@@ -170,6 +170,7 @@ struct TensorLayout : public TensorShape { | |||
#if MEGDNN_CC_HOST | |||
Format(); | |||
Format(DType dtype); | |||
const ImplBase* impl() const { return m_impl; } | |||
@@ -198,6 +199,9 @@ struct TensorLayout : public TensorShape { | |||
//! whether this is the default tensor format | |||
bool is_default() const; | |||
//! whether this is the lowbit aligned to bytes tensor format | |||
bool is_lowbit_aligned() const; | |||
bool operator==(Format rhs) const { return m_impl == rhs.m_impl; } | |||
bool operator!=(Format rhs) const { return m_impl != rhs.m_impl; } | |||
#endif | |||
@@ -20,7 +20,7 @@ namespace megdnn { | |||
enum class TensorFormat::Type { | |||
DEFAULT = 0, //!< see DefaultTensorFormat | |||
IMAGE2D_PACK4 = 1, //!< see Image2DPack4TensorFormat | |||
FOURBITS_ALIGNED_TO_BYTE = 2, //!< | |||
LOWBITS_ALIGNED_TO_BYTE = 2, //!< | |||
}; | |||
class TensorFormat::ImplBase { | |||
@@ -205,21 +205,23 @@ using Image2DPack4TensorFormatBase = Image2DPackedTensorFormatBase<4>; | |||
/*! | |||
* \brief used for tensors storing lowbit data | |||
* | |||
* \p SIZE_NBITS is the size in bits of element of the tensor. | |||
* | |||
* \param m_size_nbits size in bits of elements in the tensor | |||
* \param m_align_size_in_bits aligned size in bits | |||
* \param m_align_size_in_elements aligned size in elements | |||
*/ | |||
template <size_t SIZE_NBITS_> | |||
class LowbitsTensorFormatBase : public TensorFormat::ImplBase { | |||
static constexpr size_t SIZE_NBITS = SIZE_NBITS_; | |||
size_t m_align_size_in_bits, m_align_size_in_elements; | |||
class LowbitsAlignedTensorFormatBase : public TensorFormat::ImplBase { | |||
size_t m_size_nbits, m_align_size_in_bits, m_align_size_in_elements; | |||
protected: //? | |||
LowbitsTensorFormatBase(Type type, size_t align_size_in_bits); | |||
LowbitsAlignedTensorFormatBase(Type type, size_t size_nbits, | |||
size_t align_size_in_bits); | |||
virtual ~LowbitsTensorFormatBase() = default; | |||
virtual ~LowbitsAlignedTensorFormatBase() = default; | |||
public: | |||
size_t align_size_in_bits() const { return m_align_size_in_bits; } | |||
size_t size_nbits() const { return m_size_nbits; } | |||
std::string to_string() const override; | |||
@@ -240,10 +242,10 @@ public: | |||
const TensorLayout& layout) const override; | |||
protected: | |||
struct SerializePack { | |||
uint8_t size_nbits; | |||
uint8_t align_size_in_bits; | |||
}; | |||
}; | |||
using FourBitsAlignedToBytesTensorFormatBase = LowbitsTensorFormatBase<4>; | |||
} // namespace detail | |||
/*! | |||
@@ -296,19 +298,20 @@ private: | |||
* \brief Tensor for storing 4bit data that requires stride corresponding to | |||
* non-innermost dimension to be aligned to bytes, and pack 2 elems into a byte | |||
*/ | |||
class FourBitsAlignedToBytesTensorFormat final | |||
: public detail::FourBitsAlignedToBytesTensorFormatBase { | |||
class LowbitsAlignedToBytesTensorFormat final | |||
: public detail::LowbitsAlignedTensorFormatBase { | |||
public: | |||
static constexpr Type TYPE = Type::FOURBITS_ALIGNED_TO_BYTE; | |||
static constexpr Type TYPE = Type::LOWBITS_ALIGNED_TO_BYTE; | |||
static constexpr size_t BYTE_IN_BITS = 8; | |||
static TensorFormat make(size_t align_size_in_bits); | |||
static TensorFormat make(size_t size_nbits); | |||
static TensorFormat deserialize(const Handle* handle, const void* buf, | |||
size_t size); | |||
static bool is_valid_layout(const TensorLayout& layout) { | |||
if (layout.format.type() == TYPE) { | |||
layout.format.as_impl<FourBitsAlignedToBytesTensorFormat>() | |||
layout.format.as_impl<LowbitsAlignedToBytesTensorFormat>() | |||
.assert_valid(layout); | |||
return true; | |||
} | |||
@@ -316,9 +319,9 @@ public: | |||
} | |||
private: | |||
FourBitsAlignedToBytesTensorFormat(size_t align_size_in_bits) | |||
: detail::FourBitsAlignedToBytesTensorFormatBase( | |||
TYPE, align_size_in_bits) {} | |||
LowbitsAlignedToBytesTensorFormat(size_t size_nbits) | |||
: detail::LowbitsAlignedTensorFormatBase(TYPE, size_nbits, | |||
BYTE_IN_BITS) {} | |||
}; | |||
} // namespace megdnn | |||
@@ -195,21 +195,14 @@ bool TensorShape::is_empty() const { | |||
/* ===================== TensorLayout ===================== */ | |||
TensorLayout::TensorLayout() = default; | |||
TensorLayout::TensorLayout(DType dtype_) : dtype{dtype_} {} | |||
TensorLayout::TensorLayout(DType dtype_) | |||
: dtype{dtype_}, format{Format(dtype)} {} | |||
TensorLayout::TensorLayout(DType dtype_, Format format_) | |||
: dtype{dtype_}, format{format_} {} | |||
TensorLayout::TensorLayout(const TensorShape& shape, DType dtype) | |||
: TensorShape(shape), dtype{dtype} { | |||
if (dtype.low_bit() == 4_z) { | |||
format = FourBitsAlignedToBytesTensorFormat::make(8_z); | |||
} else { | |||
megdnn_assert(!dtype.is_low_bit(), "Unsupported data type(%s)", | |||
dtype.name()); | |||
format = DefaultTensorFormat::make(); | |||
} | |||
} | |||
: TensorLayout(shape, dtype, Format(dtype)) {} | |||
TensorLayout::TensorLayout(const TensorShape& shape, DType dtype, | |||
TensorFormat format_) | |||
@@ -722,7 +722,7 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
megdnn_assert(src.ndim == 5 && | |||
(filter.ndim == 5 || filter.ndim == 6) && | |||
src[src.ndim - 1] == 64 && | |||
filter[filter.ndim - 1] == 4, | |||
filter[filter.ndim - 1] == 64, | |||
"NCHW64 require src and filter's ndim is 5 or 6, and " | |||
"last shape is 64 but got src %s, filter %s", | |||
src.to_string().c_str(), filter.to_string().c_str()); | |||
@@ -754,7 +754,6 @@ ConvolutionBase<Parameter>::deduce_layout_fwd(const TensorLayout& src, | |||
src[i + src_or_dst_spatial_start], cflt.dilated_spatial[i], | |||
cflt.stride[i], cflt.padding[i]); | |||
} | |||
dst.init_contiguous_stride(); | |||
} else if (param().format == Param::Format::NCHW4) { | |||
megdnn_assert(src.ndim == 5, | |||
"invalid src ndim for NCHW4, expected=5, got=%zu", | |||
@@ -35,8 +35,8 @@ TensorFormat TensorFormat::deserialize(const std::string& bin, | |||
case Type::IMAGE2D_PACK4: | |||
return Image2DPack4TensorFormat::deserialize( | |||
handle, type + 1, bin.size() - sizeof(Type)); | |||
case Type::FOURBITS_ALIGNED_TO_BYTE: | |||
return FourBitsAlignedToBytesTensorFormat::deserialize( | |||
case Type::LOWBITS_ALIGNED_TO_BYTE: | |||
return LowbitsAlignedToBytesTensorFormat::deserialize( | |||
handle, type + 1, bin.size() - sizeof(Type)); | |||
default: | |||
megdnn_throw("invalid tensor format type in deserialize"); | |||
@@ -45,6 +45,19 @@ TensorFormat TensorFormat::deserialize(const std::string& bin, | |||
TensorFormat::Format() : m_impl{DefaultTensorFormat::make().m_impl} {} | |||
TensorFormat::Format(DType dtype) { | |||
megdnn_assert(dtype.valid()); | |||
if (dtype.is_low_bit()) { | |||
size_t size_nbits = dtype.low_bit(); | |||
megdnn_assert(size_nbits == 1 || size_nbits == 2 || size_nbits == 4, | |||
"unsupported lowbits data type(%s, size in bits: %zu)", | |||
dtype.name(), size_nbits); | |||
m_impl = LowbitsAlignedToBytesTensorFormat::make(size_nbits).m_impl; | |||
} else { | |||
m_impl = DefaultTensorFormat::make().m_impl; | |||
} | |||
} | |||
std::string TensorFormat::to_string() const { | |||
return m_impl->to_string(); | |||
} | |||
@@ -69,6 +82,10 @@ bool TensorFormat::is_default() const { | |||
return m_impl == default_tensor_format_obj; | |||
} | |||
bool TensorFormat::is_lowbit_aligned() const { | |||
return type() == TensorFormat::Type::LOWBITS_ALIGNED_TO_BYTE; | |||
} | |||
/* ===================== DefaultFormat ===================== */ | |||
void DefaultTensorFormat::assert_valid(const TensorLayout& layout) const { | |||
megdnn_assert( | |||
@@ -440,27 +457,26 @@ template class Image2DPackedTensorFormatBase<4>; | |||
} // namespace detail | |||
} // namespace megdnn | |||
/* =============== FourBitsAlignedToBytesTensorFormatBase ============== */ | |||
template <size_t SIZE_NBITS> | |||
LowbitsTensorFormatBase<SIZE_NBITS>::LowbitsTensorFormatBase( | |||
Type type, size_t align_size_in_bits) | |||
: ImplBase(type), m_align_size_in_bits(align_size_in_bits) { | |||
megdnn_assert(!(m_align_size_in_bits % SIZE_NBITS), | |||
/* =============== LowbitsAlignedTensorFormatBase ============== */ | |||
LowbitsAlignedTensorFormatBase::LowbitsAlignedTensorFormatBase( | |||
Type type, size_t size_nbits, size_t align_size_in_bits) | |||
: ImplBase(type), | |||
m_size_nbits(size_nbits), | |||
m_align_size_in_bits(align_size_in_bits) { | |||
megdnn_assert(!(m_align_size_in_bits % m_size_nbits), | |||
"align size(%zu) must be a multiple of element size(%zu)", | |||
m_align_size_in_bits, SIZE_NBITS); | |||
m_align_size_in_elements = m_align_size_in_bits / SIZE_NBITS; | |||
m_align_size_in_bits, m_size_nbits); | |||
m_align_size_in_elements = m_align_size_in_bits / m_size_nbits; | |||
} | |||
template <size_t SIZE_NBITS> | |||
std::string LowbitsTensorFormatBase<SIZE_NBITS>::to_string() const { | |||
return ssprintf("LOWBITS{%zu,%zu}", SIZE_NBITS, m_align_size_in_bits); | |||
std::string LowbitsAlignedTensorFormatBase::to_string() const { | |||
return ssprintf("LOWBITS{%zu,%zu}", m_size_nbits, m_align_size_in_bits); | |||
} | |||
template <size_t SIZE_NBITS> | |||
void LowbitsTensorFormatBase<SIZE_NBITS>::assert_valid( | |||
void LowbitsAlignedTensorFormatBase::assert_valid( | |||
const TensorLayout& layout) const { | |||
megdnn_assert(layout.dtype.valid() && layout.dtype.is_low_bit() && | |||
layout.dtype.low_bit() == SIZE_NBITS); | |||
layout.dtype.low_bit() == m_size_nbits); | |||
bool has_dim_unity_stride = false; | |||
for (int i = layout.ndim - 1; i >= 0; --i) { | |||
if (!has_dim_unity_stride && layout.stride[i] == 1) | |||
@@ -469,23 +485,28 @@ void LowbitsTensorFormatBase<SIZE_NBITS>::assert_valid( | |||
layout.stride[i] >= 0 && | |||
(layout.stride[i] % m_align_size_in_elements == 0 || | |||
layout.stride[i] == 1), | |||
"bad stride: %zu", layout.stride[i]); | |||
"bad stride:%s, %zu", layout.to_string().c_str(), | |||
layout.stride[i]); | |||
} | |||
megdnn_assert(has_dim_unity_stride, "innermost dim not contiguous"); | |||
/// FIXME | |||
if (layout.ndim == 0) { | |||
printf("%s\n", layout.to_string().c_str()); | |||
} | |||
megdnn_assert(layout.ndim == 0 || has_dim_unity_stride, | |||
"innermost dim not contiguous"); | |||
} | |||
template <size_t SIZE_NBITS> | |||
void LowbitsTensorFormatBase<SIZE_NBITS>::serialize_append( | |||
void LowbitsAlignedTensorFormatBase::serialize_append( | |||
std::string& result) const { | |||
SerializePack pack; | |||
pack.size_nbits = m_size_nbits; | |||
pack.align_size_in_bits = m_align_size_in_bits; | |||
megdnn_assert(pack.align_size_in_bits == | |||
m_align_size_in_bits); // detect overflow; | |||
result.append(reinterpret_cast<char*>(&pack), sizeof(pack)); | |||
} | |||
template <size_t SIZE_NBITS> | |||
TensorLayout::Span LowbitsTensorFormatBase<SIZE_NBITS>::span_spec( | |||
TensorLayout::Span LowbitsAlignedTensorFormatBase::span_spec( | |||
const TensorLayout& layout) const { | |||
assert_valid(layout); | |||
if (layout.ndim == 0) | |||
@@ -507,8 +528,7 @@ TensorLayout::Span LowbitsTensorFormatBase<SIZE_NBITS>::span_spec( | |||
return TensorLayout::Span(0, 0, high_elem, high_byte); | |||
} | |||
template <size_t SIZE_NBITS> | |||
size_t LowbitsTensorFormatBase<SIZE_NBITS>::init_contiguous_stride( | |||
size_t LowbitsAlignedTensorFormatBase::init_contiguous_stride( | |||
TensorLayout& layout) const { | |||
if (!layout.ndim) | |||
return 0; | |||
@@ -525,8 +545,7 @@ size_t LowbitsTensorFormatBase<SIZE_NBITS>::init_contiguous_stride( | |||
return accum; | |||
} | |||
template <size_t SIZE_NBITS> | |||
bool LowbitsTensorFormatBase<SIZE_NBITS>::is_contiguous_spec( | |||
bool LowbitsAlignedTensorFormatBase::is_contiguous_spec( | |||
const TensorLayout& layout) const { | |||
assert_valid(layout); | |||
ptrdiff_t expected = 1; | |||
@@ -541,8 +560,7 @@ bool LowbitsTensorFormatBase<SIZE_NBITS>::is_contiguous_spec( | |||
return expected != 0; | |||
} | |||
template <size_t SIZE_NBITS> | |||
TensorLayout LowbitsTensorFormatBase<SIZE_NBITS>::collapse_contiguous_spec( | |||
TensorLayout LowbitsAlignedTensorFormatBase::collapse_contiguous_spec( | |||
const TensorLayout& layout) const { | |||
assert_valid(layout); | |||
TensorLayout res{layout}; | |||
@@ -572,12 +590,6 @@ TensorLayout LowbitsTensorFormatBase<SIZE_NBITS>::collapse_contiguous_spec( | |||
return res; | |||
} | |||
namespace megdnn { | |||
namespace detail { | |||
template class LowbitsTensorFormatBase<4>; | |||
} // namespace detail | |||
} // namespace megdnn | |||
/* ===================== Image2DPack4TensorFormat ===================== */ | |||
TensorFormat Image2DPack4TensorFormat::make_raw( | |||
size_t align_axis, size_t align_size_in_elements, | |||
@@ -616,29 +628,28 @@ TensorFormat Image2DPack4TensorFormat::change_axis(size_t axis) const { | |||
return make_raw(axis, align_size_in_elements(), vendor()); | |||
} | |||
/* ===================== FourBitsAlignedToBytesTensorFormat | |||
/* ===================== LowbitsitsAlignedToBytesTensorFormat | |||
* ===================== */ | |||
TensorFormat FourBitsAlignedToBytesTensorFormat::make( | |||
size_t align_size_in_bits) { | |||
TensorFormat LowbitsAlignedToBytesTensorFormat::make(size_t size_nbits) { | |||
static std::mutex mtx; | |||
static std::unordered_map< | |||
uint32_t, std::unique_ptr<FourBitsAlignedToBytesTensorFormat>> | |||
uint64_t, std::unique_ptr<LowbitsAlignedToBytesTensorFormat>> | |||
cache; | |||
megdnn_assert(!(align_size_in_bits % 4)); | |||
megdnn_assert(!(8 % size_nbits)); | |||
MEGDNN_LOCK_GUARD(mtx); | |||
auto&& ptr = cache[static_cast<uint32_t>(align_size_in_bits)]; | |||
auto&& ptr = cache[static_cast<uint32_t>(size_nbits)]; | |||
if (!ptr) { | |||
ptr.reset(new FourBitsAlignedToBytesTensorFormat{align_size_in_bits}); | |||
ptr.reset(new LowbitsAlignedToBytesTensorFormat{size_nbits}); | |||
} | |||
return impl_to_tensor_format(ptr.get()); | |||
} | |||
TensorFormat FourBitsAlignedToBytesTensorFormat::deserialize(const Handle*, | |||
const void* buf, | |||
size_t size) { | |||
TensorFormat LowbitsAlignedToBytesTensorFormat::deserialize(const Handle*, | |||
const void* buf, | |||
size_t size) { | |||
megdnn_assert(size == sizeof(SerializePack)); | |||
auto pack = *static_cast<const SerializePack*>(buf); | |||
return make(pack.align_size_in_bits); | |||
return make(pack.size_nbits); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -24,6 +24,9 @@ using namespace conv_bias; | |||
bool ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::is_available( | |||
const SizeArgs& args) const { | |||
if (args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS4 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::QuantizedS4) | |||
return false; | |||
if (args.src_layout->dtype == args.filter_layout->dtype && | |||
args.src_layout->dtype == dtype::BFloat16()) { | |||
return false; | |||
@@ -103,15 +103,18 @@ void ConvBiasForwardImpl::AlgoFallbackNCHWQS4::exec( | |||
TensorND src_{ws_src, layouts[0]}, filter_{ws_filter, layouts[1]}, | |||
bias_{args.bias_tensor->raw_ptr, layouts[2]}, z_{ws_z, layouts[3]}, | |||
dst_{ws_dst, layouts[4]}; | |||
ExecArgs args_{args.opr, | |||
auto conv_op = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
conv_op->param() = args.opr->param(); | |||
using Format = param::ConvBias::Format; | |||
conv_op->param().format = Format::NCHW64; | |||
ExecArgs args_{dynamic_cast<ConvBiasForwardImpl*>(conv_op.get()), | |||
src_, | |||
filter_, | |||
bias_, | |||
z_, | |||
dst_, | |||
ws.get_workspace(3), | |||
args.preprocessed_filter}; | |||
m_underlying_algo.exec(args); | |||
ws.get_workspace(3)}; | |||
m_underlying_algo.exec(args_); | |||
// reformat dst | |||
nchw642nchw(dst_, {args.dst_tensor->raw_ptr, args.dst_tensor->layout}); | |||
} | |||
@@ -134,6 +137,9 @@ ConvBiasForwardImpl::AlgoFallbackNCHWQS4::make_underlying_tensor_layout( | |||
rst.emplace_back(TensorLayout{}); | |||
} | |||
rst.emplace_back(TensorLayout{{n, co / 64, ho, wo, 64}, dst.dtype}); | |||
for (auto& i : rst) { | |||
i.init_contiguous_stride(); | |||
} | |||
return rst; | |||
} | |||
@@ -145,13 +151,16 @@ WorkspaceBundle ConvBiasForwardImpl::AlgoFallbackNCHWQS4::get_workspace_bundle( | |||
auto layouts = make_underlying_tensor_layout( | |||
*(args.src_layout), *(args.filter_layout), *(args.bias_layout), | |||
*(args.z_layout), *(args.dst_layout)); | |||
SizeArgs args_{args.opr, | |||
auto conv_op = args.opr->handle()->create_operator<ConvBiasForward>(); | |||
conv_op->param() = args.opr->param(); | |||
using Format = param::ConvBias::Format; | |||
conv_op->param().format = Format::NCHW64; | |||
SizeArgs args_{dynamic_cast<ConvBiasForwardImpl*>(conv_op.get()), | |||
layouts[0], | |||
layouts[1], | |||
layouts[2], | |||
layouts[3], | |||
layouts[4], | |||
args.preprocessed_filter}; | |||
layouts[4]}; | |||
size_t ws_size_underlying_algo = | |||
m_underlying_algo.get_workspace_in_bytes(args_); | |||
if (args.z_layout->ndim > 0) { | |||
@@ -136,6 +136,10 @@ void ConvBiasDesc::set_conv(DType data_type, const param::ConvBias& param, | |||
namespace conv_bias { | |||
bool is_cudnn_supported(const BiasForwardSizeArgs& args) { | |||
if (args.src_layout->dtype.enumv() == DTypeEnum::QuantizedS4 && | |||
args.filter_layout->dtype.enumv() == DTypeEnum::QuantizedS4) | |||
return false; | |||
if (args.src_layout->dtype == args.filter_layout->dtype && | |||
args.src_layout->dtype == dtype::BFloat16()) { | |||
return false; | |||
@@ -72,11 +72,11 @@ std::string ConvBiasForwardImpl::AlgoSASSInt4NCHW64IMMAImplicitGemm::kernel_key( | |||
auto&& param = args.opr->param(); | |||
if (args.z_layout->ndim > 0) { | |||
kernel_key = | |||
ssprintf("%s_conv_bias_int4_fuse_z_imma_ldg16_%ux%u", | |||
ssprintf("%s_conv_bias_int4_fuse_z_imma8832_ldg16_%ux%u", | |||
current_device_arch_name(), m_tile_nhw, m_tile_oc); | |||
} else { | |||
kernel_key = | |||
ssprintf("%s_conv_bias_int4_imma_ldg16_%ux%u", | |||
ssprintf("%s_conv_bias_int4_imma8832_ldg16_%ux%u", | |||
current_device_arch_name(), m_tile_nhw, m_tile_oc); | |||
} | |||
if (param.nonlineMode == NonlineMode::H_SWISH) { | |||
@@ -170,7 +170,7 @@ void ConvBiasForwardImpl::AlgoSASSInt4NCHW64IMMAImplicitGemm::exec( | |||
reorder_imma_filter_bias<4, 64>( | |||
reinterpret_cast<int8_t*>(filter_ptr), | |||
reinterpret_cast<int32_t*>(bias_ptr), | |||
args.filter_tensor->compatible_ptr<int8_t>(), | |||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), | |||
args.bias_tensor->compatible_ptr<int32_t>(), co, ci, fh, fw, | |||
stream); | |||
} | |||
@@ -292,9 +292,10 @@ void ConvBiasForwardImpl::AlgoSASSInt4NCHW64IMMAImplicitGemm::exec_preprocess( | |||
param); | |||
auto&& stream = cuda_stream(args.opr->handle()); | |||
reorder_imma_filter_bias<4, 64>( | |||
args.preprocessed_filter->tensors[0].compatible_ptr<int8_t>(), | |||
reinterpret_cast<int8_t*>( | |||
args.preprocessed_filter->tensors[0].raw_ptr), | |||
args.preprocessed_filter->tensors[1].compatible_ptr<int32_t>(), | |||
args.filter_tensor->compatible_ptr<int8_t>(), | |||
reinterpret_cast<int8_t*>(args.filter_tensor->raw_ptr), | |||
args.bias_tensor->compatible_ptr<int32_t>(), co, ci, fh, fw, | |||
stream); | |||
} | |||
@@ -320,7 +320,7 @@ TEST(BASIC_TYPES, TENSOR_LAYOUT_FMT_LOW_BITS) { | |||
layout = make_layout({16, 32, 7, 7}, {1792, 56, 8, 1}, | |||
dtype::QuantizedS4{1.3f}); | |||
layout.format = FourBitsAlignedToBytesTensorFormat::make(8_z); | |||
layout.format = LowbitsAlignedToBytesTensorFormat::make(4_z); | |||
EXPECT_TRUE(layout.is_contiguous()); | |||
layout = TensorLayout{{1, 32, 1, 1}, dtype::QuantizedS4{1.2f}}; | |||
@@ -339,12 +339,10 @@ TEST(BASIC_TYPES, TENSOR_LAYOUT_FMT_LOW_BITS_VALID) { | |||
DefaultTensorFormat::make()), | |||
MegDNNError); | |||
ASSERT_THROW(TensorLayout({1, 32, 1, 1}, dtype::QuantizedS32{1.2f}, | |||
FourBitsAlignedToBytesTensorFormat::make(8_z)) | |||
.span(), | |||
LowbitsAlignedToBytesTensorFormat::make(4_z)), | |||
MegDNNError); | |||
ASSERT_THROW(TensorLayout({16, 32, 7, 7}, dtype::IntB2{}, | |||
FourBitsAlignedToBytesTensorFormat::make(8_z)) | |||
.span(), | |||
LowbitsAlignedToBytesTensorFormat::make(2_z)), | |||
MegDNNError); | |||
} | |||
@@ -338,21 +338,26 @@ void OperatorNodeBase::init_output_format() { | |||
TensorFormat format, default_; | |||
for (auto i : input()) { | |||
auto cur = i->format(); | |||
if (cur != default_) { | |||
if (!cur.is_default() && !cur.is_lowbit_aligned()) { | |||
if (format == default_) { | |||
format = cur; | |||
} else { | |||
mgb_assert(format == cur, | |||
"multiple non-default formats in inputs: %s vs %s", | |||
"multiple non-default or non-lowbits aligned " | |||
"formats in inputs: %s vs %s", | |||
format.to_string().c_str(), cur.to_string().c_str()); | |||
} | |||
} | |||
} | |||
for (auto i : output()) { | |||
if (i->contain_flag(VarNode::Flag::VOLATILE_CONTENT)) { | |||
i->format(default_); | |||
mgb_assert(format.is_default()); | |||
i->format(TensorFormat(i->dtype())); | |||
} else { | |||
i->format(format); | |||
if (!format.is_default()) | |||
i->format(format); | |||
else | |||
i->format(TensorFormat(i->dtype())); | |||
} | |||
} | |||
} | |||
@@ -1063,15 +1063,22 @@ bool VarNodeMemManager::fwd_in2out_readonly( | |||
return false; | |||
} | |||
mgb_assert( | |||
src != dest && | |||
src->comp_node().mem_node() == dest->comp_node().mem_node() && | |||
dest->m_mem_plan.valid() && src->m_mem_plan.valid() && | |||
dest->m_mem_plan.layout().eq_shape(sub.layout()) && | |||
dest->m_mem_plan.layout().dtype.size() == sub.layout().dtype.size() | |||
); | |||
assert_in_mem_opt_phase( | |||
SeqMemOptimizer::Status::ALLOW_FWD_IN2OUT_READONLY); | |||
bool cond_low_bit = dest->m_mem_plan.layout().dtype.is_low_bit() && | |||
sub.layout().dtype.is_low_bit() && | |||
dest->m_mem_plan.layout().dtype.low_bit() == | |||
sub.layout().dtype.low_bit(); | |||
bool cond_normal = | |||
!dest->m_mem_plan.layout().dtype.is_low_bit() && | |||
!sub.layout().dtype.is_low_bit() && | |||
dest->m_mem_plan.layout().dtype.size() == sub.layout().dtype.size(); | |||
MGB_MARK_USED_VAR(cond_low_bit); | |||
MGB_MARK_USED_VAR(cond_normal); | |||
mgb_assert(src != dest && | |||
src->comp_node().mem_node() == dest->comp_node().mem_node() && | |||
dest->m_mem_plan.valid() && src->m_mem_plan.valid() && | |||
dest->m_mem_plan.layout().eq_shape(sub.layout()) && | |||
(cond_normal || cond_low_bit)); | |||
assert_in_mem_opt_phase(SeqMemOptimizer::Status::ALLOW_FWD_IN2OUT_READONLY); | |||
if (!m_owner_graph->options().seq_opt.enable_mem_plan_opt) | |||
return false; | |||
@@ -443,8 +443,8 @@ TensorND<TensorStorage>::name | |||
DEF(resize, &)(const TensorShape& shape) { | |||
mgb_assert(m_layout.dtype.valid()); | |||
auto nr_elems = m_layout.init_contiguous_stride(shape); | |||
m_storage.ensure_size(m_layout.dtype.size(nr_elems)); | |||
m_layout = TensorLayout(shape, m_layout.dtype); | |||
m_storage.ensure_size(m_layout.span().dist_byte()); | |||
return static_cast<ChainReturnType&>(*this); | |||
} | |||
@@ -584,15 +584,19 @@ TensorND<TensorStorage>::copy_from(const TensorND<RStorage> &src) { | |||
m_layout.dtype.assert_is(src.dtype()); | |||
else | |||
m_layout.dtype = src.dtype(); | |||
m_layout.format = {}; | |||
size_t size_bytes = dtype().size( | |||
m_layout.init_contiguous_stride(src.shape())); | |||
m_layout = TensorLayout(src.shape(), m_layout.dtype); | |||
size_t size_bytes = m_layout.span().dist_byte(); | |||
m_storage.ensure_size(size_bytes); | |||
if (!size_bytes) { | |||
return static_cast<ChainReturnType&>(*this); | |||
} | |||
if (src.layout().is_physical_contiguous()) { | |||
// requirement: | |||
// default case, physical contiguous | |||
// lowbit aligned, logical contiguous | |||
if (src.layout().is_physical_contiguous() || | |||
(src.layout().format.is_lowbit_aligned() && | |||
src.layout().is_contiguous())) { | |||
if (should_check_overlap(*this, src)) { | |||
check_overlapped(m_storage.ptr(), | |||
m_storage.ptr() + size_bytes, | |||
@@ -635,10 +639,17 @@ TensorND<TensorStorage>::copy_from_fixlayout( | |||
src.raw_ptr() + src_span.high_byte); | |||
} | |||
bool self_contig = m_layout.is_physical_contiguous(), | |||
src_contig = src.layout().is_physical_contiguous(); | |||
bool self_contig = m_layout.is_physical_contiguous() || | |||
(m_layout.format.is_lowbit_aligned() && | |||
m_layout.is_contiguous()), | |||
src_contig = src.layout().is_physical_contiguous() || | |||
(m_layout.format.is_lowbit_aligned() && | |||
m_layout.is_contiguous()); | |||
if (self_contig && src_contig) { | |||
if (m_layout.format.is_default() && src.layout().format.is_default()) { | |||
if ((m_layout.format.is_default() && | |||
src.layout().format.is_default()) || | |||
(m_layout.format.is_lowbit_aligned() && | |||
src.layout().format.is_lowbit_aligned())) { | |||
mgb_assert(src_span.low_byte == 0 && dst_span.low_byte == 0 && | |||
src_span.high_byte == dst_span.high_byte); | |||
m_storage.copy_from(src.storage(), src_span.high_byte); | |||
@@ -261,7 +261,8 @@ PersistentCache::Blob AlgoChooserProfileCache::Key::build_blob() const { | |||
ret.push_back(';'); | |||
ret.append(ly.dtype.name()); | |||
ret.push_back('|'); | |||
mgb_assert(ly.format.is_default(), | |||
mgb_assert(ly.format.is_default() || (ly.format.is_lowbit_aligned() && | |||
ly.dtype.is_low_bit()), | |||
"currently only default format is supported"); | |||
} | |||
if (m_param_size) { | |||
@@ -68,7 +68,10 @@ class SubTensorSpec { | |||
//! get offset measured in bytes | |||
ptrdiff_t offset_byte() const { | |||
return m_offset_elem * m_layout.dtype.size(); | |||
//! for lowbit cases, offset must aligned to bytes | |||
mgb_assert(!m_layout.dtype.is_low_bit() || | |||
!(m_offset_elem * m_layout.dtype.low_bit() % 8)); | |||
return m_layout.dtype.size(m_offset_elem); | |||
} | |||
/*! | |||
@@ -554,14 +554,16 @@ void ParamFusePass::apply(OptState &state) const { | |||
SymbolVar new_var; | |||
bool is_default_format = var->format().is_default(); | |||
if (cg::is_static_var_value(var) && is_default_format) { | |||
bool is_lowbit_aligned = var->format().is_lowbit_aligned(); | |||
if (cg::is_static_var_value(var) && | |||
(is_default_format || is_lowbit_aligned)) { | |||
// use ImmutableTensor for inferable vars | |||
HostTensorND hv; | |||
hv.copy_from(*inferred_val).sync(); | |||
new_var = opr::ImmutableTensor::make( | |||
*var->owner_graph(), hv, var_namer.name(var)); | |||
} else { | |||
if (is_default_format) { | |||
if (is_default_format || is_lowbit_aligned) { | |||
new_var = opr::SharedDeviceTensor::make_const( | |||
*var->owner_graph(), inferred_val, var_namer.name(var)); | |||
} else { | |||
@@ -814,8 +814,13 @@ MGB_IMPL_OPR_GRAD(TypeCvt) { | |||
#endif | |||
void TypeCvt::mem_plan_fwd_in2out_writable() { | |||
if (input(0)->dtype().size() == output(0)->dtype().size() && | |||
input(0)->layout().is_contiguous()) { | |||
bool cond_low_bit = | |||
input(0)->dtype().is_low_bit() && output(0)->dtype().is_low_bit() && | |||
input(0)->dtype().low_bit() == output(0)->dtype().low_bit(); | |||
bool cond_normal = !input(0)->dtype().is_low_bit() && | |||
!output(0)->dtype().is_low_bit() && | |||
input(0)->dtype().size() == output(0)->dtype().size(); | |||
if ((cond_low_bit || cond_normal) && input(0)->layout().is_contiguous()) { | |||
output(0)->set_fwd_in2out_writable(input(0)); | |||
} | |||
} | |||
@@ -120,12 +120,11 @@ public: | |||
explicit DevValueExecDep(DeviceTensorStorage val) : m_val{std::move(val)} {} | |||
}; | |||
void intl::DeviceTensorHolder::init_output_format() { | |||
auto format = get_dev_tensor().format(); | |||
mgb_assert(format.is_default(), "non-default tensor format: %s", | |||
format.to_string().c_str()); | |||
// no need to set output foramt since it is initialized as default | |||
mgb_assert(format.is_default() || format.is_lowbit_aligned(), | |||
"invalid tensor format: %s", format.to_string().c_str()); | |||
output(0)->format(format); | |||
} | |||
void intl::DeviceTensorHolder::init_output_mem_plan(bool dynamic) { | |||
@@ -638,10 +638,18 @@ AlgoChooser<Opr>::AlgoChooserHelper::profile_single_algo( | |||
param.workspace = get_workspace_size_bytes(policy); | |||
for (int i = 0; i < arity; ++i) { | |||
auto&& src = m_layouts[i]; | |||
mgb_assert(src.format.is_default() && | |||
bool cond_normal = src.format.is_default() && | |||
(src.dtype.category() == DTypeCategory::FLOAT || | |||
src.dtype.category() == DTypeCategory::INT || | |||
src.dtype.category() == DTypeCategory::QUANTIZED), | |||
src.dtype.category() == DTypeCategory::QUANTIZED); | |||
bool cond_low_bit = src.dtype.is_low_bit() && | |||
src.format.is_lowbit_aligned() && | |||
(src.dtype.category() == DTypeCategory::QUANTIZED || | |||
src.dtype.category() == DTypeCategory::LOWBIT); | |||
MGB_MARK_USED_VAR(cond_normal); | |||
MGB_MARK_USED_VAR(cond_low_bit); | |||
mgb_assert(cond_normal || cond_low_bit, | |||
"unsupported layout in profiling: %s", | |||
src.to_string().c_str()); | |||
param.dtypes[i] = src.dtype.enumv(); | |||
@@ -175,15 +175,17 @@ typename TimedProfiler<Opr>::TResult TimedProfiler<Opr>::prof_impl( | |||
case DTypeTrait<_dt>::enumv: \ | |||
return _dt(1.0f, static_cast<uint8_t>(0)) | |||
cb(dtype::Quantized8Asymm); | |||
cb(dtype::Quantized4Asymm); | |||
#undef cb | |||
#define cb(_dt) \ | |||
case DTypeTrait<_dt>::enumv: \ | |||
return _dt(1.0f) | |||
cb(dtype::QuantizedS8); | |||
cb(dtype::QuantizedS16); | |||
cb(dtype::QuantizedS32); | |||
cb(dtype::QuantizedS4); | |||
default: | |||
return DType::from_enum(enumv); | |||
#undef cb | |||
@@ -2603,4 +2603,306 @@ TEST_F(TestNoWeightPreprocess, NoPreprocess) { | |||
#endif | |||
namespace { | |||
// FIXME change comp node from "cpu0" to "gpu0" | |||
TEST(TestOprDNN, ConvBiasInt4NCHW) { | |||
auto run = [](size_t N, size_t C, size_t H, size_t W, size_t F, size_t S, | |||
size_t P) { | |||
auto cn = CompNode::load("cpu0"); | |||
auto graph = ComputingGraph::make(); | |||
HostTensorGenerator<dtype::Int8> gen; | |||
auto mkvar = [&gen](const char* name, const TensorShape& shp, | |||
const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, | |||
const CompNode& cn) { | |||
return opr::TypeCvt::make( | |||
opr::Host2DeviceCopy::make(*graph, gen(shp, cn)) | |||
.rename(name), | |||
dtype); | |||
}; | |||
auto mkcvar = [&gen](const char* name, const TensorShape& shp, | |||
const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, | |||
const CompNode& cn) { | |||
return opr::TypeCvt::make( | |||
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)) | |||
.rename(name), | |||
dtype); | |||
}; | |||
using Policy = opr::ConvBias::ExecutionPolicy; | |||
using Strategy = Policy::Strategy; | |||
auto x = mkvar("x", {N, C * 4, H, W}, dtype::QuantizedS4(1.19960327f), | |||
graph, cn), | |||
w = mkcvar("w1", {C, C * 4, F, F}, dtype::QuantizedS4(1.19970327f), | |||
graph, cn), | |||
b = mkcvar("b1", {1, C, 1, 1}, | |||
dtype::QuantizedS32(1.19960327f * 1.19970327f), graph, | |||
cn); | |||
opr::ConvBias::Param param; | |||
param.format = opr::ConvBias::Param::Format::NCHW; | |||
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY; | |||
param.stride_h = param.stride_w = S; | |||
param.pad_h = param.pad_w = P; | |||
Policy policy; | |||
policy.strategy = Strategy::PROFILE; | |||
auto y = opr::ConvBias::make( | |||
x, w, b, param, policy, | |||
OperatorNodeConfig{dtype::QuantizedS4(11.9960501f)}); | |||
y = opr::TypeCvt::make(y, dtype::Float32()); | |||
auto x_f32 = opr::TypeCvt::make(x, dtype::Float32()), | |||
w_f32 = opr::TypeCvt::make(w, dtype::Float32()), | |||
b_f32 = opr::TypeCvt::make(b, dtype::Float32()); | |||
auto y_f32 = opr::ConvBias::make(x_f32, w_f32, b_f32, param, policy); | |||
auto y_q4 = opr::TypeCvt::make(y_f32, dtype::QuantizedS4{11.9960501f}); | |||
y_q4 = opr::TypeCvt::make(y_q4, dtype::Float32()); | |||
HostTensorND host_y, host_y_q4; | |||
auto func = graph->compile({make_callback_copy(y, host_y), | |||
make_callback_copy(y_q4, host_y_q4)}); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_q4, 1e-3); | |||
}; | |||
run(2, 64, 14, 14, 3, 2, 1); | |||
run(2, 64, 7, 7, 3, 1, 1); | |||
run(2, 64, 14, 14, 1, 2, 0); | |||
run(2, 64, 7, 7, 1, 1, 0); | |||
} | |||
TEST(TestOprDNN, ConvBiasInt4NCHW64) { | |||
auto nchw2nchw64 = [](SymbolVar x) { | |||
auto y = opr::RelayoutFormat::make( | |||
x, opr::RelayoutFormat::Param::Mode::NCHW_NCHW64); | |||
return y; | |||
}; | |||
auto nchw642nchw = [](SymbolVar x) { | |||
auto y = opr::RelayoutFormat::make( | |||
x, opr::RelayoutFormat::Param::Mode::NCHW64_NCHW); | |||
return y; | |||
}; | |||
auto run = [&](size_t N, size_t C, size_t H, size_t W, size_t F, size_t S, | |||
size_t P) { | |||
auto cn = CompNode::load("cpu0"); | |||
auto graph = ComputingGraph::make(); | |||
HostTensorGenerator<dtype::Int8> gen; | |||
auto mkvar = [&gen](const char* name, const TensorShape& shp, | |||
const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, | |||
const CompNode& cn) { | |||
return opr::TypeCvt::make( | |||
opr::Host2DeviceCopy::make(*graph, gen(shp, cn)) | |||
.rename(name), | |||
dtype); | |||
}; | |||
auto mkcvar = [&gen](const char* name, const TensorShape& shp, | |||
const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, | |||
const CompNode& cn) { | |||
return opr::TypeCvt::make( | |||
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)) | |||
.rename(name), | |||
dtype); | |||
}; | |||
using Policy = opr::ConvBias::ExecutionPolicy; | |||
using Strategy = Policy::Strategy; | |||
auto x = mkvar("x", {N, C / 16, H, W, 64}, | |||
dtype::QuantizedS4(1.19960327f), graph, cn), | |||
w = mkcvar("w1", {C, C / 16, F, F, 64}, | |||
dtype::QuantizedS4(1.19970327f), graph, cn), | |||
b = mkcvar("b1", {1, C / 64, 1, 1, 64}, | |||
dtype::QuantizedS32(1.19960327f * 1.19970327f), graph, | |||
cn); | |||
opr::ConvBias::Param param; | |||
param.format = opr::ConvBias::Param::Format::NCHW64; | |||
param.nonlineMode = opr::ConvBias::Param::NonlineMode::IDENTITY; | |||
param.stride_h = param.stride_w = S; | |||
param.pad_h = param.pad_w = P; | |||
Policy policy; | |||
policy.strategy = Strategy::PROFILE; | |||
auto y = opr::ConvBias::make( | |||
x, w, b, param, policy, | |||
OperatorNodeConfig{dtype::QuantizedS4(11.9960501f)}); | |||
y = opr::TypeCvt::make(y, dtype::Float32()); | |||
x = nchw642nchw(x); | |||
w = nchw642nchw(w); | |||
b = nchw642nchw(b); | |||
auto x_f32 = opr::TypeCvt::make(x, dtype::Float32()), | |||
w_f32 = opr::TypeCvt::make(w, dtype::Float32()), | |||
b_f32 = opr::TypeCvt::make(b, dtype::Float32()); | |||
param.format = opr::ConvBias::Param::Format::NCHW; | |||
auto y_f32 = opr::ConvBias::make(x_f32, w_f32, b_f32, param, policy); | |||
auto y_q4 = opr::TypeCvt::make(y_f32, dtype::QuantizedS4{11.9960501f}); | |||
y_q4 = opr::TypeCvt::make(y_q4, dtype::Float32()); | |||
y_q4 = nchw2nchw64(y_q4); | |||
HostTensorND host_y, host_y_q4; | |||
auto func = graph->compile({make_callback_copy(y, host_y), | |||
make_callback_copy(y_q4, host_y_q4)}); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_q4, 1e-3); | |||
}; | |||
run(2, 64, 14, 14, 3, 2, 1); | |||
run(2, 64, 7, 7, 3, 1, 1); | |||
run(2, 64, 14, 14, 1, 2, 0); | |||
run(2, 64, 7, 7, 1, 1, 0); | |||
} | |||
TEST(TestOprDNN, ConvBiasInt4Serialize) { | |||
using namespace serialization; | |||
float inp_scale = 1.20210327f; | |||
float filt_scale = 1.20210406f; | |||
float bias_scale = inp_scale * filt_scale; | |||
DType output_dtype = dtype::QuantizedS4{inp_scale}; | |||
HostTensorGenerator<dtype::Int8> gen; | |||
std::shared_ptr<HostTensorND> xv; | |||
auto mkvar = [&gen](const char* name, const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, | |||
std::shared_ptr<HostTensorND> val) { | |||
return opr::TypeCvt::make( | |||
opr::Host2DeviceCopy::make(*graph, val).rename(name), dtype); | |||
}; | |||
auto mkcvar = | |||
[&gen](const char* name, const TensorShape& shp, const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, const CompNode& cn) { | |||
return opr::TypeCvt::make( | |||
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)) | |||
.rename(name), | |||
dtype); | |||
}; | |||
auto fname = output_file("ConvBiasInt4Serialize"); | |||
HostTensorND y1, y2; | |||
auto dump = [&]() { | |||
opr::ConvBias::Param param; | |||
param.mode = Mode::CONVOLUTION; | |||
auto cn = CompNode::load("cpu0"); | |||
auto graph = ComputingGraph::make(); | |||
xv = gen({1, 64, 56, 56}, cn); | |||
auto x = mkvar("x", dtype::QuantizedS4{inp_scale}, graph, xv); | |||
auto w = mkcvar("w", {256, 64, 1, 1}, dtype::QuantizedS4{filt_scale}, graph, cn); | |||
auto b = mkcvar("b", {1, 256, 1, 1}, dtype::QuantizedS32{bias_scale}, graph, cn); | |||
auto y = opr::ConvBiasForward::make(x, w, b, param, {}, | |||
OperatorNodeConfig{output_dtype}); | |||
auto w1 = mkcvar("w1", {64, 256, 1, 1}, dtype::QuantizedS4{filt_scale}, | |||
graph, cn); | |||
auto b1 = mkcvar("b1", {1, 64, 1, 1}, dtype::QuantizedS32{bias_scale}, | |||
graph, cn); | |||
y = opr::ConvBiasForward::make(y, w1, b1, param, {}, | |||
OperatorNodeConfig{output_dtype}); | |||
y = opr::TypeCvt::make(y, dtype::Float32()); | |||
auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str())); | |||
auto func = graph->compile({make_callback_copy(y, y1)}); | |||
func->execute(); | |||
func->wait(); | |||
auto rst = dumper->dump({y}); | |||
ASSERT_EQ(rst.outputs.size(), 1u); | |||
}; | |||
auto load = [&]() { | |||
auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str())); | |||
auto rst = loader->load(); | |||
for (const auto& t : rst.tensor_map) { | |||
t.second->copy_from(*xv).sync(); | |||
} | |||
auto func = rst.graph->compile( | |||
{make_callback_copy(rst.output_var_list[0], y2)}); | |||
func->execute(); | |||
func->wait(); | |||
ASSERT_EQ(rst.output_var_list.size(), 1u); | |||
EXPECT_EQ(rst.output_var_list[0].dtype(), dtype::Float32()); | |||
}; | |||
dump(); | |||
load(); | |||
MGB_ASSERT_TENSOR_NEAR(y1, y2, 1e-3); | |||
} | |||
TEST(TestOprDNN, ConvBiasInt4SerializeWithParamFuse) { | |||
using namespace serialization; | |||
float inp_scale = 1.20210327f; | |||
float filt_scale = 1.20210406f; | |||
float bias_scale = inp_scale * filt_scale; | |||
DType output_dtype = dtype::QuantizedS4{inp_scale}; | |||
HostTensorGenerator<dtype::Int8> gen; | |||
std::shared_ptr<HostTensorND> xv; | |||
auto mkvar = [&gen](const char* name, const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, | |||
std::shared_ptr<HostTensorND> val) { | |||
return opr::TypeCvt::make( | |||
opr::Host2DeviceCopy::make(*graph, val).rename(name), dtype); | |||
}; | |||
auto mkcvar = | |||
[&gen](const char* name, const TensorShape& shp, const DType& dtype, | |||
std::shared_ptr<ComputingGraph> graph, const CompNode& cn) { | |||
return opr::TypeCvt::make( | |||
opr::SharedDeviceTensor::make(*graph, *gen(shp, cn)) | |||
.rename(name), | |||
dtype); | |||
}; | |||
auto fname = output_file("ConvBiasInt4SerializeWithParamFuse"); | |||
HostTensorND y1, y2; | |||
auto dump = [&]() { | |||
opr::ConvBias::Param param; | |||
param.mode = Mode::CONVOLUTION; | |||
auto cn = CompNode::load("cpu0"); | |||
auto graph = ComputingGraph::make(); | |||
xv = gen({1, 64, 56, 56}, cn); | |||
auto x = mkvar("x", dtype::QuantizedS4{inp_scale}, graph, xv); | |||
auto w = mkcvar("w", {256, 64, 1, 1}, dtype::QuantizedS4{filt_scale}, graph, cn); | |||
auto b = mkcvar("b", {1, 256, 1, 1}, dtype::QuantizedS32{bias_scale}, graph, cn); | |||
auto y = opr::ConvBiasForward::make(x, w, b, param, {}, | |||
OperatorNodeConfig{output_dtype}); | |||
auto w1 = mkcvar("w1", {64, 256, 1, 1}, dtype::QuantizedS4{filt_scale}, | |||
graph, cn); | |||
auto b1 = mkcvar("b1", {1, 64, 1, 1}, dtype::QuantizedS32{bias_scale}, | |||
graph, cn); | |||
y = opr::ConvBiasForward::make(y, w1, b1, param, {}, | |||
OperatorNodeConfig{output_dtype}); | |||
y = opr::TypeCvt::make(y, dtype::Float32()); | |||
SymbolVar y_param_fused; | |||
unpack_vector(gopt::GraphOptimizer{} | |||
.add_pass<gopt::ParamFusePass>() | |||
.apply({{y}}) | |||
.endpoint_vars(), | |||
y_param_fused); | |||
auto dumper = GraphDumper::make(OutputFile::make_fs(fname.c_str())); | |||
auto func = graph->compile({make_callback_copy(y_param_fused, y1)}); | |||
func->execute(); | |||
func->wait(); | |||
auto rst = dumper->dump({y_param_fused}); | |||
ASSERT_EQ(rst.outputs.size(), 1u); | |||
}; | |||
auto load = [&]() { | |||
auto loader = GraphLoader::make(InputFile::make_fs(fname.c_str())); | |||
auto rst = loader->load(); | |||
for (const auto& t : rst.tensor_map) { | |||
t.second->copy_from(*xv).sync(); | |||
} | |||
auto func = rst.graph->compile( | |||
{make_callback_copy(rst.output_var_list[0], y2)}); | |||
func->execute(); | |||
func->wait(); | |||
ASSERT_EQ(rst.output_var_list.size(), 1u); | |||
EXPECT_EQ(rst.output_var_list[0].dtype(), dtype::Float32()); | |||
}; | |||
dump(); | |||
load(); | |||
MGB_ASSERT_TENSOR_NEAR(y1, y2, 1e-3); | |||
} | |||
} // namespace | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |