|
|
@@ -656,15 +656,23 @@ def test_repr_basic(): |
|
|
|
class ConvModel(Module): |
|
|
|
def __init__(self): |
|
|
|
super().__init__() |
|
|
|
self.conv1 = Conv2d(3, 128, 3, stride=2, bias=False) |
|
|
|
self.conv2 = Conv2d(3, 128, 3, padding=1, bias=False) |
|
|
|
self.conv3 = Conv2d(3, 128, 3, dilation=2, bias=False) |
|
|
|
self.bn1 = BatchNorm2d(128) |
|
|
|
self.bn2 = BatchNorm1d(128) |
|
|
|
self.dropout = Dropout(drop_prob=0.1) |
|
|
|
self.softmax = Softmax(axis=100) |
|
|
|
self.conv1 = Conv2d(3, 128, 3, padding=1, bias=False) |
|
|
|
self.conv2 = Conv2d(3, 128, 3, dilation=2, bias=False) |
|
|
|
self.bn1 = BatchNorm1d(128) |
|
|
|
self.bn2 = BatchNorm2d(128) |
|
|
|
self.pooling = MaxPool2d(kernel_size=2, padding=0) |
|
|
|
self.submodule1 = Sequential(Dropout(drop_prob=0.1), Softmax(axis=100),) |
|
|
|
modules = OrderedDict() |
|
|
|
modules["depthwise"] = Conv2d(256, 256, 3, 1, 0, groups=256, bias=False,) |
|
|
|
modules["pointwise"] = Conv2d( |
|
|
|
256, 256, kernel_size=1, stride=1, padding=0, bias=True, |
|
|
|
) |
|
|
|
self.submodule1 = Sequential(modules) |
|
|
|
self.list1 = [Dropout(drop_prob=0.1), [Softmax(axis=100)]] |
|
|
|
self.tuple1 = ( |
|
|
|
Dropout(drop_prob=0.1), |
|
|
|
(Softmax(axis=100), Dropout(drop_prob=0.2)), |
|
|
|
) |
|
|
|
self.dict1 = {"Dropout": Dropout(drop_prob=0.1)} |
|
|
|
self.fc1 = Linear(512, 1024) |
|
|
|
|
|
|
|
def forward(self, inputs): |
|
|
@@ -672,16 +680,21 @@ def test_repr_basic(): |
|
|
|
|
|
|
|
ground_truth = ( |
|
|
|
"ConvModel(\n" |
|
|
|
" (conv1): Conv2d(3, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)\n" |
|
|
|
" (conv2): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n" |
|
|
|
" (conv3): Conv2d(3, 128, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n" |
|
|
|
" (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n" |
|
|
|
" (bn2): BatchNorm1d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n" |
|
|
|
" (dropout): Dropout(drop_prob=0.1)\n (softmax): Softmax(axis=100)\n" |
|
|
|
" (conv1): Conv2d(3, 128, kernel_size=(3, 3), padding=(1, 1), bias=False)\n" |
|
|
|
" (conv2): Conv2d(3, 128, kernel_size=(3, 3), dilation=(2, 2), bias=False)\n" |
|
|
|
" (bn1): BatchNorm1d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n" |
|
|
|
" (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.9, affine=True, track_running_stats=True)\n" |
|
|
|
" (pooling): MaxPool2d(kernel_size=2, stride=2, padding=0)\n" |
|
|
|
" (submodule1): Sequential(\n" |
|
|
|
" (0): Dropout(drop_prob=0.1)\n" |
|
|
|
" (1): Softmax(axis=100)\n )\n" |
|
|
|
" (depthwise): Conv2d(256, 256, kernel_size=(3, 3), groups=256, bias=False)\n" |
|
|
|
" (pointwise): Conv2d(256, 256, kernel_size=(1, 1))\n" |
|
|
|
" )\n" |
|
|
|
" (list1.0): Dropout(drop_prob=0.1)\n" |
|
|
|
" (list1.1.0): Softmax(axis=100)\n" |
|
|
|
" (tuple1.0): Dropout(drop_prob=0.1)\n" |
|
|
|
" (tuple1.1.0): Softmax(axis=100)\n" |
|
|
|
" (tuple1.1.1): Dropout(drop_prob=0.2)\n" |
|
|
|
" (dict1.Dropout): Dropout(drop_prob=0.1)\n" |
|
|
|
" (fc1): Linear(in_features=512, out_features=1024, bias=True)\n" |
|
|
|
")" |
|
|
|
) |
|
|
|