@@ -6,6 +6,7 @@ | |||
# Unless required by applicable law or agreed to in writing, | |||
# software distributed under the License is distributed on an | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from .adagrad import Adagrad | |||
from .adam import Adam | |||
from .lr_scheduler import LRScheduler | |||
from .multi_step_lr import MultiStepLR | |||
@@ -0,0 +1,75 @@ | |||
from typing import Iterable, Union | |||
import numpy as np | |||
from ..core import Buffer, Parameter | |||
from ..functional import sqrt | |||
from .internal import add_update_fastpath as add_update | |||
from .optimizer import Optimizer | |||
class Adagrad(Optimizer): | |||
r"""Implements Adagrad algorithm. | |||
It has been proposed in `"Adaptive Subgradient Methods for Online Learning | |||
and Stochastic Optimization" <http://jmlr.org/papers/v12/duchi11a.html>`_. | |||
:param params: iterable of parameters to optimize or dicts defining | |||
parameter groups. | |||
:param lr: coefficient that scale delta before it is applied | |||
to the parameters (default: 1e-2). | |||
:param lr_decay: learning rate decay (default: 0) | |||
:param eps: term added to the denominator to improve | |||
numerical stability (default: 1e-10). | |||
:param weight_decay: weight decay (L2 penalty) (default: 0). | |||
""" | |||
def __init__( | |||
self, | |||
params: Union[Iterable[Parameter], dict], | |||
lr: float = 1e-2, | |||
lr_decay: float = 0.0, | |||
eps: float = 1e-10, | |||
weight_decay: float = 0.0, | |||
): | |||
assert lr >= 0.0, "Invalid learning rate: {}".format(lr) | |||
assert lr_decay >= 0, "Invalid learning rate decay: {}".format(lr_decay) | |||
assert eps >= 0.0, "Invalid epsilon value: {}".format(eps) | |||
assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format( | |||
weight_decay | |||
) | |||
defaults = dict(lr=lr, lr_decay=lr_decay, eps=eps, weight_decay=weight_decay) | |||
super().__init__(params, defaults) | |||
def _create_state(self, param_group): | |||
for param in param_group["params"]: | |||
self._add_state(param, "square_avg") | |||
self._add_state(param, "step", initializer=0.0) | |||
def _updates(self, param_group): | |||
lr = param_group["lr"] | |||
lr_decay = param_group["lr_decay"] | |||
weight_decay = param_group["weight_decay"] | |||
eps = param_group["eps"] | |||
for param in param_group["params"]: | |||
if not isinstance(param.grad, Buffer): | |||
raise TypeError( | |||
"grad must be a Buffer, maybe you forget to call backward()?" | |||
) | |||
if not param.requires_grad: | |||
continue | |||
step = self._state[param]["step"] | |||
step = add_update(step, 1) | |||
grad = param.grad | |||
if weight_decay != 0.0: | |||
grad = add_update(grad, param, beta=weight_decay) | |||
square_avg = self._state[param]["square_avg"] | |||
square_avg = add_update(square_avg, grad ** 2) | |||
delta = grad / sqrt(square_avg + eps) | |||
clr = lr / (1 + (step - 1) * lr_decay) | |||
add_update(param, delta, beta=-clr) |
@@ -187,3 +187,74 @@ def test_adam(): | |||
for case in cases: | |||
_test_optimizer("Adam", case, CheckValue) | |||
_test_optimizer("Adam", case, CheckValue, update_lr=True) | |||
def test_adam(): | |||
class CheckValue: | |||
def __init__(self, net, **kwarg): | |||
self.m_slots = TensorDict() | |||
self.v_slots = TensorDict() | |||
for param in net.parameters(): | |||
self.m_slots[param] = np.zeros(param.shape).astype(np.float32) | |||
self.v_slots[param] = np.zeros(param.shape).astype(np.float32) | |||
for k, v in kwarg.items(): | |||
setattr(self, k, v) | |||
def __call__(self, ori_params, new_params, step): | |||
for param in new_params: | |||
grad = param.grad.numpy() | |||
m = self.m_slots[param] | |||
v = self.v_slots[param] | |||
m *= self.betas[0] | |||
m += (1 - self.betas[0]) * grad | |||
v *= self.betas[1] | |||
v += (1 - self.betas[1]) * grad * grad | |||
delta = (m / (1 - self.betas[0] ** step)) / ( | |||
np.sqrt(v / (1 - self.betas[1] ** step)) + self.eps | |||
) | |||
assertTensorClose(param.numpy(), ori_params[param] - self.lr * delta) | |||
cases = [ | |||
{"betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01}, | |||
{ | |||
"betas": (0.8, 0.9), | |||
"eps": 1e-04, | |||
"lr": 0.01, | |||
"weight_decay": 0.1, | |||
}, # with weight_decay | |||
] | |||
for case in cases: | |||
_test_optimizer("Adam", case, CheckValue) | |||
_test_optimizer("Adam", case, CheckValue, update_lr=True) | |||
def test_adagrad(): | |||
class CheckValue: | |||
def __init__(self, net, **kwarg): | |||
self.s_slots = TensorDict() | |||
for param in net.parameters(): | |||
self.s_slots[param] = np.zeros(param.shape).astype(np.float32) | |||
for k, v in kwarg.items(): | |||
setattr(self, k, v) | |||
def __call__(self, ori_params, new_params, step): | |||
for param in new_params: | |||
grad = param.grad.numpy() | |||
self.s_slots[param] += grad ** 2 | |||
delta = grad / (self.s_slots[param] + self.eps) ** 0.5 | |||
delta *= -(self.lr / (1 + (step - 1) * self.lr_decay)) | |||
assertTensorClose(param.numpy(), ori_params[param] + delta) | |||
cases = [ | |||
{"lr": 0.01, "eps": 1e-06, "lr_decay": 0.01}, | |||
{"lr": 0.01, "eps": 1e-06, "lr_decay": 0.0}, # without lr_decay | |||
{ | |||
"lr": 0.01, | |||
"eps": 1e-06, | |||
"lr_decay": 0.01, | |||
"weight_decay": 0.1, | |||
}, # with weight_decay | |||
] | |||
for case in cases: | |||
_test_optimizer("Adagrad", case, CheckValue) | |||
_test_optimizer("Adagrad", case, CheckValue, update_lr=True) |