GitOrigin-RevId: 6dbcb67009
release-1.6
@@ -11,17 +11,214 @@ | |||||
*/ | */ | ||||
#include "megbrain/gopt/subgraph_extractor.h" | #include "megbrain/gopt/subgraph_extractor.h" | ||||
#include <atomic> | |||||
#include "megbrain/serialization/opr_shallow_copy.h" | |||||
using namespace mgb; | using namespace mgb; | ||||
using namespace cg; | using namespace cg; | ||||
using namespace gopt; | using namespace gopt; | ||||
/* ================== GraphPartition::InputPlaceholder =================*/ | |||||
// clang-format off | |||||
MGB_DEFINE_OPR_CLASS(GraphPartition::InputPlaceholder, | |||||
cg::SingleCNOperatorNodeBase) // { | |||||
public: | |||||
InputPlaceholder(VarNode* src_var, const TensorShape& infer_shp, | |||||
std::unique_ptr<HostTensorND> infer_val = nullptr); | |||||
static SymbolVar make(VarNode* src_var, const TensorShape& infer_shp, | |||||
std::unique_ptr<HostTensorND> infer_val = nullptr); | |||||
size_t input_id() const { return m_id; } | |||||
private: | |||||
void init_output_static_infer_desc() override; | |||||
void scn_do_execute() override; | |||||
void init_output_comp_node() override; | |||||
const size_t m_id; | |||||
TensorShape m_infer_shp; | |||||
std::unique_ptr<HostTensorND> m_infer_val; | |||||
static std::atomic_size_t sm_id; | |||||
}; | |||||
// clang-format on | |||||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(GraphPartition::InputPlaceholder); | |||||
std::atomic_size_t GraphPartition::InputPlaceholder::sm_id{0}; | |||||
GraphPartition::InputPlaceholder::InputPlaceholder( | |||||
VarNode* src_var, const TensorShape& infer_shp, | |||||
std::unique_ptr<HostTensorND> infer_val) | |||||
: Super(src_var->owner_graph(), {}, {}, {}), | |||||
m_id{sm_id.fetch_add(1, std::memory_order_relaxed)}, | |||||
m_infer_shp{infer_shp}, | |||||
m_infer_val{std::move(infer_val)} { | |||||
name(ssprintf("InputPlaceholder@%zu", m_id)); | |||||
add_equivalence_component<ScalarHash<DTypeEnum>>(src_var->dtype().enumv()); | |||||
add_equivalence_component<ScalarHash<size_t>>(m_id); | |||||
add_output(None)->dtype(src_var->dtype()); | |||||
} | |||||
void GraphPartition::InputPlaceholder::init_output_comp_node() { | |||||
output(0)->comp_node(CompNode::default_cpu()); | |||||
} | |||||
void GraphPartition::InputPlaceholder::scn_do_execute() { | |||||
mgb_throw(InternalError, "InputPlaceholder opr can not be executed"); | |||||
} | |||||
void GraphPartition::InputPlaceholder::init_output_static_infer_desc() { | |||||
using namespace cg::static_infer; | |||||
auto&& mgr = owner_graph()->static_infer_manager(); | |||||
if (m_infer_shp.ndim == 0) { | |||||
auto infer_shape = [](TensorShape&, const InpVal&) { return false; }; | |||||
mgr.register_shape_infer(output(0), | |||||
{SourceType::MUTABLE, {}, infer_shape}); | |||||
} else { | |||||
mgr.register_shape_infer(output(0), | |||||
ShapeInferDesc::make_const(m_infer_shp)); | |||||
} | |||||
if (m_infer_val == nullptr) { | |||||
auto infer_value = [](DeviceTensorND&, const InpVal&) { return false; }; | |||||
mgr.register_value_infer(output(0), | |||||
{SourceType::MUTABLE, {}, infer_value}); | |||||
} else { | |||||
auto infer_value = [this](DeviceTensorND& dest, const InpVal&) { | |||||
dest.copy_from(*m_infer_val).sync(); | |||||
return true; | |||||
}; | |||||
mgr.register_value_infer(output(0), | |||||
{SourceType::CONSTANT, {}, infer_value}); | |||||
} | |||||
} | |||||
SymbolVar GraphPartition::InputPlaceholder::make( | |||||
VarNode* src_var, const TensorShape& infer_shp, | |||||
std::unique_ptr<HostTensorND> infer_val) { | |||||
return src_var->owner_graph() | |||||
->insert_opr(std::make_unique<InputPlaceholder>( | |||||
src_var, infer_shp, std::move(infer_val))) | |||||
->output(0); | |||||
} | |||||
/* ================== GraphPartition =================*/ | |||||
#if MGB_ENABLE_JSON | |||||
std::shared_ptr<json::Value> GraphPartition::to_json() const { | |||||
auto replaced_outputs = std::get<1>(replace_graph_by_placeholder()); | |||||
ThinHashSet<VarNode*> all_var_node; | |||||
ThinHashSet<OperatorNodeBase*> all_opr_node; | |||||
auto comp_seq = json::Array::make(); | |||||
auto cb = [&](OperatorNodeBase* opr) { | |||||
comp_seq->add(json::String::make(opr->id_str())); | |||||
for (const auto& i : opr->input()) { | |||||
if (all_var_node.count(i) == 0) { | |||||
all_var_node.insert(i); | |||||
} | |||||
} | |||||
all_opr_node.insert(opr); | |||||
for (const auto& o : opr->output()) { | |||||
all_var_node.insert(o); | |||||
} | |||||
}; | |||||
cg::DepOprIter iter{cb}; | |||||
for (const auto& o : replaced_outputs) | |||||
iter.add(o->owner_opr()); | |||||
auto dump_node_coll = [](auto&& collection) { | |||||
auto objptr = json::Object::make(); | |||||
auto&& obj = *objptr; | |||||
for (auto&& i : collection) | |||||
obj[i->id_str()] = i->to_json(); | |||||
return objptr; | |||||
}; | |||||
return json::Object::make({{"operator", dump_node_coll(all_opr_node)}, | |||||
{"var", dump_node_coll(all_var_node)}, | |||||
{"comp_seq", comp_seq}}); | |||||
} | |||||
#endif | |||||
std::pair<VarNodeArray, VarNodeArray> | |||||
GraphPartition::replace_graph_by_placeholder() const { | |||||
ThinHashMap<VarNode*, VarNode*> old2new; | |||||
auto graph_partition_copy_opr_shallow = [](OperatorNodeBase* opr, | |||||
const VarNodeArray& inps) { | |||||
OperatorNodeConfig config = opr->config(); | |||||
return serialization::copy_opr_shallow(*opr, inps, config)->output(0); | |||||
}; | |||||
OperatorNodeSet input_opr_set; | |||||
for (const auto& i : m_inputs) | |||||
input_opr_set.insert(i->owner_opr()); | |||||
VarNodeArray placeholders; | |||||
VarNodeArray replaced_outputs; | |||||
VarNodeArray new_i; | |||||
auto cb = [&](OperatorNodeBase* opr) { | |||||
for (const auto& o : opr->output()) { | |||||
if (o->contain_flag(VarNode::Flag::VOLATILE_CONTENT) || | |||||
(input_opr_set.count(opr) && !m_inputs.count(o))) { | |||||
continue; | |||||
} | |||||
VarNode* new_o; | |||||
if (m_inputs.count(o)) { | |||||
auto&& mgr = opr->owner_graph()->static_infer_manager(); | |||||
const TensorShape* shp_ptr = nullptr; | |||||
if (cg::is_static_var_shape(o)) { | |||||
shp_ptr = mgr.infer_shape_fallible(o); | |||||
} | |||||
TensorShape infer_shp; | |||||
if (shp_ptr) | |||||
infer_shp = *shp_ptr; | |||||
std::unique_ptr<HostTensorND> hval = nullptr; | |||||
const DeviceTensorND* dval_ptr = nullptr; | |||||
if (cg::is_static_var_value(o)) { | |||||
dval_ptr = mgr.infer_value_fallible(o); | |||||
} | |||||
if (dval_ptr) { | |||||
hval.reset(new HostTensorND(CompNode::default_cpu(), | |||||
dval_ptr->dtype())); | |||||
hval->resize(dval_ptr->shape()).copy_from(*dval_ptr).sync(); | |||||
} | |||||
new_o = InputPlaceholder::make(o, infer_shp, std::move(hval)) | |||||
.node(); | |||||
placeholders.push_back(new_o); | |||||
} else { | |||||
new_i.clear(); | |||||
for (const auto& i : opr->input()) { | |||||
new_i.push_back(old2new.at(i)); | |||||
} | |||||
new_o = graph_partition_copy_opr_shallow(o->owner_opr(), new_i); | |||||
} | |||||
old2new[o] = new_o; | |||||
} | |||||
}; | |||||
cg::DepOprIter iter{cb}; | |||||
for (auto&& i : m_inputs) { | |||||
for (auto&& j : i->owner_opr()->input()) { | |||||
if (!input_opr_set.count(j->owner_opr()) && | |||||
!m_opr_set.count(j->owner_opr())) { | |||||
iter.set_visited(j->owner_opr()); | |||||
} | |||||
} | |||||
} | |||||
for (auto&& o : m_outputs) | |||||
iter.add(o->owner_opr()); | |||||
for (auto&& o : m_outputs) { | |||||
replaced_outputs.push_back(old2new.at(o)); | |||||
} | |||||
return std::make_pair(placeholders, replaced_outputs); | |||||
} | |||||
/* ================== SubGraphExtractor =================*/ | /* ================== SubGraphExtractor =================*/ | ||||
std::vector<InternalGraph> SubGraphExtractor::extract( | |||||
std::vector<GraphPartition> SubGraphExtractor::extract( | |||||
const SymbolVarArray& endpoint_vars) const { | const SymbolVarArray& endpoint_vars) const { | ||||
ThinHashMap<OperatorNodeBase*, std::pair<OperatorNodeBase*, int>> parent; | ThinHashMap<OperatorNodeBase*, std::pair<OperatorNodeBase*, int>> parent; | ||||
thin_function<OperatorNodeBase*(OperatorNodeBase*)> union_find; | thin_function<OperatorNodeBase*(OperatorNodeBase*)> union_find; | ||||
auto union_find = [&parent, &union_find](OperatorNodeBase* o) { | |||||
union_find = [&parent, &union_find](OperatorNodeBase* o) { | |||||
if (parent[o].first == o) | if (parent[o].first == o) | ||||
return o; | return o; | ||||
else { | else { | ||||
@@ -34,7 +231,7 @@ std::vector<InternalGraph> SubGraphExtractor::extract( | |||||
OperatorNodeBase* y) { | OperatorNodeBase* y) { | ||||
auto root_x = union_find(x), root_y = union_find(y); | auto root_x = union_find(x), root_y = union_find(y); | ||||
if (root_x != root_y) { | if (root_x != root_y) { | ||||
OperatorNodeBase *large, small; | |||||
OperatorNodeBase *large, *small; | |||||
if (parent[root_x].second < parent[root_y].second) { | if (parent[root_x].second < parent[root_y].second) { | ||||
small = root_x, large = root_y; | small = root_x, large = root_y; | ||||
} else { | } else { | ||||
@@ -42,25 +239,23 @@ std::vector<InternalGraph> SubGraphExtractor::extract( | |||||
} | } | ||||
parent[small].first = large; | parent[small].first = large; | ||||
if (parent[large].second == parent[small].second) { | if (parent[large].second == parent[small].second) { | ||||
parend[large].second += 1; | |||||
parent[large].second += 1; | |||||
} | } | ||||
} | } | ||||
}; | }; | ||||
std::vector<OperatorNodeBase*> topo; | std::vector<OperatorNodeBase*> topo; | ||||
auto cb = [&topo](OperatorNodeBase* opr) { | |||||
auto cb = [this, &parent, &union_merge, &topo](OperatorNodeBase* opr) { | |||||
topo.push_back(opr); | topo.push_back(opr); | ||||
if (opr_list.count(opr->dyn_typeinfo()) == 0) | |||||
if (m_opr_list.count(opr->dyn_typeinfo()) == 0) | |||||
return; | return; | ||||
auto find = parent.find(opr); | auto find = parent.find(opr); | ||||
if (find == parent.end()) { | if (find == parent.end()) { | ||||
auto insert = | |||||
parent.insert(std::make_pair(opr, std::make_pair(opr, 0))); | |||||
find = insert.first; | |||||
parent.insert(std::make_pair(opr, std::make_pair(opr, 0))); | |||||
} | } | ||||
for (auto&& i : opr->input()) { | for (auto&& i : opr->input()) { | ||||
auto&& o = i->owner_opr(); | auto&& o = i->owner_opr(); | ||||
if (opr_list.count(o->dyn_typeinfo()) == 0) | |||||
if (m_opr_list.count(o->dyn_typeinfo()) == 0) | |||||
continue; | continue; | ||||
union_merge(opr, o); | union_merge(opr, o); | ||||
} | } | ||||
@@ -69,33 +264,51 @@ std::vector<InternalGraph> SubGraphExtractor::extract( | |||||
for (const auto& v : endpoint_vars) | for (const auto& v : endpoint_vars) | ||||
iter.add(v.node()->owner_opr()); | iter.add(v.node()->owner_opr()); | ||||
std::vector<InternalGraph> partitions; | |||||
ThinHashMap<OperatorNodeBase*, InternalGraph*> roots; | |||||
std::vector<GraphPartition> partitions; | |||||
partitions.reserve(topo.size()); | |||||
ThinHashMap<OperatorNodeBase*, GraphPartition*> roots; | |||||
for (const auto& opr : reverse_adaptor(topo)) { | for (const auto& opr : reverse_adaptor(topo)) { | ||||
auto root = union_find(opr); | |||||
auto find = roots.find(root); | |||||
InternalGraph* internal_graph = nullptr; | |||||
if (find == roots.end()) { | |||||
partitions.emplace_back(InternalGraph{}); | |||||
auto insert = | |||||
roots.insert(std::make_pair(root, &partitions.back())); | |||||
internal_graph = insert.first->second; | |||||
internal_graph->m_outputs.insert(opr->output(0)); | |||||
if (m_opr_list.count(opr->dyn_typeinfo()) == 0) { | |||||
for (const auto& i : opr->input()) { | |||||
if (m_opr_list.count(i->owner_opr()->dyn_typeinfo())) { | |||||
auto root = union_find(i->owner_opr()); | |||||
GraphPartition* partition; | |||||
auto find = roots.find(root); | |||||
if (find != roots.end()) { | |||||
partition = find->second; | |||||
partition->output().insert(i); | |||||
} | |||||
} | |||||
} | |||||
} else { | } else { | ||||
internal_graph = find->second; | |||||
auto erase = internal_graph->m_inputs.erase(opr->output(0)); | |||||
if (erase > 0) { | |||||
internal_graph->m_internals.insert(opr->output(0)); | |||||
auto root = union_find(opr); | |||||
auto find = roots.find(root); | |||||
GraphPartition* partition = nullptr; | |||||
if (find == roots.end()) { | |||||
partitions.emplace_back(GraphPartition{}); | |||||
auto insert = | |||||
roots.insert(std::make_pair(root, &partitions.back())); | |||||
partition = insert.first->second; | |||||
for (auto&& o : opr->output()) { | |||||
if (!o->contain_flag(cg::VarNode::Flag::VOLATILE_CONTENT)) | |||||
partition->output().insert(o); | |||||
} | |||||
} else { | } else { | ||||
internal_graph->m_outputs.insert(opr->output(0)); | |||||
partition = find->second; | |||||
for (auto&& o : opr->output()) { | |||||
if (!o->contain_flag(cg::VarNode::Flag::VOLATILE_CONTENT)) { | |||||
auto erase = partition->input().erase(o); | |||||
if (erase == 0) | |||||
partition->output().insert(o); | |||||
} | |||||
} | |||||
} | } | ||||
partition->opr_set().insert(opr); | |||||
for (const auto& i : opr->input()) | |||||
partition->input().insert(i); | |||||
} | } | ||||
for (const auto& i : opr->input()) | |||||
internal_graph->m_inputs.insert(i); | |||||
} | } | ||||
return partitions; | return partitions; | ||||
} | } | ||||
/* ============= SubGraphExtractor =================*/ | |||||
// vim: syntax=cpp.doxygen | // vim: syntax=cpp.doxygen |
@@ -16,17 +16,37 @@ | |||||
namespace mgb { | namespace mgb { | ||||
namespace gopt { | namespace gopt { | ||||
struct InternalGraph { | |||||
ThinHashSet<VarNode*> m_internals; | |||||
ThinHashSet<VarNode*> m_inputs; | |||||
ThinHashSet<VarNode*> m_outputs; | |||||
class GraphPartition { | |||||
public: | |||||
using VarNodeSet = ThinHashSet<VarNode*>; | |||||
using OperatorNodeSet = ThinHashSet<cg::OperatorNodeBase*>; | |||||
class InputPlaceholder; | |||||
GraphPartition() = default; | |||||
#if MGB_ENABLE_JSON | |||||
std::shared_ptr<json::Value> to_json() const; | |||||
#endif | |||||
const OperatorNodeSet& opr_set() const { return m_opr_set; } | |||||
const VarNodeSet& input() const { return m_inputs; } | |||||
const VarNodeSet& output() const { return m_outputs; } | |||||
OperatorNodeSet& opr_set() { return m_opr_set; } | |||||
VarNodeSet& input() { return m_inputs; } | |||||
VarNodeSet& output() { return m_outputs; } | |||||
private: | |||||
OperatorNodeSet m_opr_set; | |||||
VarNodeSet m_inputs; | |||||
VarNodeSet m_outputs; | |||||
std::pair<VarNodeArray, VarNodeArray> replace_graph_by_placeholder() const; | |||||
}; | }; | ||||
class SubGraphExtractor { | class SubGraphExtractor { | ||||
public: | public: | ||||
using OprList = ThinHashSet<Typeinfo*>; | using OprList = ThinHashSet<Typeinfo*>; | ||||
SubGraphExtractor(OprList opr_list) : m_opr_list{opr_list} {}; | SubGraphExtractor(OprList opr_list) : m_opr_list{opr_list} {}; | ||||
std::vector<InternalGraph> extract( | |||||
std::vector<GraphPartition> extract( | |||||
const SymbolVarArray& endpoint_vars) const; | const SymbolVarArray& endpoint_vars) const; | ||||
private: | private: | ||||
@@ -0,0 +1,275 @@ | |||||
/** | |||||
* \file src/gopt/test/subgraph_extractor.cpp | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or | |||||
* implied. | |||||
*/ | |||||
#include "./helper.h" | |||||
#include "megbrain/gopt/subgraph_extractor.h" | |||||
#include "megbrain/opr/basic_arith.h" | |||||
#include "megbrain/opr/blas.h" | |||||
#include "megbrain/opr/dnn/convolution.h" | |||||
#include "megbrain/opr/dnn/pooling.h" | |||||
#include "megbrain/opr/imgproc.h" | |||||
#include "megbrain/opr/internal/identical_fwd.h" | |||||
#include "megbrain/opr/nn_int.h" | |||||
#include "megbrain/opr/tensor_manip.h" | |||||
#include "megbrain/serialization/serializer.h" | |||||
using namespace mgb; | |||||
using namespace gopt; | |||||
using namespace serialization; | |||||
namespace { | |||||
// clang-format off | |||||
MGB_DEFINE_OPR_CLASS(MultipleInputOutput, | |||||
cg::SingleCNOperatorNodeBase) // { | |||||
public: | |||||
MultipleInputOutput(const VarNodeArray& inputs, const OperatorNodeConfig& config); | |||||
static SymbolVarArray make(const SymbolVarArray& inputs, const OperatorNodeConfig& config = {}); | |||||
private: | |||||
void scn_do_execute() override { } | |||||
void init_output_static_infer_desc() override { } | |||||
}; | |||||
// clang-format on | |||||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(MultipleInputOutput); | |||||
MultipleInputOutput::MultipleInputOutput(const VarNodeArray& inputs, | |||||
const OperatorNodeConfig& config) | |||||
: Super(inputs[0]->owner_graph(), config, "multiple_input_output", | |||||
inputs) { | |||||
for (auto&& i : inputs) | |||||
add_input({i}); | |||||
if (inputs.size() == 1) { | |||||
add_output(None); | |||||
} else { | |||||
for (size_t i = 0; i < inputs.size(); ++i) | |||||
add_output(ssprintf("o%zu", i)); | |||||
} | |||||
cg::add_workspace_output(this); | |||||
} | |||||
SymbolVarArray MultipleInputOutput::make(const SymbolVarArray& inputs, | |||||
const OperatorNodeConfig& config) { | |||||
auto src = cg::to_var_node_array(inputs); | |||||
auto multiple_io = std::make_unique<MultipleInputOutput>(src, config); | |||||
auto ret = | |||||
cg::to_symbol_var_array(src[0]->owner_graph() | |||||
->insert_opr(std::move(multiple_io)) | |||||
->output()); | |||||
ret.pop_back(); | |||||
return ret; | |||||
} | |||||
} | |||||
TEST(TestSubGraphExtractor, MultipleOutputs) { | |||||
HostTensorGenerator<> gen; | |||||
auto graph = ComputingGraph::make(); | |||||
auto mkvar = [&](const char* name, const TensorShape& shp) { | |||||
return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name); | |||||
}; | |||||
auto mkcvar = [&](const char* name, const TensorShape& shp) { | |||||
return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name); | |||||
}; | |||||
graph->options().graph_opt_level = 0; | |||||
auto x = mkvar("x", {8, 8, 8, 8}), w1 = mkcvar("w1", {4, 8, 3, 3}); | |||||
auto y = mkvar("y", {1, 8, 1, 1}); | |||||
auto add = x + y; | |||||
opr::Convolution::Param param; | |||||
param.pad_h = param.pad_w = 1; | |||||
auto c1 = opr::Convolution::make(add, w1, param); | |||||
auto w2 = mkcvar("w2", {8, 4, 3, 3}); | |||||
auto c2 = opr::ConvolutionBackwardData::make(w2, add, param, {}, {}); | |||||
auto sym_var_arr = MultipleInputOutput::make({c1, c2}); | |||||
auto z = sym_var_arr[1]; | |||||
z = z + (-128); | |||||
using OprList = SubGraphExtractor::OprList; | |||||
static const OprList opr_list = { | |||||
opr::ConvolutionForward::typeinfo(), | |||||
opr::Elemwise::typeinfo(), | |||||
opr::TypeCvt::typeinfo(), | |||||
MultipleInputOutput::typeinfo(), | |||||
}; | |||||
SubGraphExtractor extractor(opr_list); | |||||
auto partitions = extractor.extract({z}); | |||||
ASSERT_EQ(partitions.size(), 1u); | |||||
// outputs: sym_var_arr[0], z, add | |||||
ASSERT_EQ(partitions[0].output().size(), 3u); | |||||
ASSERT_TRUE(partitions[0].output().count(add.node()) > 0); | |||||
ASSERT_TRUE(partitions[0].output().count(z.node()) > 0); | |||||
ASSERT_TRUE(partitions[0].output().count(sym_var_arr[0].node()) > 0); | |||||
ASSERT_TRUE(partitions[0].output().count(sym_var_arr[1].node()) == 0); | |||||
// inputs: x, y, w1, c2, (-128) | |||||
ASSERT_EQ(partitions[0].input().size(), 5u); | |||||
ASSERT_TRUE(partitions[0].input().count(x.node()) > 0); | |||||
ASSERT_TRUE(partitions[0].input().count(c2.node()) > 0); | |||||
// opr: (x + y) conv1 multi_io, (z - 128) | |||||
ASSERT_EQ(partitions[0].opr_set().size(), 4u); | |||||
ASSERT_TRUE(partitions[0].opr_set().count(add.node()->owner_opr()) > 0); | |||||
ASSERT_TRUE(partitions[0].opr_set().count(c1.node()->owner_opr()) > 0); | |||||
ASSERT_TRUE(partitions[0].opr_set().count( | |||||
sym_var_arr[0].node()->owner_opr()) > 0); | |||||
ASSERT_TRUE(partitions[0].opr_set().count(z.node()->owner_opr()) > 0); | |||||
} | |||||
TEST(TestSubGraphExtractor, MultipleReaders) { | |||||
HostTensorGenerator<> gen; | |||||
auto graph = ComputingGraph::make(); | |||||
auto mkvar = [&](const char* name, const TensorShape& shp) { | |||||
return opr::Host2DeviceCopy::make(*graph, gen(shp)).rename(name); | |||||
}; | |||||
auto mkcvar = [&](const char* name, const TensorShape& shp) { | |||||
return opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name); | |||||
}; | |||||
graph->options().graph_opt_level = 0; | |||||
auto x = mkvar("x", {8, 8, 8, 8}), w1 = mkcvar("w1", {4, 8, 3, 3}); | |||||
auto y = mkvar("y", {1, 8, 1, 1}); | |||||
auto add = x + y; | |||||
opr::Convolution::Param param; | |||||
param.pad_h = param.pad_w = 1; | |||||
auto c1 = opr::Convolution::make(add, w1, param); | |||||
auto w2 = mkcvar("w2", {8, 4, 3, 3}); | |||||
auto c2 = opr::ConvolutionBackwardData::make(w2, add, param, {}, {}); | |||||
auto z = c1 + c2; | |||||
using OprList = SubGraphExtractor::OprList; | |||||
static const OprList opr_list = { | |||||
opr::ConvolutionForward::typeinfo(), | |||||
opr::Elemwise::typeinfo(), | |||||
opr::TypeCvt::typeinfo(), | |||||
}; | |||||
SubGraphExtractor extractor(opr_list); | |||||
auto partitions = extractor.extract({z}); | |||||
ASSERT_EQ(partitions.size(), 1u); | |||||
ASSERT_EQ(partitions[0].output().size(), 2u); | |||||
ASSERT_TRUE(partitions[0].output().count(add.node()) > 0); | |||||
ASSERT_TRUE(partitions[0].output().count(z.node()) > 0); | |||||
ASSERT_EQ(partitions[0].input().size(), 4u); | |||||
ASSERT_TRUE(partitions[0].input().count(x.node()) > 0); | |||||
partitions[0].to_json()->writeto_fpath( | |||||
output_file("TestSubGraphExtractor.MultipleReaders.json")); | |||||
} | |||||
TEST(TestSubGraphExtractor, Complicated) { | |||||
const size_t N = 16, C = 3, H = 768, W = 1280; | |||||
HostTensorGenerator<dtype::Uint8> gen; | |||||
auto graph = ComputingGraph::make(); | |||||
/* h2d | |||||
| | |||||
v | |||||
astype(f32) | |||||
| | |||||
add(-128) | |||||
| | |||||
v | |||||
astype(q8) | |||||
| | |||||
v | |||||
conv1 | |||||
| | |||||
v | |||||
astype(u4) | |||||
| | |||||
/ \ | |||||
conv2 conv3 -> astype(q32) -> output | |||||
\ / | |||||
qadd | |||||
| | |||||
v | |||||
astype(q8) | |||||
/ \ | |||||
deconv conv4 | |||||
\ / | |||||
concat -> output */ | |||||
auto h2d = opr::Host2DeviceCopy::make(*graph, gen({N, C, H, W})); | |||||
auto data = opr::TypeCvt::make(h2d, dtype::Float32()); | |||||
auto sub_128 = data + (-128); | |||||
auto x = opr::TypeCvt::make(sub_128, dtype::QuantizedS8(1.f)); | |||||
auto mkcvar = [&](const char* name, const TensorShape& shp, | |||||
const DType& dtype) { | |||||
return opr::TypeCvt::make( | |||||
opr::SharedDeviceTensor::make(*graph, *gen(shp)).rename(name), | |||||
dtype); | |||||
}; | |||||
auto w1 = mkcvar("w1", {16, 3, 3, 3}, dtype::QuantizedS8(1.f)); | |||||
auto b1 = mkcvar("b1", {1, 16, 1, 1}, dtype::QuantizedS32(1.f)); | |||||
opr::ConvBias::Param param; | |||||
param.stride_h = param.stride_w = 2; | |||||
param.pad_h = param.pad_w = 1; | |||||
auto conv1 = opr::ConvBias::make( | |||||
x, w1, b1, param, {}, OperatorNodeConfig(dtype::QuantizedS8(1.f))); | |||||
conv1 = opr::TypeCvt::make( | |||||
conv1, dtype::Quantized4Asymm(1.f, static_cast<uint8_t>(8))); | |||||
auto w2 = mkcvar("w2", {16, 16, 3, 3}, dtype::QuantizedS4(1.f)); | |||||
auto b2 = mkcvar("b2", {1, 16, 1, 1}, dtype::QuantizedS32(1.f)); | |||||
auto conv2 = opr::ConvBias::make(conv1, w2, b2, param, {}, | |||||
OperatorNodeConfig(dtype::Quantized4Asymm( | |||||
1.f, static_cast<uint8_t>(8)))); | |||||
param.pad_h = param.pad_w = 0; | |||||
auto w3 = mkcvar("w3", {16, 16, 1, 1}, dtype::QuantizedS4(1.f)); | |||||
auto b3 = mkcvar("b3", {1, 16, 1, 1}, dtype::QuantizedS32(1.f)); | |||||
auto conv3 = opr::ConvBias::make(conv1, w3, b3, param, {}, | |||||
OperatorNodeConfig(dtype::Quantized4Asymm( | |||||
1.f, static_cast<uint8_t>(8)))); | |||||
auto conv3f = opr::TypeCvt::make(conv3, dtype::Float32()); | |||||
auto qadd = opr::ElemwiseMultiType::make( | |||||
{conv2, conv3}, {opr::ElemwiseMultiType::Mode::QADD}, | |||||
OperatorNodeConfig( | |||||
dtype::Quantized4Asymm(1.f, static_cast<uint8_t>(8)))); | |||||
auto q8 = opr::TypeCvt::make(qadd, dtype::QuantizedS8(1.f)); | |||||
auto w4 = mkcvar("w4", {16, 16, 3, 3}, dtype::QuantizedS8(1.f)); | |||||
param.stride_h = param.stride_w = 1; | |||||
param.pad_h = param.pad_w = 1; | |||||
auto conv4 = opr::ConvBiasForward::make( | |||||
q8, w4, param, {}, OperatorNodeConfig(dtype::QuantizedS8(1.f))); | |||||
conv4 = opr::TypeCvt::make(conv4, dtype::Float32()); | |||||
opr::Convolution::Param conv_param; | |||||
conv_param.stride_h = param.stride_w = 1; | |||||
conv_param.pad_h = param.pad_w = 0; | |||||
auto w5 = mkcvar("w4", {16, 16, 1, 1}, dtype::QuantizedS8(1.f)); | |||||
auto deconv = opr::ConvolutionBackwardData::make( | |||||
w5, q8, conv_param, {}, | |||||
OperatorNodeConfig(dtype::QuantizedS8(1.f))); | |||||
deconv = opr::TypeCvt::make(deconv, dtype::Float32()); | |||||
auto z = opr::Concat::make({conv4, deconv}, 1); | |||||
using OprList = SubGraphExtractor::OprList; | |||||
static const OprList opr_list = { | |||||
opr::ConvBiasForward::typeinfo(), | |||||
opr::ConvolutionForward::typeinfo(), | |||||
opr::ConvolutionBackwardData::typeinfo(), | |||||
opr::ElemwiseMultiType::typeinfo(), | |||||
opr::Elemwise::typeinfo(), | |||||
opr::TypeCvt::typeinfo(), | |||||
opr::PoolingForward::typeinfo(), | |||||
opr::WarpPerspectiveForward::typeinfo(), | |||||
}; | |||||
SubGraphExtractor extractor(opr_list); | |||||
auto partitions = extractor.extract({conv3f.node(), z.node()}); | |||||
ASSERT_EQ(partitions.size(), 1u); | |||||
const char* prefix = "TestSubGraphExtractor.Complicated"; | |||||
partitions[0].to_json()->writeto_fpath( | |||||
output_file(ssprintf("%s.json", prefix).c_str())); | |||||
} | |||||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |