@@ -17,6 +17,7 @@ from .. import _config | |||
from .._imperative_rt.common import CompNode | |||
from .._imperative_rt.core2 import SymbolVar, Tensor, apply, dtype_promotion | |||
from .._imperative_rt.core2 import reduce_to_scalar as _reduce_to_scalar | |||
from .._imperative_rt.core2 import squeeze_cpp | |||
from ..ops import builtin | |||
from . import amp | |||
from .indexing import getitem, setitem | |||
@@ -448,26 +449,6 @@ def _logical_binary_elwise(mode, rev=False): | |||
return f | |||
def _remove_axis(inp: Tensor, axis) -> Tensor: | |||
def get_axes(): | |||
if axis is None: | |||
shp = inp.shape | |||
return [i for i, s in enumerate(shp) if s == 1] | |||
try: | |||
return [int(axis)] | |||
except (TypeError, ValueError): | |||
pass | |||
return list(map(int, axis)) | |||
axis = get_axes() | |||
axis = _normalize_axis(inp.ndim, axis) | |||
axis = [a - i for i, a in enumerate(axis)] | |||
op = builtin.RemoveAxis(axis=axis) | |||
(result,) = apply(op, inp) | |||
return result | |||
def _reduce(mode): | |||
def f(self, axis=None, keepdims: bool = False): | |||
data = self | |||
@@ -480,7 +461,7 @@ def _reduce(mode): | |||
op = builtin.Reduce(mode=mode, axis=ai) | |||
(data,) = apply(op, data) | |||
if not keepdims: | |||
data = _remove_axis(data, ai) | |||
data = squeeze_cpp(data, ai) | |||
result = data | |||
else: | |||
# builtin.Reduce already accept negtive axis | |||
@@ -488,7 +469,7 @@ def _reduce(mode): | |||
(result,) = apply(op, data) | |||
if not keepdims: | |||
result = _remove_axis(result, axis) | |||
result = squeeze_cpp(result, axis) | |||
return result | |||
return f | |||
@@ -18,12 +18,13 @@ from ..core._imperative_rt.core2 import ( | |||
dtype_promotion, | |||
expand_dims_cpp, | |||
split_cpp, | |||
squeeze_cpp, | |||
) | |||
from ..core._wrap import as_device | |||
from ..core.ops import builtin | |||
from ..core.ops.builtin import Copy, Identity | |||
from ..core.ops.special import Const | |||
from ..core.tensor.array_method import _broadcast, _remove_axis | |||
from ..core.tensor.array_method import _broadcast | |||
from ..core.tensor.utils import astensor1d, convert_inputs, get_device, subgraph_fn | |||
from ..device import get_default_device | |||
from ..tensor import Tensor | |||
@@ -996,7 +997,7 @@ def squeeze(inp: Tensor, axis: Optional[Union[int, Sequence[int]]] = None) -> Te | |||
(1, 1, 2) | |||
""" | |||
return _remove_axis(inp, axis) | |||
return squeeze_cpp(inp, axis) | |||
def linspace( | |||
@@ -635,6 +635,7 @@ WRAP_FUNC_PY35(getitem_cpp); | |||
WRAP_FUNC_PY35(setitem_cpp); | |||
WRAP_FUNC_PY35(split_cpp); | |||
WRAP_FUNC_PY35(expand_dims_cpp); | |||
WRAP_FUNC_PY35(squeeze_cpp); | |||
#undef WRAP_FUNC_PY35 | |||
#define MGE_PY_INTERFACE(NAME, FUNC) \ | |||
{ #NAME, (PyCFunction)py35_##FUNC, METH_VARARGS, nullptr } | |||
@@ -769,6 +770,7 @@ void init_tensor(py::module m) { | |||
MGE_PY_INTERFACE(setitem_cpp, setitem_cpp), | |||
MGE_PY_INTERFACE(split_cpp, split_cpp), | |||
MGE_PY_INTERFACE(expand_dims_cpp, expand_dims_cpp), | |||
MGE_PY_INTERFACE(squeeze_cpp, squeeze_cpp), | |||
{nullptr, nullptr, 0, nullptr}}; | |||
for (auto&& def : method_defs) { | |||
if (def.ml_meth != nullptr) { | |||
@@ -683,17 +683,21 @@ py::object _split_cpp( | |||
return py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size())); | |||
} | |||
py::object _expand_dims_cpp(py::handle inp_hdl, py::handle axis_hdl) { | |||
std::vector<int32_t> list2vector(py::handle li) { | |||
std::vector<int32_t> axis; | |||
if (is_py_sequence(axis_hdl.ptr())) { | |||
py::list tmp_list = | |||
py::reinterpret_steal<py::list>(PySequence_List(axis_hdl.ptr())); | |||
if (is_py_sequence(li.ptr())) { | |||
py::list tmp_list = py::reinterpret_steal<py::list>(PySequence_List(li.ptr())); | |||
for (size_t i = 0; i < tmp_list.size(); ++i) { | |||
axis.push_back(tmp_list[i].attr("__int__")().cast<int32_t>()); | |||
} | |||
} else { | |||
axis.push_back(getattr(axis_hdl, "__int__")().cast<int>()); | |||
axis.push_back(getattr(li, "__int__")().cast<int32_t>()); | |||
} | |||
return axis; | |||
} | |||
py::object _expand_dims_cpp(py::handle inp_hdl, py::handle axis_hdl) { | |||
std::vector<int32_t> axis = list2vector(axis_hdl); | |||
bool unknown_ndim = true; | |||
size_t ndim = axis.size(); | |||
if (auto p = TensorWrapper::try_cast(inp_hdl.ptr())) { | |||
@@ -718,7 +722,7 @@ py::object _expand_dims_cpp(py::handle inp_hdl, py::handle axis_hdl) { | |||
"Does not support negative index when tensor's ndim is " | |||
"unknown"); | |||
} | |||
axis[i] += ndim; | |||
axis[i] += static_cast<int32_t>(ndim); | |||
} | |||
} | |||
if (!axis.size()) { | |||
@@ -736,6 +740,59 @@ py::object _expand_dims_cpp(py::handle inp_hdl, py::handle axis_hdl) { | |||
return ret[0]; | |||
} | |||
py::object _squeeze_cpp(py::handle inp_hdl, py::handle axis_hdl) { | |||
std::vector<int32_t> axis; | |||
size_t ndim; | |||
if (axis_hdl.ptr() != Py_None) { | |||
axis = list2vector(axis_hdl); | |||
} | |||
if (auto p = TensorWrapper::try_cast(inp_hdl.ptr())) { | |||
auto&& shape = p->m_tensor->shape(); | |||
if (shape) { | |||
ndim = shape->ndim; | |||
if (axis_hdl.ptr() == Py_None) { | |||
for (size_t i = 0; i < shape->ndim; ++i) { | |||
if (shape->shape[i] == 1) { | |||
axis.push_back(i); | |||
} | |||
} | |||
} | |||
} | |||
} else { | |||
auto&& var = inp_hdl.cast<PySymbolVar*>(); | |||
auto&& mgr = var->m_node->owner_graph()->static_infer_manager(); | |||
auto&& shape = mgr.infer_shape_fallible(var->m_node); | |||
if (shape) { | |||
ndim = shape->ndim; | |||
if (axis_hdl.ptr() == Py_None) { | |||
for (size_t i = 0; i < shape->ndim; ++i) { | |||
if (shape->shape[i] == 1) { | |||
axis.push_back(i); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
for (size_t i = 0; i < axis.size(); ++i) { | |||
if (axis[i] < 0) { | |||
axis[i] += static_cast<int32_t>(ndim); | |||
} | |||
} | |||
std::sort(axis.begin(), axis.end()); | |||
for (size_t i = 0; i < axis.size(); ++i) { | |||
axis[i] -= static_cast<int32_t>(i); | |||
} | |||
std::shared_ptr<OpDef> op = RemoveAxis::make(axis = axis); | |||
std::vector<PyObject*> p; | |||
p.resize(2); | |||
py::object Op = py::cast(op); | |||
p[0] = Op.ptr(); | |||
p[1] = inp_hdl.ptr(); | |||
py::tuple ret = | |||
py::reinterpret_steal<py::object>(py_apply(NULL, p.data(), p.size())); | |||
return ret[0]; | |||
} | |||
PyObject* make_shape_tuple(PyObject* self, PyObject* const* args, size_t nargs) { | |||
try { | |||
return _make_shape_tuple(py::handle(args[0])).release().ptr(); | |||
@@ -778,4 +835,11 @@ PyObject* expand_dims_cpp(PyObject* self, PyObject* const* args, size_t nargs) { | |||
PYEXT17_TRANSLATE_EXC_RET(nullptr) | |||
} | |||
PyObject* squeeze_cpp(PyObject* self, PyObject* const* args, size_t nargs) { | |||
try { | |||
return _squeeze_cpp(py::handle(args[0]), py::handle(args[1])).release().ptr(); | |||
} | |||
PYEXT17_TRANSLATE_EXC_RET(nullptr) | |||
} | |||
} // namespace mgb::imperative::python |
@@ -12,4 +12,6 @@ PyObject* split_cpp(PyObject* self, PyObject* const* args, size_t nargs); | |||
PyObject* expand_dims_cpp(PyObject* self, PyObject* const* args, size_t nargs); | |||
PyObject* squeeze_cpp(PyObject* self, PyObject* const* args, size_t nargs); | |||
} // namespace mgb::imperative::python |