nchw44 float 3x3 s2 fuse packb speed up about 10%
GitOrigin-RevId: 3f864cef1d
release-0.6
@@ -227,28 +227,28 @@ public: | |||
"DefaultStrategyType::FLOAT"_hash); | |||
} else if (format == param::ConvBias::Format::NCHW44) { | |||
#if MEGDNN_AARCH64 | |||
#if MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
auto matmul_block = matmul_algo->get_inner_block_size(); | |||
//! Optimize NCHW44 3x3s2 8X12X1 im2col+pack fuse | |||
if (matmul_block.m == 8 && matmul_block.n == 12 && | |||
matmul_block.k == 1 && | |||
param.filter_meta.spatial[0] == 3 && | |||
param.filter_meta.spatial[1] == 3 && | |||
param.filter_meta.stride[0] == 2 && | |||
param.filter_meta.stride[1] == 2 && | |||
!param.filter_meta.should_flip) { | |||
MIDOUT_BEGIN( | |||
megdnn_fallback_im2col_factory_make_strategy, | |||
midout_iv( | |||
"DefaultStrategyType::8x12x1_fuse_packb_s2_nchw44"_hash)) { | |||
return std::make_unique< | |||
StrategyFuse8x12x1Nchw44K3x3S2< | |||
float, float, | |||
PostprocessMode::FLOAT>>(); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
//! Optimize NCHW44 3x3s2 aarch64 8X12X1 and armv7 4x12x1 im2col+pack fuse | |||
if ((matmul_block.m == 8 || matmul_block.m == 4) && | |||
matmul_block.n == 12 && matmul_block.k == 1 && | |||
param.filter_meta.spatial[0] == 3 && | |||
param.filter_meta.spatial[1] == 3 && | |||
param.filter_meta.stride[0] == 2 && | |||
param.filter_meta.stride[1] == 2 && | |||
!param.filter_meta.should_flip) { | |||
MIDOUT_BEGIN( | |||
megdnn_fallback_im2col_factory_make_strategy, | |||
midout_iv( | |||
"DefaultStrategyType::8x12x1_fuse_packb_s2_nchw44"_hash)) { | |||
return std::make_unique< | |||
StrategyFuseXx12x1Nchw44K3x3S2< | |||
float, float, | |||
PostprocessMode::FLOAT>>(); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
#endif | |||
cb1(NCHW44, DEFAULT, dt_float32, dt_float32, | |||
@@ -345,10 +345,10 @@ public: | |||
"DefaultStrategyType::QINT8x8x32x8"_hash); | |||
} else if (format == param::ConvBias::Format::NCHW44 || | |||
format == param::ConvBias::Format::NCHW44_DOT) { | |||
#if MEGDNN_AARCH64 | |||
auto matmul_block = matmul_algo->get_inner_block_size(); | |||
if (format == param::ConvBias::Format::NCHW44) { | |||
//! Optimize NCHW44 3x3s1 4X4X16 im2col+pack fuse | |||
#if MEGDNN_AARCH64 | |||
auto matmul_block = matmul_algo->get_inner_block_size(); | |||
if (matmul_block.m == 4 && matmul_block.n == 4 && | |||
matmul_block.k == 16 && | |||
param.filter_meta.spatial[0] == 3 && | |||
@@ -368,7 +368,10 @@ public: | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
#endif | |||
} else { | |||
#if MEGDNN_AARCH64 | |||
auto matmul_block = matmul_algo->get_inner_block_size(); | |||
//! Optimize NCHW44_DOT 3x3s1 8X12X4 im2col+pack fuse | |||
if (matmul_block.m == 8 && matmul_block.n == 12 && | |||
matmul_block.k == 4 && | |||
@@ -389,8 +392,30 @@ public: | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
} | |||
#endif | |||
#if MEGDNN_ARMV7 | |||
auto matmul_block = matmul_algo->get_inner_block_size(); | |||
if (matmul_block.m == 8 && matmul_block.n == 4 && | |||
matmul_block.k == 4 && | |||
param.filter_meta.spatial[0] == 3 && | |||
param.filter_meta.spatial[1] == 3 && | |||
param.filter_meta.stride[0] == 2 && | |||
param.filter_meta.stride[1] == 2 && | |||
!param.filter_meta.should_flip) { | |||
MIDOUT_BEGIN( | |||
megdnn_fallback_im2col_factory_make_strategy, | |||
midout_iv( | |||
"DefaultStrategyType::INT8x8x32_8x4x4_s2"_hash)) { | |||
return std::make_unique< | |||
StrategyFuse8x4x4Nchw44DotK3x3S2< | |||
dt_qint32, dt_qint8, | |||
PostprocessMode::QUANTIZED>>(); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
#endif | |||
} | |||
cb2(NCHW44, DEFAULT, dtype::QuantizedS8, | |||
dtype::QuantizedS32, dtype::QuantizedS8, dt_int8, | |||
dt_int32, dt_int8, PostprocessMode::QUANTIZED, | |||
@@ -488,12 +488,12 @@ public: | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
class StrategyFuse8x12x1Nchw44K3x3S2 | |||
: public Strategy<float, float, float, op_ctype, op_dtype, | |||
class StrategyFuse8x12x4Nchw44Dot | |||
: public Strategy<dt_int8, dt_int32, dt_int8, op_ctype, op_dtype, | |||
postprocess_mode, PackMode::DEFAULT, | |||
FormatMode::NCHW44> { | |||
public: | |||
StrategyFuse8x12x1Nchw44K3x3S2() = default; | |||
StrategyFuse8x12x4Nchw44Dot() = default; | |||
constexpr static size_t BUNDLE_PADDING_INDEX = 0; | |||
constexpr static size_t BUNDLE_PACKA_INDEX = 1; | |||
@@ -508,16 +508,15 @@ public: | |||
fallback::MatrixMulImpl::KernParam matmul_param, | |||
const fallback::MatrixMulImpl::AlgoBase* matmul_algo) override; | |||
}; | |||
#else | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
class StrategyFuse8x12x4Nchw44Dot | |||
class StrategyFuse8x4x4Nchw44DotK3x3S2 | |||
: public Strategy<dt_int8, dt_int32, dt_int8, op_ctype, op_dtype, | |||
postprocess_mode, PackMode::DEFAULT, | |||
FormatMode::NCHW44> { | |||
public: | |||
StrategyFuse8x12x4Nchw44Dot() = default; | |||
StrategyFuse8x4x4Nchw44DotK3x3S2() = default; | |||
constexpr static size_t BUNDLE_PADDING_INDEX = 0; | |||
constexpr static size_t BUNDLE_PACKA_INDEX = 1; | |||
@@ -534,6 +533,30 @@ public: | |||
}; | |||
#endif | |||
#if MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
class StrategyFuseXx12x1Nchw44K3x3S2 | |||
: public Strategy<float, float, float, op_ctype, op_dtype, | |||
postprocess_mode, PackMode::DEFAULT, | |||
FormatMode::NCHW44> { | |||
public: | |||
StrategyFuseXx12x1Nchw44K3x3S2() = default; | |||
constexpr static size_t BUNDLE_PADDING_INDEX = 0; | |||
constexpr static size_t BUNDLE_PACKA_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_PACKB_INDEX = 0; | |||
constexpr static size_t THREAD_BUNDLE_IM2COL_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_BIAS_INDEX = 2; | |||
void exec_im2col( | |||
const WorkspaceBundle& bundle, const WorkspaceBundle& bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam matmul_param, | |||
const fallback::MatrixMulImpl::AlgoBase* matmul_algo) override; | |||
}; | |||
#endif | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,208 @@ | |||
/** | |||
* \file dnn/src/fallback/conv_bias/im2col/strategy_fuse_nchw44_dot_s2.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/fallback/conv_bias/im2col/strategy_base.h" | |||
#if MEGDNN_ARMV7 | |||
#include <arm_neon.h> | |||
using namespace megdnn; | |||
namespace { | |||
#define PACKB_ONELINE() \ | |||
int out_index = 0; \ | |||
outptr = output_base; \ | |||
for (; out_index + 3 < block_size; out_index += 4) { \ | |||
std::memcpy(outptr, tmp_output, 16); \ | |||
outptr += ksize4; \ | |||
tmp_output += 4; \ | |||
} \ | |||
\ | |||
if (out_index < block_size) { \ | |||
uint32_t zerobuffer[4] = {0}; \ | |||
size_t out_remain = std::min(block_size - out_index, 4); \ | |||
std::memcpy(outptr, tmp_output, out_remain * sizeof(uint32_t)); \ | |||
outptr += out_remain; \ | |||
std::memcpy(outptr, zerobuffer, (4 - out_remain) * sizeof(uint32_t)); \ | |||
} \ | |||
output_base += 4; | |||
#define STOR_IM2COL_DST() \ | |||
output0[count] = uint32_src[index]; \ | |||
output1[count] = uint32_src[index + 1]; \ | |||
output2[count] = uint32_src[index + 2]; \ | |||
count++; \ | |||
index += SW; | |||
#define LOAD_AND_STOR_IM2COL_DST() \ | |||
uint32x4x2_t val_01 = vld2q_u32(&uint32_src[index]); \ | |||
index += 8; \ | |||
uint32x4_t val_index8 = vdupq_n_u32(uint32_src[index]); \ | |||
uint32x4_t val_2 = vextq_u32(val_01.val[0], val_index8, 1); \ | |||
vst1q_u32(&output0[count], val_01.val[0]); \ | |||
vst1q_u32(&output1[count], val_01.val[1]); \ | |||
vst1q_u32(&output2[count], val_2); \ | |||
count += 4; | |||
void fuse_packb(const dt_int8* __restrict src, dt_int8* __restrict dst, | |||
dt_int8* __restrict b_panel, const int OW, const int IC, | |||
const int IH, const int IW, const int cur_index, | |||
const int block_size) { | |||
int start_h = cur_index / OW; | |||
int cur_remain_w = cur_index % OW; | |||
int end_h = (cur_index + block_size) / OW; | |||
int end_remain_w = (cur_index + block_size) % OW; | |||
bool same_line = start_h == end_h ? true : false; | |||
size_t newIC = IC / 4; | |||
const uint32_t* uint32_src = | |||
static_cast<const uint32_t*>(static_cast<const void*>(src)); | |||
uint32_t* output = static_cast<uint32_t*>(static_cast<void*>(dst)); | |||
uint32_t* b_output = static_cast<uint32_t*>(static_cast<void*>(b_panel)); | |||
const int packed_k = newIC * 3 * 3; | |||
const int ksize4 = packed_k * 4; | |||
uint32_t* outptr = b_output; | |||
uint32_t* output_base = b_output; | |||
constexpr int FH = 3; | |||
constexpr int SH = 2; | |||
constexpr int SW = 2; | |||
if (same_line) { | |||
rep(ic, newIC) { | |||
rep(fh, FH) { | |||
uint32_t* output02 = output; | |||
uint32_t* output1 = output + block_size + 1; | |||
size_t count = 0; | |||
size_t index = 0; | |||
int w = cur_remain_w; | |||
index = (ic * IH + (start_h * SH + fh)) * IW + w * SW; | |||
for (; w + 3 < end_remain_w; w += 4) { | |||
uint32x4x2_t val_01 = vld2q_u32(&uint32_src[index]); | |||
vst1q_u32(&output02[count], val_01.val[0]); | |||
vst1q_u32(&output1[count], val_01.val[1]); | |||
count += 4; | |||
index += 8; | |||
} | |||
for (; w < end_remain_w; w++) { | |||
output02[count] = uint32_src[index + 0]; | |||
output1[count] = uint32_src[index + 1]; | |||
count++; | |||
index += SW; | |||
} | |||
output02[count] = uint32_src[index]; | |||
const uint32_t* output_ptr[3]; | |||
output_ptr[0] = output02; | |||
output_ptr[1] = output1; | |||
output_ptr[2] = output02 + 1; | |||
for (int i = 0; i < 3; i++) { | |||
const uint32_t* tmp_output = output_ptr[i]; | |||
PACKB_ONELINE(); | |||
} | |||
} | |||
} | |||
} else { | |||
rep(ic, newIC) { | |||
rep(fh, FH) { | |||
size_t count = 0; | |||
size_t index = 0; | |||
uint32_t* output0 = output; | |||
uint32_t* output1 = output + block_size; | |||
uint32_t* output2 = output1 + block_size; | |||
int w = cur_remain_w; | |||
index = (ic * IH + (SH * start_h + fh)) * IW + SW * w; | |||
for (; w + 3 < OW; w += 4) { | |||
LOAD_AND_STOR_IM2COL_DST() | |||
} | |||
for (; w < OW; w++) { | |||
STOR_IM2COL_DST() | |||
} | |||
for (int h = start_h + 1; h < end_h; h++) { | |||
int ow = 0; | |||
index = (ic * IH + (SH * h + fh)) * IW; | |||
for (; ow + 3 < OW; ow += 4) { | |||
LOAD_AND_STOR_IM2COL_DST() | |||
} | |||
for (; ow < OW; ow++) { | |||
STOR_IM2COL_DST() | |||
} | |||
} | |||
index = (ic * IH + (SH * end_h + fh)) * IW; | |||
w = 0; | |||
for (; w + 3 < end_remain_w; w += 4) { | |||
LOAD_AND_STOR_IM2COL_DST() | |||
} | |||
for (; w < end_remain_w; w++) { | |||
STOR_IM2COL_DST() | |||
} | |||
for (int k = 0; k < 3; k++) { | |||
const uint32_t* tmp_output = output + k * block_size; | |||
PACKB_ONELINE(); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
#undef PACKB_ONELINE | |||
#undef STOR_IM2COL_DST | |||
#undef LOAD_AND_STOR_IM2COL_DST | |||
} // namespace | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
void StrategyFuse8x4x4Nchw44DotK3x3S2<op_ctype, op_dtype, postprocess_mode>:: | |||
exec_im2col(const WorkspaceBundle& bundle, | |||
const WorkspaceBundle& bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam /*matmul_param*/, | |||
const fallback::MatrixMulImpl::AlgoBase* /*matmul_algo*/) { | |||
size_t ow = param.osz[1]; | |||
size_t ic = param.filter_meta.icpg; | |||
size_t ih = param.isz[0] + param.filter_meta.padding[0] * 2; | |||
size_t iw = param.isz[1] + param.filter_meta.padding[1] * 2; | |||
size_t input_offset = | |||
ih * iw * ic * | |||
(sparam.group_id + param.filter_meta.group * sparam.batch_id) * | |||
sizeof(dt_int8); | |||
dt_int8* src2 = reinterpret_cast<dt_int8*>( | |||
reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PADDING_INDEX)) + | |||
input_offset); | |||
bool is_phpwzero = param.filter_meta.padding[0] == 0 && | |||
param.filter_meta.padding[1] == 0; | |||
if (is_phpwzero) { | |||
src2 = const_cast<dt_int8*>( | |||
param.src<dt_int8>(sparam.batch_id, sparam.group_id)); | |||
} | |||
dt_int8* b_panel = reinterpret_cast<dt_int8*>(reinterpret_cast<uintptr_t>( | |||
bundle_thread.get(THREAD_BUNDLE_PACKB_INDEX))); | |||
megdnn_assert(ic % 4 == 0, "nchw44dot_dot with ic is not of time 4"); | |||
int8_t* im2col_dst = | |||
static_cast<int8_t*>(bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); | |||
fuse_packb(src2, im2col_dst, b_panel, ow, ic, ih, iw, sparam.ohw_cur_index, | |||
sparam.output_block_size); | |||
} | |||
namespace megdnn { | |||
template class StrategyFuse8x4x4Nchw44DotK3x3S2<dt_qint32, dt_qint8, | |||
megdnn::PostprocessMode::QUANTIZED>; | |||
} // namespace megdnn | |||
#endif | |||
// vim: syntax=cpp.doxygen |
@@ -10,9 +10,8 @@ | |||
*/ | |||
#include "src/fallback/conv_bias/im2col/strategy_base.h" | |||
#include "src/fallback/convolution/img2col_helper.h" | |||
#if MEGDNN_AARCH64 | |||
#if MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
#include <arm_neon.h> | |||
using namespace megdnn; | |||
@@ -163,7 +162,7 @@ void fuse_packb(const float* __restrict src, float* __restrict dst, | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
void StrategyFuse8x12x1Nchw44K3x3S2<op_ctype, op_dtype, postprocess_mode>:: | |||
void StrategyFuseXx12x1Nchw44K3x3S2<op_ctype, op_dtype, postprocess_mode>:: | |||
exec_im2col(const WorkspaceBundle& bundle, | |||
const WorkspaceBundle& bundle_thread, | |||
const StrategyParam& sparam, | |||
@@ -194,14 +193,13 @@ void StrategyFuse8x12x1Nchw44K3x3S2<op_ctype, op_dtype, postprocess_mode>:: | |||
float* im2col_dst = | |||
static_cast<float*>(bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); | |||
fuse_packb(src2, im2col_dst, b_panel, ow, ic, ih, iw, sparam.ohw_cur_index, | |||
sparam.output_block_size); | |||
} | |||
namespace megdnn { | |||
template class StrategyFuse8x12x1Nchw44K3x3S2<float, float, | |||
template class StrategyFuseXx12x1Nchw44K3x3S2<float, float, | |||
megdnn::PostprocessMode::FLOAT>; | |||
} // namespace megdnn | |||
@@ -1461,6 +1461,25 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT) { | |||
#undef cb | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_QUANTIZEDSYM_MK4_DOT_S2_FUSE) { | |||
UniformIntRNG rng{-50, 50}; | |||
#define cb(name) \ | |||
checker_conv_bias(get_nchw44_conv_bias_args({3}, 2, false, \ | |||
false, false, false, true), \ | |||
handle(), &rng, epsilon, dtype::QuantizedS8(2.5f), \ | |||
dtype::QuantizedS8(2.5f), dtype::QuantizedS32(6.25f), \ | |||
dtype::QuantizedS8(60.25f), name); \ | |||
float epsilon = 0.001; | |||
#if MEGDNN_AARCH64 | |||
cb("IM2COLMATMUL:AARCH64_INT8X8X32_MK4_8X12X4_DOTPROD:96"); | |||
#elif MEGDNN_ARMV7 | |||
cb("IM2COLMATMUL:AARCH32_INT8_MK4_8X4X4_DOTPROD:96"); | |||
#endif | |||
#undef cb | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COLMATMUL_S8x8x32_MK4_DOT) { | |||
UniformIntRNG rng{-50, 50}; | |||
@@ -655,6 +655,7 @@ TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44) { | |||
bench_case(1, 512, 256, 28, 28, 3, 4, 1, 2); | |||
} | |||
#if __ARM_FEATURE_DOTPROD | |||
TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT) { | |||
constexpr size_t RUNS = 40; | |||
std::vector<DType> data_type = { | |||
@@ -708,6 +709,64 @@ TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT) { | |||
} | |||
TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT_S2) { | |||
constexpr size_t RUNS = 40; | |||
std::vector<DType> data_type = { | |||
dtype::QuantizedS8(2.5f), dtype::QuantizedS8(2.5f), | |||
dtype::QuantizedS32(6.25f), dtype::QuantizedS8(60.25f)}; | |||
auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, | |||
size_t FS, size_t group, size_t P, size_t S, | |||
bool is_nchw = false) { | |||
param::ConvBias param; | |||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||
param.pad_h = P; | |||
param.pad_w = P; | |||
param.stride_h = S; | |||
param.stride_w = S; | |||
param.sparse = param::ConvBias::Sparse::DENSE; | |||
param.format = param::ConvBias::Format::NCHW44_DOT; | |||
auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1; | |||
auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1; | |||
TensorShape src = {N, IC / 4, H, W, 4}; | |||
TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4}; | |||
if (group > 1) { | |||
filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4}; | |||
param.sparse = param::ConvBias::Sparse::GROUP; | |||
} | |||
if (is_nchw) { | |||
src = {N, IC, H, W}; | |||
filter = {OC / 4, FS, FS, IC, 4}; | |||
} | |||
TensorShape bias = {1, OC / 4, 1, 1, 4}; | |||
TensorShape dst = {N, OC / 4, OH, OW, 4}; | |||
SmallVector<TensorShape> shapes{src, filter, bias, {}, dst}; | |||
float computations = | |||
(((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 + | |||
dst.total_nr_elems()) * | |||
1e-6; | |||
std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = { | |||
std::make_pair(shapes, computations)}; | |||
benchmark_impl(param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}}, | |||
{1, {7}}, data_type); | |||
}; | |||
bench_case(1, 64, 64, 56, 56, 3, 1, 1, 2); | |||
bench_case(1, 64, 64, 128, 128, 3, 1, 1, 2); | |||
bench_case(1, 64, 64, 256, 256, 3, 1, 1, 2); | |||
bench_case(1, 64, 64, 156, 156, 3, 1, 1, 2); | |||
bench_case(1, 128, 128, 28, 28, 3, 1, 1, 2); | |||
bench_case(1, 256, 256, 14, 14, 3, 1, 1, 2); | |||
bench_case(1, 512, 512, 7, 7, 3, 1, 1, 2); | |||
bench_case(1, 64, 64, 56, 56, 3, 4, 1, 2); | |||
bench_case(1, 128, 128, 28, 28, 3, 4, 1, 2); | |||
bench_case(1, 256, 256, 14, 14, 3, 4, 1, 2); | |||
bench_case(1, 512, 512, 7, 7, 3, 4, 1, 2); | |||
} | |||
#endif | |||
TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_FLOAT_NCHW44) { | |||
constexpr size_t RUNS = 40; | |||
std::vector<DType> data_type = { | |||