GitOrigin-RevId: a058776be3
tags/v1.9.0
@@ -1038,7 +1038,8 @@ Note: NCHW_NCHW4_WEIGHT will auto pad oc and ic, you should remove oc in later o | |||
'NCHW_NCHW64 = 27', | |||
'NCHW64_NCHW = 28', | |||
'NCHW_NHWC = 29', | |||
'NHWC_NCHW = 30', | |||
'NHWC_NCHW = 30', | |||
'NHWCD4I_NHWC = 31', | |||
) | |||
) | |||
@@ -114,6 +114,7 @@ void RelayoutFormat::deduce_layout_fwd(const TensorLayout& src, TensorLayout& ds | |||
dst[3] = src[2]; | |||
dst[4] = 4; | |||
break; | |||
case Param::Mode::NHWCD4I_NHWC: | |||
case Param::Mode::NHWCD4_NHWC: | |||
megdnn_assert(src.ndim == 5); | |||
dst.ndim = 4; | |||
@@ -331,6 +332,7 @@ void RelayoutFormat::deduce_format(TensorFormat src, TensorFormat& dst) { | |||
CHECK_SRC(DefaultTensorFormat::make()); | |||
dst = Image2DPack4TensorFormat::make_raw(2, align, vendor_type); | |||
break; | |||
case Param::Mode::NHWCD4I_NHWC: | |||
case Param::Mode::NHWCD4I_NCHW: | |||
CHECK_SRC(Image2DPack4TensorFormat::make_raw(2, align, vendor_type)); | |||
dst = DefaultTensorFormat::make(); | |||
@@ -594,6 +596,7 @@ void RelayoutFormat::deduce_exec_layout( | |||
.dimshuffle({0, 1, 3, 2, 4}); | |||
exec_dst = dst; | |||
break; | |||
case Param::Mode::NHWCD4I_NHWC: | |||
case Param::Mode::NHWCD4_NHWC: | |||
// src is {N, H, CB, W, 4} | |||
// dst is {N, H, W, C}, | |||
@@ -1002,7 +1002,9 @@ void ConvertFormatPass::apply(OptState& state) const { | |||
rewriter.apply_inplace(); | |||
//! start a second pass that merge consecutive dimshuffle(NHWC->NCHW) + | |||
//! relayout_format(NCHW->NHWCD4) to only one relayout_format(NHWC->NHWCD4) | |||
//! relayout_format(NCHW->NHWCD4) to only one relayout_format(NHWC->NHWCD4). Merge | |||
//! consecutive relayout_format(NHWCD4 -> NCHW) + dimshuffle(NCHW -> NHWC) to one | |||
//! relayout_format(NHWCD4 -> NHWC). | |||
auto on_opr_merge = [&rewriter](OperatorNodeBase* opr) { | |||
auto opr_is_relayout = [](OperatorNodeBase* opr) { | |||
return opr->try_cast_final<opr::RelayoutFormat>(); | |||
@@ -1019,23 +1021,48 @@ void ConvertFormatPass::apply(OptState& state) const { | |||
} | |||
return false; | |||
}; | |||
auto this_opr_is_relayout = opr_is_relayout(opr); | |||
auto prev_opr_is_dimshuffle = static_cast<opr::Dimshuffle*>(nullptr); | |||
if (this_opr_is_relayout) { | |||
prev_opr_is_dimshuffle = opr_is_dimshuffle(opr->input(0)->owner_opr()); | |||
} | |||
if (this_opr_is_relayout && prev_opr_is_dimshuffle) { | |||
if (this_opr_is_relayout->param().mode == | |||
megdnn::param::RelayoutFormat::Mode::NCHW_NHWCD4I && | |||
match_pattern(prev_opr_is_dimshuffle->param(), {0, 3, 1, 2})) { | |||
auto inp = rewriter.get_var(prev_opr_is_dimshuffle->input(0)); | |||
auto new_param = megdnn::param::RelayoutFormat(); | |||
new_param.mode = megdnn::param::RelayoutFormat::Mode::NHWC_NHWCD4I; | |||
auto new_opr = opr::RelayoutFormat::make(inp, new_param); | |||
rewriter.replace_var(opr->output(0), new_opr.node(), nullptr); | |||
//! dimshuffle + relayout_format | |||
{ | |||
auto this_opr_is_relayout = opr_is_relayout(opr); | |||
auto prev_opr_is_dimshuffle = static_cast<opr::Dimshuffle*>(nullptr); | |||
if (this_opr_is_relayout) { | |||
prev_opr_is_dimshuffle = opr_is_dimshuffle(opr->input(0)->owner_opr()); | |||
} | |||
if (this_opr_is_relayout && prev_opr_is_dimshuffle) { | |||
//! megengine only accept NCHW input | |||
if (this_opr_is_relayout->param().mode == | |||
megdnn::param::RelayoutFormat::Mode::NCHW_NHWCD4I && | |||
match_pattern(prev_opr_is_dimshuffle->param(), {0, 3, 1, 2})) { | |||
auto inp = rewriter.get_var(prev_opr_is_dimshuffle->input(0)); | |||
auto new_param = megdnn::param::RelayoutFormat(); | |||
new_param.mode = megdnn::param::RelayoutFormat::Mode::NHWC_NHWCD4I; | |||
auto new_opr = opr::RelayoutFormat::make(inp, new_param); | |||
rewriter.replace_var(opr->output(0), new_opr.node(), nullptr); | |||
} | |||
} else { | |||
rewriter.auto_replace_outputs(opr); | |||
} | |||
} | |||
//! relayout_format + dimshuffle | |||
{ | |||
auto this_opr_is_dimshuffle = opr_is_dimshuffle(opr); | |||
auto prev_opr_is_relayout = static_cast<opr::RelayoutFormat*>(nullptr); | |||
if (this_opr_is_dimshuffle) { | |||
prev_opr_is_relayout = opr_is_relayout(opr->input(0)->owner_opr()); | |||
} | |||
if (this_opr_is_dimshuffle && prev_opr_is_relayout) { | |||
if (prev_opr_is_relayout->param().mode == | |||
megdnn::param::RelayoutFormat::Mode::NHWCD4I_NCHW && | |||
match_pattern(this_opr_is_dimshuffle->param(), {0, 2, 3, 1})) { | |||
auto inp = rewriter.get_var(prev_opr_is_relayout->input(0)); | |||
auto new_param = megdnn::param::RelayoutFormat(); | |||
new_param.mode = megdnn::param::RelayoutFormat::Mode::NHWCD4I_NHWC; | |||
auto new_opr = opr::RelayoutFormat::make(inp, new_param); | |||
rewriter.replace_var(opr->output(0), new_opr.node(), nullptr); | |||
} | |||
} else { | |||
rewriter.auto_replace_outputs(opr); | |||
} | |||
} else { | |||
rewriter.auto_replace_outputs(opr); | |||
} | |||
}; | |||
state.graph().iter(on_opr_merge); | |||
@@ -1365,6 +1365,71 @@ TEST(TestGoptInference, MergeDimShuffleAndRelayoutFormat) { | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
} | |||
TEST(TestGoptInference, MergeRelayoutFormatAndDimShuffle) { | |||
// hwcd4 is only supported in naive handle | |||
NaiveMegDNNHandleScope naive_megdnn_handle; | |||
HostTensorGenerator<> gen; | |||
auto cn = CompNode::load("cpu0"); | |||
auto graph = ComputingGraph::make(); | |||
graph->options().graph_opt_level = 0; | |||
auto mkvar = [&](const char* name, const TensorShape& shp) { | |||
return opr::Host2DeviceCopy::make(*graph, gen(shp, cn)).rename(name); | |||
}; | |||
auto host_x = gen({2, 8, 16, 32}, cn); | |||
auto x = opr::Host2DeviceCopy::make(*graph, host_x); | |||
auto a = mkvar("a", {1}); | |||
auto b = mkvar("b", {1}); | |||
auto z = x * a + b; | |||
//! to NHWC | |||
auto y = opr::Dimshuffle::make(z, {0, 2, 3, 1}); | |||
SymbolVar y_opt; | |||
auto options = gopt::OptimizeForInferenceOptions{}; | |||
options.enable_nhwcd4(); | |||
unpack_vector(gopt::optimize_for_inference({y}, options), y_opt); | |||
ASSERT_EQ(0, find_opr_num<opr::Dimshuffle>(y_opt)); | |||
auto check = [](SymbolVar endpoint) -> bool { | |||
bool valid = true; | |||
auto cb = [&](cg::OperatorNodeBase* opr) { | |||
if (opr->same_type<opr::RelayoutFormat>()) { | |||
auto mode = opr->try_cast_final<opr::RelayoutFormat>()->param().mode; | |||
//! The first relayout_format opr's mode is NCHW_NHWCD4I. The second is | |||
//! NHWCD4I_NHWC | |||
if (mode == megdnn::param::RelayoutFormat::Mode::NCHW_NHWCD4I || | |||
mode == megdnn::param::RelayoutFormat::Mode::NHWCD4I_NHWC) { | |||
valid &= true; | |||
} else { | |||
valid &= false; | |||
} | |||
} | |||
}; | |||
cg::DepOprIter{cb}.add(endpoint.node()->owner_opr()); | |||
return valid; | |||
}; | |||
ASSERT_EQ(true, check(y_opt)); | |||
graph->compile({{y_opt, {}}}) | |||
->to_json() | |||
->writeto_fpath(output_file( | |||
"TestGoptInference.MergeRelayoutFormatAndDimShuffle.json")); | |||
HostTensorND host_y; | |||
HostTensorND host_y_opt; | |||
auto func = graph->compile( | |||
{make_callback_copy(y, host_y), make_callback_copy(y_opt, host_y_opt)}); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
*host_x = *gen({8, 8, 16, 16}, cn); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||
} | |||
TEST(TestGoptInference, ConvertFormatNHWCD4Elemwise) { | |||
// hwcd4 is only supported in naive handle | |||
NaiveMegDNNHandleScope naive_megdnn_handle; | |||