|
|
@@ -596,14 +596,20 @@ def max_pool2d( |
|
|
|
Refer to :class:`~.MaxPool2d` for more information. |
|
|
|
|
|
|
|
Args: |
|
|
|
inp: input tensor. |
|
|
|
kernel_size: size of the window. |
|
|
|
inp: input tensor of shape :math:`(N, C, H_{in}, W_{in})`. |
|
|
|
kernel_size: size of the window used to calculate the max value. |
|
|
|
stride: stride of the window. If not provided, its value is set to kernel_size. |
|
|
|
Default: None |
|
|
|
padding: implicit zero padding added on both sides. Default: 0 |
|
|
|
Default: ``None`` |
|
|
|
padding: implicit zero padding added on both sides. Default: :math:`0` |
|
|
|
|
|
|
|
Returns: |
|
|
|
output tensor. |
|
|
|
output tensor of shape `(N, C, H_{out}, W_{out})`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input = tensor(np.arange(1 * 1 * 3 * 4).astype(np.float32).reshape(1, 1, 3, 4)) |
|
|
|
>>> F.nn.max_pool2d(input, 2, 1, 0) |
|
|
|
Tensor([[[[ 5. 6. 7.] |
|
|
|
[ 9. 10. 11.]]]], device=xpux:0) |
|
|
|
""" |
|
|
|
if stride is None: |
|
|
|
stride = kernel_size |
|
|
|