if (get_workspace_size_bytes(algo) <= workspace_limit) { | |||||
ret.push_back(algo); | |||||
} | |||||
} | |||||
return ret; | |||||
} | |||||
template <typename Opr> | |||||
size_t AlgoChooser<Opr>::ExeContext::get_workspace_size_bytes( | |||||
ImplAlgo algo) const { | |||||
m_megdnn_opr->execution_policy() = {algo}; | |||||
size_t result; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>( | |||||
[&](auto _) { | |||||
auto&& opr = _(m_megdnn_opr); | |||||
auto prep = this->construct_fake_preprocess_filter(); | |||||
PreprocessFilter<Opr>* prep_ptr = | |||||
prep.valid() ? &prep.val() : nullptr; | |||||
result = std::max( | |||||
APPLY(opr->get_preprocess_workspace_in_bytes(args...), | |||||
m_layouts), | |||||
APPLY(opr->get_workspace_in_bytes(args..., prep_ptr), | |||||
m_layouts)); | |||||
}, | |||||
/* else */ | |||||
[&](auto _) { | |||||
result = APPLY(_(m_megdnn_opr)->get_workspace_in_bytes(args...), | |||||
m_layouts); | |||||
}); | |||||
return result; | |||||
} | |||||
template <typename Opr> | |||||
Maybe<AlgoChooserProfileCache::ResultEntry> | |||||
AlgoChooser<Opr>::ExeContext::profile_single_algo(ImplAlgo algo, | |||||
double& timeout) const { | |||||
typename TimedProfiler<Opr>::Param param; | |||||
auto name = algo->name(); | |||||
// force check copy size <= dest len-1 from gcc8 for safe | |||||
auto len = sizeof(param.algo_name); | |||||
strncpy(param.algo_name, name, len - 1); | |||||
param.algo_name[len - 1] = '\0'; | |||||
mgb_assert(!param.algo_name[sizeof(param.algo_name) - 2], | |||||
"algo name too long: %s; len=%zu", name, strlen(name)); | |||||
param.workspace = get_workspace_size_bytes(algo); | |||||
for (int i = 0; i < arity; ++i) { | |||||
auto&& src = m_layouts[i]; | |||||
mgb_assert(src.format.is_default() && | |||||
(src.dtype.category() == DTypeCategory::FLOAT || | |||||
src.dtype.category() == DTypeCategory::INT || | |||||
src.dtype.category() == DTypeCategory::QUANTIZED), | |||||
"unsupported layout in profiling: %s", | |||||
src.to_string().c_str()); | |||||
param.dtypes[i] = src.dtype.enumv(); | |||||
} | |||||
param.comp_node_loc = m_mgb_opr->output(0)->comp_node().locator(); | |||||
mgb_assert(param.shapes.size() == m_layouts.size()); | |||||
for (size_t i = 0; i < param.shapes.size(); ++i) | |||||
param.shapes[i] = m_layouts[i]; | |||||
param.opr_param = m_megdnn_opr->param(); | |||||
param.allow_weight_preprocess = m_allow_weight_preprocess; | |||||
auto rst = TimedProfiler<Opr>::profile(param, timeout); | |||||
// MIOpen conv profiles all available algos when a specfic shape is | |||||
// provided for the first time, which probably adds to the result time. | |||||
// Therefore, a second profile execution is needed. | |||||
if (strncmp(name, "MIOpen", 6) == 0) | |||||
rst = TimedProfiler<Opr>::profile(param, timeout); | |||||
if (!rst.valid()) | |||||
return None; | |||||
return AlgoChooserProfileCache::ResultEntry{ | |||||
algo->name(), algo->is_reproducible(), rst.val().time, | |||||
param.workspace}; | |||||
} | |||||
template <typename Opr> | |||||
Maybe<PreprocessFilter<Opr>> | |||||
AlgoChooser<Opr>::ExeContext::construct_fake_preprocess_filter() const { | |||||
Maybe<PreprocessFilter<Opr>> result = None; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
if (!m_allow_weight_preprocess) | |||||
return; | |||||
auto opr = _(m_megdnn_opr); | |||||
auto layout = APPLY(opr->deduce_preprocessed_filter_layout(args...), | |||||
m_layouts); | |||||
if (layout.empty()) | |||||
return; | |||||
result = PreprocessFilter<Opr>{}; | |||||
auto& res = result.val(); | |||||
res.algorithm_id = nullptr; | |||||
res.tensors.resize(layout.size()); | |||||
for (size_t i = 0; i < layout.size(); i++) { | |||||
res.tensors[i] = megdnn::TensorND(nullptr, layout[i]); | |||||
} | |||||
}); | |||||
return result; | |||||
} | |||||
#define INST(Opr) \ | |||||
template typename AlgoChooser<megdnn::Opr>::ImplAlgo \ | |||||
AlgoChooser<megdnn::Opr>::ExeContext::choose_by_heuristic( \ | |||||
bool reproducible) const; \ | |||||
template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo> \ | |||||
AlgoChooser<megdnn::Opr>::ExeContext::get_all_candidates() const; \ | |||||
template std::vector<typename AlgoChooser<megdnn::Opr>::ImplAlgo> \ | |||||
AlgoChooser<megdnn::Opr>::ExeContext:: \ | |||||
get_all_candidates_with_workspace_limit() const; \ | |||||
template size_t \ | |||||
AlgoChooser<megdnn::Opr>::ExeContext::get_workspace_size_bytes( \ | |||||
typename AlgoChooser<megdnn::Opr>::ImplAlgo algo) const; \ | |||||
template Maybe<AlgoChooserProfileCache::ResultEntry> \ | |||||
AlgoChooser<megdnn::Opr>::ExeContext::profile_single_algo( \ | |||||
typename AlgoChooser<megdnn::Opr>::ImplAlgo algo, double& timeout) \ | |||||
const; \ | |||||
MGB_FOREACH_FASTRUN_OPR(INST) | |||||
#undef INST | |||||
} // namespace opr | |||||
} // namespace mgb | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,259 @@ | |||||
/** | |||||
* \file src/opr/impl/search_policy/profile.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "megbrain/opr/search_policy/profiler.h" | |||||
#include "../internal/invoke.h" | |||||
//! TODO: here has to be know some megdnn::opr when there is produced midout.h | |||||
//! fix it if there is another graceful way. | |||||
#include "megdnn/oprs.h" | |||||
#include "midout.h" | |||||
MIDOUT_DECL(megbrain_opr_profile) | |||||
#define MIDOUT_B(...) MIDOUT_BEGIN(megbrain_opr_profile, __VA_ARGS__) { | |||||
#define MIDOUT_E \ | |||||
} \ | |||||
MIDOUT_END(); | |||||
namespace mgb { | |||||
namespace opr { | |||||
#define APPLY(statement, ...) \ | |||||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||||
std::tuple_cat(__VA_ARGS__)) | |||||
template <typename Opr> | |||||
const double TimedProfiler<Opr>::timeout_setting = | |||||
TimedProfiler<Opr>::init_timeout_setting(); | |||||
template <typename Opr> | |||||
double TimedProfiler<Opr>::init_timeout_setting() { | |||||
#if MGB_ENABLE_FASTRUN | |||||
sys::TimedFuncInvoker::ins().register_func( | |||||
AlgoChooserFuncId<Opr>::ID, &TimedProfiler<Opr>::prof_impl, | |||||
&TimedProfiler<Opr>::prof_init_device); | |||||
auto to_set = MGB_GETENV("MGB_CONV_PROFILING_TIMEOUT"); | |||||
if (to_set) | |||||
return std::stod(to_set); | |||||
#endif | |||||
return 0; | |||||
} | |||||
#define APPLY(statement, ...) \ | |||||
mgb::apply([&](const auto&... args) { return statement; }, \ | |||||
std::tuple_cat(__VA_ARGS__)) | |||||
template <typename Opr> | |||||
typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||||
const TParam& raw_param) { | |||||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_impl"))) | |||||
auto&& param = raw_param.as_single_pod<Param>(); | |||||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||||
auto megdnn_opr = intl::create_megdnn_opr<Opr>(cn); | |||||
std::array<TensorLayout, arity> layouts; | |||||
auto from_enum = [&](DTypeEnum enumv) -> DType { | |||||
switch (enumv) { | |||||
#define cb(_dt) \ | |||||
case DTypeTrait<_dt>::enumv: \ | |||||
return _dt(1.0f, static_cast<uint8_t>(0)) | |||||
cb(dtype::Quantized8Asymm); | |||||
#undef cb | |||||
#define cb(_dt) \ | |||||
case DTypeTrait<_dt>::enumv: \ | |||||
return _dt(1.0f) | |||||
cb(dtype::QuantizedS8); | |||||
cb(dtype::QuantizedS16); | |||||
cb(dtype::QuantizedS32); | |||||
default: | |||||
return DType::from_enum(enumv); | |||||
#undef cb | |||||
} | |||||
}; | |||||
for (int i = 0; i < arity; ++i) { | |||||
layouts[i] = {param.shapes[i], from_enum(param.dtypes[i])}; | |||||
} | |||||
megdnn_opr->param() = param.opr_param; | |||||
{ | |||||
typename Opr::Algorithm* algo = nullptr; | |||||
for (auto i : APPLY(megdnn_opr->get_all_algorithms(args...), layouts)) { | |||||
if (!strcmp(i->name(), param.algo_name)) { | |||||
algo = i; | |||||
break; | |||||
} | |||||
} | |||||
mgb_assert(algo, "algorithm %s not found", param.algo_name); | |||||
megdnn_opr->execution_policy() = {algo}; | |||||
} | |||||
// Allocate preprocessed weight buffers. | |||||
TensorLayoutArray preprocessed_layout; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
if (param.allow_weight_preprocess) { | |||||
preprocessed_layout = APPLY( | |||||
_(megdnn_opr)->deduce_preprocessed_filter_layout(args...), | |||||
layouts); | |||||
} | |||||
}); | |||||
{ | |||||
// first allocate a whole chunk to avoid memory fragmentation (here we | |||||
// rely on memory allocator to reuse memory) | |||||
auto align = cn.get_mem_addr_alignment(); | |||||
size_t tot_size = align; | |||||
for (int i = 0; i < arity; ++i) { | |||||
tot_size += layouts[i].span().high_byte + align; | |||||
} | |||||
for (const auto& layout : preprocessed_layout) { | |||||
tot_size += layout.span().high_byte + align; | |||||
} | |||||
tot_size += param.workspace; | |||||
DeviceTensorStorage storage{cn}; | |||||
storage.ensure_size(tot_size); | |||||
} | |||||
// allocate input and output memory | |||||
std::array<DeviceTensorND, arity_in> inp_val; | |||||
std::array<DeviceTensorND, arity_out> out_val; | |||||
DeviceTensorND workspace; | |||||
for (int i = 0; i < arity_in; ++i) { | |||||
inp_val[i].comp_node(cn).dtype(layouts[i].dtype).resize(layouts[i]); | |||||
} | |||||
for (int i = 0; i < arity_out; ++i) { | |||||
out_val[i] | |||||
.comp_node(cn) | |||||
.dtype(layouts[arity_in + i].dtype) | |||||
.resize(layouts[arity_in + i]); | |||||
} | |||||
megdnn::Workspace mdn_workspace; | |||||
// allocate workspace | |||||
if (param.workspace) { | |||||
workspace.comp_node(cn).dtype(dtype::Byte()).resize({param.workspace}); | |||||
mdn_workspace.size = param.workspace; | |||||
mdn_workspace.raw_ptr = workspace.raw_ptr(); | |||||
} | |||||
// allocate storage for preprocessed filter | |||||
SmallVector<DeviceTensorND> flt_val(preprocessed_layout.size()); | |||||
for (size_t i = 0; i < preprocessed_layout.size(); i++) { | |||||
flt_val[i] = {cn, preprocessed_layout[i], preprocessed_layout[i].dtype, | |||||
preprocessed_layout[i].format}; | |||||
} | |||||
for (int i = 0; i < arity_in; ++i) { | |||||
fill_zero_dev_tensor(inp_val[i]); | |||||
} | |||||
PreprocessFilter<Opr> prep_flt; | |||||
if_constexpr<opr_supports_preprocess<Opr>()>([&](auto _) { | |||||
if (!preprocessed_layout.empty()) { | |||||
auto&& pf = _(prep_flt); | |||||
pf.algorithm_id = nullptr; | |||||
pf.tensors.resize(flt_val.size()); | |||||
for (size_t i = 0; i < flt_val.size(); i++) { | |||||
pf.tensors[i] = flt_val[i].as_megdnn(); | |||||
} | |||||
APPLY(_(megdnn_opr)->exec_preprocess(args..., &pf, mdn_workspace), | |||||
std::forward_as_tuple(layouts[0], inp_val[1].as_megdnn()), | |||||
array_skip<2>(layouts)); | |||||
} | |||||
}); | |||||
RealTimer timer; | |||||
auto ev_start = cn.create_event(CompNode::Event::NEED_TIMER), | |||||
ev_end = cn.create_event(CompNode::Event::NEED_TIMER); | |||||
ev_start->record(); | |||||
if_constexpr<opr_supports_preprocess<Opr>()>( | |||||
[&](auto _) { | |||||
auto&& opr = _(megdnn_opr); | |||||
PreprocessFilter<Opr>* pf = | |||||
preprocessed_layout.empty() ? nullptr : &prep_flt; | |||||
APPLY(opr->exec(args.as_megdnn()..., pf, mdn_workspace), | |||||
inp_val, out_val); | |||||
}, | |||||
/* else */ | |||||
[&](auto _) { | |||||
APPLY(_(megdnn_opr)->exec(args.as_megdnn()..., mdn_workspace), | |||||
inp_val, out_val); | |||||
}); | |||||
ev_end->record(); | |||||
double next_report_time = 0.5; | |||||
while (!ev_end->finished()) { | |||||
if (timer.get_secs() >= next_report_time) { | |||||
mgb_log_warn( | |||||
"profiling conv algo %s already took %.3f/%.3f secs" | |||||
" (limit can be set by MGB_CONV_PROFILING_TIMEOUT) ", | |||||
param.algo_name, timer.get_secs(), param.actual_timeout); | |||||
next_report_time = timer.get_secs() + 1; | |||||
} | |||||
using namespace std::literals; | |||||
std::this_thread::sleep_for(1000us); | |||||
} | |||||
mgb_assert(ev_start->finished()); | |||||
return TResult::from_pod(Result{ev_start->elapsed_time_until(*ev_end)}); | |||||
MIDOUT_E | |||||
}; | |||||
template <typename Opr> | |||||
Maybe<typename TimedProfiler<Opr>::Result> TimedProfiler<Opr>::profile( | |||||
const Param& param, double& timeout) { | |||||
mgb_assert(timeout >= 0); | |||||
if (!timeout) { | |||||
timeout = timeout_setting; | |||||
} else if (timeout_setting) { | |||||
timeout = std::min(timeout, timeout_setting); | |||||
} | |||||
param.actual_timeout = | |||||
timeout ? timeout : std::numeric_limits<double>::infinity(); | |||||
auto res = sys::TimedFuncInvoker::ins().invoke( | |||||
AlgoChooserFuncId<Opr>::ID, | |||||
TParam::from_pod(const_cast<Param&>(param)), timeout); | |||||
if (res.valid()) | |||||
return res.val().template as_single_pod<Result>(); | |||||
return None; | |||||
} | |||||
template <typename Opr> | |||||
void TimedProfiler<Opr>::prof_init_device(const TParam& raw_param) { | |||||
MIDOUT_B(Opr, midout_iv(MGB_HASH_STR("TimedProfiler::prof_init_device"))) | |||||
auto&& param = raw_param.as_single_pod<Param>(); | |||||
CompNode cn = CompNode::load(param.comp_node_loc, param.comp_node_loc); | |||||
// wait for cuda init, so its time does not get accounted in timeout | |||||
cn.sync(); | |||||
MIDOUT_E | |||||
} | |||||
#define INST(Opr) \ | |||||
template const double TimedProfiler<megdnn::Opr>::timeout_setting; \ | |||||
template double TimedProfiler<megdnn::Opr>::init_timeout_setting(); \ | |||||
template typename TimedProfiler<megdnn::Opr>::TResult \ | |||||
TimedProfiler<megdnn::Opr>::prof_impl(const TParam& raw_param); \ | |||||
template Maybe<typename TimedProfiler<megdnn::Opr>::Result> \ | |||||
TimedProfiler<megdnn::Opr>::profile(const Param& param, double& timeout); \ | |||||
template void TimedProfiler<megdnn::Opr>::prof_init_device( \ | |||||
const TParam& raw_param); | |||||
MGB_FOREACH_FASTRUN_OPR(INST) | |||||
#undef INST | |||||
} // namespace opr | |||||
} // namespace mgb | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,36 @@ | |||||
/** | |||||
* \file src/opr/impl/search_policy/workspace_need_limit_getter.inl | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#pragma once | |||||
#include "megbrain/opr/search_policy/profiler.h" | |||||
#include "../internal/megdnn_opr_wrapper.inl" | |||||
namespace mgb { | |||||
namespace opr { | |||||
namespace intl { | |||||
#define cb(_Opr) \ | |||||
template <> \ | |||||
struct AutoAddWorkspaceNeedLimitGetter<megdnn::_Opr> { \ | |||||
static constexpr bool val = true; \ | |||||
}; | |||||
MGB_FOREACH_FASTRUN_OPR(cb) | |||||
#undef cb | |||||
} // namespace intl | |||||
} // namespace opr | |||||
} // namespace mgb | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,140 @@ | |||||
/** | |||||
* \file src/opr/include/megbrain/opr/search_policy/algo_chooser.h | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#pragma once | |||||
#include "megbrain/opr/search_policy/profiler.h" | |||||
template <class MegDNNOpr> | |||||
struct MegDNNOpr2MGBOpr; | |||||
#define cb(_Opr) \ | |||||
template <> \ | |||||
struct MegDNNOpr2MGBOpr<megdnn::_Opr> { \ | |||||
using MGBOpr = mgb::opr::_Opr; \ | |||||
}; | |||||
MGB_FOREACH_FASTRUN_OPR(cb) | |||||
#undef cb | |||||
namespace mgb { | |||||
namespace opr { | |||||
/* =================== AlgoChooser =================== */ | |||||
/*! | |||||
* \brief choose algorithm according to ExecutionPolicy | |||||
* | |||||
* This class only provides static methods, and the entry point is | |||||
* AlgoChooser::setup_algo. When profiling is needed, it would first try to | |||||
* retrive profiling stats from cache, and run TimedProfiler when necessary | |||||
* | |||||
* \tparam Opr megdnn operator impl | |||||
*/ | |||||
template <typename Opr> | |||||
class AlgoChooser { | |||||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||||
using ImplAlgo = typename Opr::Algorithm*; | |||||
using MGBOpr = typename MegDNNOpr2MGBOpr<Opr>::MGBOpr; | |||||
using ConvTensorLayouts = std::array<TensorLayout, arity>; | |||||
class ExeContext { | |||||
const ConvTensorLayouts& m_layouts; | |||||
Opr* m_megdnn_opr; | |||||
const MGBOpr* m_mgb_opr; | |||||
bool m_allow_weight_preprocess; | |||||
public: | |||||
ExeContext(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||||
const MGBOpr* mgb_opr, bool allow_weight_preprocess) | |||||
: m_layouts{layouts}, | |||||
m_megdnn_opr{megdnn_opr}, | |||||
m_mgb_opr{mgb_opr}, | |||||
m_allow_weight_preprocess{allow_weight_preprocess} { | |||||
mgb_assert(m_layouts.size() == layouts.size()); | |||||
static_assert( | |||||
std::tuple_size<ConvTensorLayouts>::value == 3 || | |||||
std::tuple_size<ConvTensorLayouts>::value == 5 || | |||||
std::tuple_size<ConvTensorLayouts>::value == 8, | |||||
"Convolution AlgoChooser assumes arity = 3 , 5 or 8 (for " | |||||
"deformable conv)"); | |||||
} | |||||
Opr* megdnn_opr() const { return m_megdnn_opr; } | |||||
const MGBOpr* mgb_opr() const { return m_mgb_opr; } | |||||
const TensorLayout& inp_layout(size_t idx) const { | |||||
return m_layouts[idx]; | |||||
} | |||||
const ConvTensorLayouts& layouts() const { return m_layouts; } | |||||
ImplAlgo choose_by_heuristic(bool reproducible = false) const; | |||||
//! get all candidate algos, and the one choose_by_heuristic() is | |||||
//! put first | |||||
std::vector<ImplAlgo> get_all_candidates() const; | |||||
//! get candidate algos with workspace limit. | |||||
std::vector<ImplAlgo> get_all_candidates_with_workspace_limit() const; | |||||
//! get workspace size required for specific algo | |||||
size_t get_workspace_size_bytes(ImplAlgo algo) const; | |||||
/*! | |||||
* \brief profile a single algorithm | |||||
* | |||||
* This is actually a wrapper that constructs param and call | |||||
* TimedProfiler<Opr>::profile for the actual profiling | |||||
* | |||||
* \param[in,out] timeout set the timeout, and return the actual | |||||
* timeout used during profiling | |||||
*/ | |||||
Maybe<AlgoChooserProfileCache::ResultEntry> profile_single_algo( | |||||
ImplAlgo algo, double& timeout) const; | |||||
private: | |||||
Maybe<PreprocessFilter<Opr>> construct_fake_preprocess_filter() const; | |||||
}; | |||||
//! entrance for getting algorithm according to execution strategy | |||||
static ImplAlgo get_algo(ExeContext& ctx); | |||||
static void get_origin_param_and_layouts(const ExeContext&, | |||||
ConvTensorLayouts&, | |||||
typename Opr::Param&) {} | |||||
//! get all profile result, either by retrieving cache or profiling | |||||
static AlgoChooserProfileCache::Result get_profile_result( | |||||
ExeContext& ctx, bool enable_update); | |||||
static ImplAlgo choose_by_profile(ExeContext& ctx, | |||||
bool require_reproducible, | |||||
bool enable_update = true); | |||||
public: | |||||
/*! | |||||
* \brief setup algorithm and return workspace size | |||||
*/ | |||||
static size_t setup_algo(const ConvTensorLayouts& layouts, Opr* megdnn_opr, | |||||
const MGBOpr* mgb_opr, | |||||
bool allow_weight_preprocess = false); | |||||
}; | |||||
} // namespace opr | |||||
} // namespace mgb | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,160 @@ | |||||
/** | |||||
* \file src/opr/include/megbrain/opr/search_policy/profile.h | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#pragma once | |||||
#include "megbrain/opr/dnn/convolution.h" | |||||
#include "megbrain/utils/hash_ct.h" | |||||
#include "megbrain/utils/timer.h" | |||||
#include "megdnn/basic_types.h" | |||||
#include "megdnn/oprs/nn.h" | |||||
namespace mgb { | |||||
namespace opr { | |||||
#define MGB_FOREACH_FASTRUN_OPR(cb) \ | |||||
cb(ConvolutionForward); \ | |||||
cb(ConvBiasForward); \ | |||||
cb(ConvolutionBackwardData); \ | |||||
cb(ConvolutionBackwardFilter); \ | |||||
cb(Convolution3DForward); \ | |||||
cb(Convolution3DBackwardData); \ | |||||
cb(Convolution3DBackwardFilter); \ | |||||
cb(LocalShareForward); \ | |||||
cb(LocalShareBackwardData); \ | |||||
cb(LocalShareBackwardFilter); \ | |||||
cb(DeformableConvForward); \ | |||||
cb(DeformableConvBackwardFilter); \ | |||||
cb(DeformableConvBackwardData); \ | |||||
cb(BatchConvBiasForward); | |||||
template <typename Opr> | |||||
struct OprArityTrait; | |||||
template <typename Opr, int _arity_in, int _arity_out> | |||||
struct OprArityTraitTmpl { | |||||
static constexpr int arity_in = _arity_in; | |||||
static constexpr int arity_out = _arity_out; | |||||
static constexpr int arity = arity_in + arity_out; | |||||
}; | |||||
#define INST_ARITY(_Opr, _in, _out) \ | |||||
template <> \ | |||||
struct OprArityTrait<_Opr> : public OprArityTraitTmpl<_Opr, _in, _out> {}; | |||||
INST_ARITY(megdnn::ConvolutionBackwardData, 2, 1); | |||||
INST_ARITY(megdnn::ConvolutionBackwardFilter, 2, 1); | |||||
INST_ARITY(megdnn::Convolution3DForward, 2, 1); | |||||
INST_ARITY(megdnn::Convolution3DBackwardData, 2, 1); | |||||
INST_ARITY(megdnn::Convolution3DBackwardFilter, 2, 1); | |||||
INST_ARITY(megdnn::LocalShareForward, 2, 1); | |||||
INST_ARITY(megdnn::LocalShareBackwardData, 2, 1); | |||||
INST_ARITY(megdnn::LocalShareBackwardFilter, 2, 1); | |||||
INST_ARITY(megdnn::Convolution, 2, 1); | |||||
INST_ARITY(megdnn::DeformableConvForward, 4, 1); | |||||
INST_ARITY(megdnn::DeformableConvBackwardFilter, 4, 1); | |||||
INST_ARITY(megdnn::BatchConvBiasForward, 4, 1); | |||||
INST_ARITY(megdnn::ConvBias, 4, 1); | |||||
INST_ARITY(megdnn::DeformableConvBackwardData, 5, 3); | |||||
#undef INST_ARITY | |||||
template <typename Opr> | |||||
constexpr bool opr_supports_preprocess() { | |||||
return std::is_same<Opr, megdnn::ConvolutionForward>::value || | |||||
std::is_same<Opr, megdnn::ConvBias>::value; | |||||
} | |||||
template <typename Opr, bool has_prep> | |||||
struct PreprocessFilterImpl { | |||||
using T = union {}; | |||||
}; | |||||
template <typename Opr> | |||||
struct PreprocessFilterImpl<Opr, true> { | |||||
using T = typename Opr::PreprocessedFilter; | |||||
}; | |||||
template <typename Opr> | |||||
using PreprocessFilter = | |||||
typename PreprocessFilterImpl<Opr, opr_supports_preprocess<Opr>()>::T; | |||||
template <typename Opr> | |||||
struct AlgoChooserFuncId {}; | |||||
#define DEF_FUNC_ID(func) \ | |||||
template <> \ | |||||
struct AlgoChooserFuncId<megdnn::func> { \ | |||||
__attribute__( \ | |||||
(unused)) static constexpr sys::TimedFuncInvoker::FuncId ID = \ | |||||
static_cast<sys::TimedFuncInvoker::FuncId>( \ | |||||
MGB_HASH_STR("megdnn::" #func)); \ | |||||
}; | |||||
MGB_FOREACH_FASTRUN_OPR(DEF_FUNC_ID) | |||||
#undef DEF_FUNC_ID | |||||
/* =================== TimedProfiler =================== */ | |||||
/*! | |||||
* \brief profile a megdnn opr conv with given param | |||||
* | |||||
* This class only provides static methods, and the entry point is | |||||
* TimedProfiler::profile; it would run profiler in a timed environment by | |||||
* sys::TimedFuncInvoker | |||||
* | |||||
* \tparam Opr megdnn opr impl | |||||
*/ | |||||
template <typename Opr> | |||||
class TimedProfiler { | |||||
static constexpr int arity_in = OprArityTrait<Opr>::arity_in; | |||||
static constexpr int arity_out = OprArityTrait<Opr>::arity_out; | |||||
static constexpr int arity = OprArityTrait<Opr>::arity; | |||||
using ConvTensorShapes = std::array<TensorShape, arity>; | |||||
public: | |||||
struct Param { | |||||
char algo_name[128]; | |||||
size_t workspace; | |||||
DTypeEnum dtypes[arity]; | |||||
CompNode::Locator comp_node_loc; | |||||
ConvTensorShapes shapes; | |||||
typename Opr::Param opr_param; | |||||
bool allow_weight_preprocess; | |||||
//! filled by profile() | |||||
mutable double actual_timeout; | |||||
}; | |||||
struct Result { | |||||
double time; | |||||
}; | |||||
static Maybe<Result> profile(const Param& param, double& timeout); | |||||
private: | |||||
using TParam = sys::TimedFuncInvoker::Param; | |||||
using TResult = sys::TimedFuncInvoker::Result; | |||||
static const double timeout_setting; | |||||
static double init_timeout_setting(); | |||||
static TResult prof_impl(const TParam& raw_param); | |||||
static void prof_init_device(const TParam& raw_param); | |||||
}; | |||||
} // namespace opr | |||||
} // namespace mgb | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -593,10 +593,6 @@ namespace { | |||||
struct enable_for_dtype_impl<dtype::Bool, Trait> { | struct enable_for_dtype_impl<dtype::Bool, Trait> { | ||||
static constexpr bool value = Trait::ALLOW_BOOL; | static constexpr bool value = Trait::ALLOW_BOOL; | ||||
}; | }; | ||||
template<> | |||||
struct enable_for_dtype_impl<dtype::Bool, void> { | |||||
static constexpr bool value = false; | |||||
}; | |||||
} | } | ||||
//! whether to enable test for specific dtype and Trait | //! whether to enable test for specific dtype and Trait | ||||