Browse Source

test(mge): move `NUMBER` config to pytest.init

GitOrigin-RevId: 1d82209c40
tags/v0.3.2
Megvii Engine Team 5 years ago
parent
commit
2c4d1afe14
6 changed files with 4 additions and 11 deletions
  1. +0
    -1
      python_module/megengine/functional/math.py
  2. +0
    -1
      python_module/megengine/functional/nn.py
  3. +0
    -2
      python_module/megengine/functional/sort.py
  4. +0
    -1
      python_module/megengine/functional/utils.py
  5. +3
    -4
      python_module/megengine/module/activation.py
  6. +1
    -2
      python_module/megengine/module/embedding.py

+ 0
- 1
python_module/megengine/functional/math.py View File

@@ -190,7 +190,6 @@ def sqrt(inp: Tensor) -> Tensor:
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +NUMBER


[[0. 1. 1.4142] [[0. 1. 1.4142]
[1.7321 2. 2.2361 ]] [1.7321 2. 2.2361 ]]


+ 0
- 1
python_module/megengine/functional/nn.py View File

@@ -636,7 +636,6 @@ def interpolate(
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +NUMBER


[[[[1. 1.25 1.75 2. ] [[[[1. 1.25 1.75 2. ]
[1.5 1.75 2.25 2.5 ] [1.5 1.75 2.25 2.5 ]


+ 0
- 2
python_module/megengine/functional/sort.py View File

@@ -39,7 +39,6 @@ def argsort(inp: Tensor, descending: bool = False) -> Tuple[Tensor, Tensor]:
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +NUMBER


[1. 2.] [0 1] [1. 2.] [0 1]


@@ -93,7 +92,6 @@ def top_k(
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +NUMBER


[1. 2. 3. 4. 5.] [7 0 6 1 5] [1. 2. 3. 4. 5.] [7 0 6 1 5]




+ 0
- 1
python_module/megengine/functional/utils.py View File

@@ -50,7 +50,6 @@ def accuracy(logits: Tensor, target: Tensor, topk: Union[int, Iterable[int]] = 1
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +NUMBER


[0.] [0.375] [0.] [0.375]
""" """


+ 3
- 4
python_module/megengine/module/activation.py View File

@@ -20,7 +20,7 @@ class Softmax(Module):
.. math:: .. math::
\text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)} \text{Softmax}(x_{i}) = \frac{exp(x_i)}{\sum_j exp(x_j)}


It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the
It is applied to an n-dimensional input Tensor and rescaling them so that the elements of the
n-dimensional output Tensor lie in the range of `[0, 1]` and sum to 1. n-dimensional output Tensor lie in the range of `[0, 1]` and sum to 1.


:param axis: An axis along which softmax will be applied. By default, :param axis: An axis along which softmax will be applied. By default,
@@ -137,8 +137,8 @@ class PReLU(Module):
ax, & \text{ otherwise } ax, & \text{ otherwise }
\end{cases} \end{cases}


Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses
a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`,
Here :math:`a` is a learnable parameter. When called without arguments, `PReLU()` uses
a single paramter :math:`a` across all input channel. If called with `PReLU(num_of_channels)`,
a seperate :math:`a` is used for each input channle. a seperate :math:`a` is used for each input channle.


:param num_parameters: number of :math:`a` to learn, there is only two :param num_parameters: number of :math:`a` to learn, there is only two
@@ -218,7 +218,6 @@ class LeakyReLU(Module):
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +NUMBER


[-0.08 -0.12 6. 10. ] [-0.08 -0.12 6. 10. ]




+ 1
- 2
python_module/megengine/module/embedding.py View File

@@ -21,7 +21,7 @@ class Embedding(Module):
A simple lookup table that stores embeddings of a fixed dictionary and size. A simple lookup table that stores embeddings of a fixed dictionary and size.


This module is often used to store word embeddings and retrieve them using indices. This module is often used to store word embeddings and retrieve them using indices.
The input to the module is a list of indices, and the output is the corresponding word embeddings.
The input to the module is a list of indices, and the output is the corresponding word embeddings.
The indices should less than num_embeddings. The indices should less than num_embeddings.


:param num_embeddings: size of embedding dictionary. :param num_embeddings: size of embedding dictionary.
@@ -138,7 +138,6 @@ class Embedding(Module):
Outputs: Outputs:


.. testoutput:: .. testoutput::
:options: +NUMBER


[[[1.2 2.3 3.4 4.5 5.6] [[[1.2 2.3 3.4 4.5 5.6]
[0.1 1.1 2.1 3.1 4.1] [0.1 1.1 2.1 3.1 4.1]


Loading…
Cancel
Save