@@ -6,6 +6,7 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from .adagrad import Adagrad | |||||
from .adam import Adam | from .adam import Adam | ||||
from .lr_scheduler import LRScheduler | from .lr_scheduler import LRScheduler | ||||
from .multi_step_lr import MultiStepLR | from .multi_step_lr import MultiStepLR | ||||
@@ -0,0 +1,75 @@ | |||||
from typing import Iterable, Union | |||||
import numpy as np | |||||
from ..core import Buffer, Parameter | |||||
from ..functional import sqrt | |||||
from .internal import add_update_fastpath as add_update | |||||
from .optimizer import Optimizer | |||||
class Adagrad(Optimizer): | |||||
r"""Implements Adagrad algorithm. | |||||
It has been proposed in `"Adaptive Subgradient Methods for Online Learning | |||||
and Stochastic Optimization" <http://jmlr.org/papers/v12/duchi11a.html>`_. | |||||
:param params: iterable of parameters to optimize or dicts defining | |||||
parameter groups. | |||||
:param lr: coefficient that scale delta before it is applied | |||||
to the parameters (default: 1e-2). | |||||
:param lr_decay: learning rate decay (default: 0) | |||||
:param eps: term added to the denominator to improve | |||||
numerical stability (default: 1e-10). | |||||
:param weight_decay: weight decay (L2 penalty) (default: 0). | |||||
""" | |||||
def __init__( | |||||
self, | |||||
params: Union[Iterable[Parameter], dict], | |||||
lr: float = 1e-2, | |||||
lr_decay: float = 0.0, | |||||
eps: float = 1e-10, | |||||
weight_decay: float = 0.0, | |||||
): | |||||
assert lr >= 0.0, "Invalid learning rate: {}".format(lr) | |||||
assert lr_decay >= 0, "Invalid learning rate decay: {}".format(lr_decay) | |||||
assert eps >= 0.0, "Invalid epsilon value: {}".format(eps) | |||||
assert weight_decay >= 0.0, "Invalid weight_decay value: {}".format( | |||||
weight_decay | |||||
) | |||||
defaults = dict(lr=lr, lr_decay=lr_decay, eps=eps, weight_decay=weight_decay) | |||||
super().__init__(params, defaults) | |||||
def _create_state(self, param_group): | |||||
for param in param_group["params"]: | |||||
self._add_state(param, "square_avg") | |||||
self._add_state(param, "step", initializer=0.0) | |||||
def _updates(self, param_group): | |||||
lr = param_group["lr"] | |||||
lr_decay = param_group["lr_decay"] | |||||
weight_decay = param_group["weight_decay"] | |||||
eps = param_group["eps"] | |||||
for param in param_group["params"]: | |||||
if not isinstance(param.grad, Buffer): | |||||
raise TypeError( | |||||
"grad must be a Buffer, maybe you forget to call backward()?" | |||||
) | |||||
if not param.requires_grad: | |||||
continue | |||||
step = self._state[param]["step"] | |||||
step = add_update(step, 1) | |||||
grad = param.grad | |||||
if weight_decay != 0.0: | |||||
grad = add_update(grad, param, beta=weight_decay) | |||||
square_avg = self._state[param]["square_avg"] | |||||
square_avg = add_update(square_avg, grad ** 2) | |||||
delta = grad / sqrt(square_avg + eps) | |||||
clr = lr / (1 + (step - 1) * lr_decay) | |||||
add_update(param, delta, beta=-clr) |
@@ -187,3 +187,74 @@ def test_adam(): | |||||
for case in cases: | for case in cases: | ||||
_test_optimizer("Adam", case, CheckValue) | _test_optimizer("Adam", case, CheckValue) | ||||
_test_optimizer("Adam", case, CheckValue, update_lr=True) | _test_optimizer("Adam", case, CheckValue, update_lr=True) | ||||
def test_adam(): | |||||
class CheckValue: | |||||
def __init__(self, net, **kwarg): | |||||
self.m_slots = TensorDict() | |||||
self.v_slots = TensorDict() | |||||
for param in net.parameters(): | |||||
self.m_slots[param] = np.zeros(param.shape).astype(np.float32) | |||||
self.v_slots[param] = np.zeros(param.shape).astype(np.float32) | |||||
for k, v in kwarg.items(): | |||||
setattr(self, k, v) | |||||
def __call__(self, ori_params, new_params, step): | |||||
for param in new_params: | |||||
grad = param.grad.numpy() | |||||
m = self.m_slots[param] | |||||
v = self.v_slots[param] | |||||
m *= self.betas[0] | |||||
m += (1 - self.betas[0]) * grad | |||||
v *= self.betas[1] | |||||
v += (1 - self.betas[1]) * grad * grad | |||||
delta = (m / (1 - self.betas[0] ** step)) / ( | |||||
np.sqrt(v / (1 - self.betas[1] ** step)) + self.eps | |||||
) | |||||
assertTensorClose(param.numpy(), ori_params[param] - self.lr * delta) | |||||
cases = [ | |||||
{"betas": (0.8, 0.9), "eps": 1e-04, "lr": 0.01}, | |||||
{ | |||||
"betas": (0.8, 0.9), | |||||
"eps": 1e-04, | |||||
"lr": 0.01, | |||||
"weight_decay": 0.1, | |||||
}, # with weight_decay | |||||
] | |||||
for case in cases: | |||||
_test_optimizer("Adam", case, CheckValue) | |||||
_test_optimizer("Adam", case, CheckValue, update_lr=True) | |||||
def test_adagrad(): | |||||
class CheckValue: | |||||
def __init__(self, net, **kwarg): | |||||
self.s_slots = TensorDict() | |||||
for param in net.parameters(): | |||||
self.s_slots[param] = np.zeros(param.shape).astype(np.float32) | |||||
for k, v in kwarg.items(): | |||||
setattr(self, k, v) | |||||
def __call__(self, ori_params, new_params, step): | |||||
for param in new_params: | |||||
grad = param.grad.numpy() | |||||
self.s_slots[param] += grad ** 2 | |||||
delta = grad / (self.s_slots[param] + self.eps) ** 0.5 | |||||
delta *= -(self.lr / (1 + (step - 1) * self.lr_decay)) | |||||
assertTensorClose(param.numpy(), ori_params[param] + delta) | |||||
cases = [ | |||||
{"lr": 0.01, "eps": 1e-06, "lr_decay": 0.01}, | |||||
{"lr": 0.01, "eps": 1e-06, "lr_decay": 0.0}, # without lr_decay | |||||
{ | |||||
"lr": 0.01, | |||||
"eps": 1e-06, | |||||
"lr_decay": 0.01, | |||||
"weight_decay": 0.1, | |||||
}, # with weight_decay | |||||
] | |||||
for case in cases: | |||||
_test_optimizer("Adagrad", case, CheckValue) | |||||
_test_optimizer("Adagrad", case, CheckValue, update_lr=True) |