BREAKING CHANGE:
GitOrigin-RevId: 54d726d2fe
release-1.5
@@ -666,7 +666,7 @@ public: | |||
* http://deeplearning.net/software/theano/library/tensor/nnet/neighbours.html | |||
* | |||
* \f$ dst_{n, c, oh, ow, wh, ww} = src_{n, c, ih+wh, iw+fw}\f$, | |||
* where \f$ ih=-pad_h+oh*stride_h, iw=-pad_w+ow*stride_w\f$. | |||
* where \f$ ih=-pad_h+oh*stride_h+(wh-1)*(dilation_h-1), iw=-pad_w+ow*stride_w+(ww-1)*(dilation_w-1)\f$. | |||
*/ | |||
virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) = 0; | |||
@@ -698,6 +698,53 @@ protected: | |||
size_t workspace_in_bytes); | |||
}; | |||
class SlidingWindowTransposeBase : public OperatorBase { | |||
DEF_OPR_IMPL_CTOR(SlidingWindowTransposeBase, OperatorBase); | |||
DEF_OPR_PARAM(SlidingWindowTranspose); | |||
protected: | |||
void deduce_layout_fwd(const TensorLayout& src, TensorLayout& dst); | |||
void check_layout_fwd(const TensorLayout& filter, const TensorLayout& dst); | |||
}; | |||
class SlidingWindowTransposeForward : public SlidingWindowTransposeBase { | |||
DEF_OPR_IMPL(SlidingWindowTransposeForward, SlidingWindowTransposeBase, 1, 1); | |||
public: | |||
/** | |||
* \param[in] src (N, C, IH, IW, window_h, window_w) | |||
* \param[out] dst (N, C, OH, OW) | |||
*/ | |||
virtual void exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) = 0; | |||
virtual size_t get_workspace_in_bytes(const TensorLayout& src, | |||
const TensorLayout& dst) = 0; | |||
void deduce_layout(const TensorLayout& src, TensorLayout& dst); | |||
protected: | |||
void check_exec(const TensorLayout& src, const TensorLayout& dst, | |||
size_t workspace_in_bytes); | |||
}; | |||
using SlidingWindowTranspose = SlidingWindowTransposeForward; | |||
class SlidingWindowTransposeBackward : public SlidingWindowTransposeBase { | |||
DEF_OPR_IMPL(SlidingWindowTransposeBackward, SlidingWindowTransposeBase, 1, 1); | |||
public: | |||
/** | |||
* \param[in] diff the backpropagated gradient wrt. dst | |||
* \param[out] grad the backpropagated gradient wrt. src | |||
*/ | |||
virtual void exec(_megdnn_tensor_in diff, _megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) = 0; | |||
virtual size_t get_workspace_in_bytes(const TensorLayout& diff, | |||
const TensorLayout& grad) = 0; | |||
protected: | |||
void check_exec(const TensorLayout& diff, const TensorLayout& grad, | |||
size_t workspace_in_bytes); | |||
}; | |||
/** | |||
* \brief base class for Pooling | |||
*/ | |||
@@ -224,6 +224,10 @@ pdef('Axis').add_fields('int32', 'axis', 0) | |||
add_fields('uint32', 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1, | |||
'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3)) | |||
(pdef('SlidingWindowTranspose'). | |||
add_fields('uint32', 'out_h', 0, 'out_w', 0, 'pad_h', 0, 'pad_w', 0, 'stride_h', 1, 'stride_w', 1, | |||
'dilate_h', 1, 'dilate_w', 1, 'window_h', 3, 'window_w', 3)) | |||
(pdef('Pooling', version=0, is_legacy=True). | |||
add_enum( | |||
'Mode', | |||
@@ -104,6 +104,8 @@ private: | |||
cb(ConvBiasForward) \ | |||
cb(Images2NeibsForward) \ | |||
cb(Images2NeibsBackward) \ | |||
cb(SlidingWindowTransposeForward) \ | |||
cb(SlidingWindowTransposeBackward) \ | |||
cb(ElemwiseForward) \ | |||
cb(ElemwiseMultiType) \ | |||
cb(AddUpdateForward) \ | |||
@@ -39,6 +39,8 @@ DEF(SeparableConvForward, 4, true, true); | |||
DEF(SeparableFilterForward, 4, true, true); | |||
DEF(Images2NeibsForward, 2, true, true); | |||
DEF(Images2NeibsBackward, 2, true, false); | |||
DEF(SlidingWindowTransposeForward, 2, true, true); | |||
DEF(SlidingWindowTransposeBackward, 2, true, false); | |||
DEF(PoolingForward, 2, true, true); | |||
DEF(PoolingBackward, 4, true, false); | |||
DEF(AdaptivePoolingForward, 2, true, false); | |||
@@ -0,0 +1,75 @@ | |||
/** | |||
* \file dnn/src/common/sliding_window_transpose.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "megdnn/oprs.h" | |||
#include "src/common/utils.h" | |||
namespace megdnn { | |||
void SlidingWindowTransposeBase::deduce_layout_fwd(const TensorLayout &src, | |||
TensorLayout &dst) | |||
{ | |||
auto errmsg = [&]() { | |||
return megdnn_layout_msg(src) + ", " + | |||
"out_h=" + std::to_string(param().out_h) + ", " + | |||
"out_w=" + std::to_string(param().out_w) + ", " + | |||
"pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w) + ", " + | |||
"window_h=" + std::to_string(param().window_h) + ", " + | |||
"window_w=" + std::to_string(param().window_w); | |||
}; | |||
MEGDNN_MARK_USED_VAR(errmsg); | |||
megdnn_assert_contiguous(src); | |||
megdnn_assert(src.ndim == 6_z, "%s", errmsg().c_str()); | |||
size_t n = src[0], ic = src[1]; | |||
size_t oh = this->param().out_h; | |||
size_t ow = this->param().out_w; | |||
dst = TensorLayout(TensorShape({n, ic, oh, ow}), src.dtype); | |||
} | |||
void SlidingWindowTransposeBase::check_layout_fwd(const TensorLayout &src, | |||
const TensorLayout &dst) | |||
{ | |||
TensorLayout dst_expected; | |||
deduce_layout_fwd(src, dst_expected); | |||
megdnn_assert_eq_layout(dst_expected, dst); | |||
} | |||
void SlidingWindowTransposeForward::deduce_layout(const TensorLayout &src, | |||
TensorLayout &dst) | |||
{ | |||
deduce_layout_fwd(src, dst); | |||
} | |||
void SlidingWindowTransposeForward::check_exec(const TensorLayout &src, | |||
const TensorLayout &dst, | |||
size_t workspace_in_bytes) | |||
{ | |||
check_layout_fwd(src, dst); | |||
auto required_workspace_in_bytes = get_workspace_in_bytes(src, dst); | |||
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | |||
} | |||
void SlidingWindowTransposeBackward::check_exec(const TensorLayout &diff, | |||
const TensorLayout &grad, | |||
size_t workspace_in_bytes) | |||
{ | |||
check_layout_fwd(grad, diff); | |||
auto required_workspace_in_bytes = get_workspace_in_bytes(grad, diff); | |||
megdnn_assert(workspace_in_bytes >= required_workspace_in_bytes); | |||
} | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -71,6 +71,7 @@ | |||
#include "src/cuda/separable_conv/opr_impl.h" | |||
#include "src/cuda/separable_filter/opr_impl.h" | |||
#include "src/cuda/sleep/opr_impl.h" | |||
#include "src/cuda/sliding_window_transpose/opr_impl.h" | |||
#include "src/cuda/split/opr_impl.h" | |||
#include "src/cuda/svd/opr_impl.h" | |||
#include "src/cuda/tensor_remap/opr_impl.h" | |||
@@ -0,0 +1,76 @@ | |||
/** | |||
* \file dnn/src/cuda/sliding_window_transpose/opr_impl.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/cuda/sliding_window_transpose/opr_impl.h" | |||
#include "src/cuda/utils.h" | |||
#include "src/cuda/sliding_window_transpose/sliding_window_transpose.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
void SlidingWindowTransposeForwardImpl::exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) | |||
{ | |||
check_exec(src.layout, dst.layout, workspace.size); | |||
auto stream = cuda_stream(handle()); | |||
int N = src.layout[0], C = src.layout[1], | |||
OH = src.layout[2], OW = src.layout[3]; | |||
int IH = dst.layout[2], IW = dst.layout[3]; | |||
int ph = param().pad_h, pw = param().pad_w; | |||
int sh = param().stride_h, sw = param().stride_w; | |||
int dh = param().dilate_h, dw = param().dilate_w; | |||
int wh = param().window_h, ww = param().window_w; | |||
#define cb(DType) \ | |||
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \ | |||
using T = DTypeTrait<DType>::ctype; \ | |||
sliding_window_transpose::forward(src.ptr<T>(), dst.ptr<T>(), \ | |||
N, C, IH, IW, OH, OW, \ | |||
ph, pw, sh, sw, dh, dw, wh, ww, \ | |||
stream); \ | |||
return; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb); | |||
#undef cb | |||
megdnn_assert_internal(0); | |||
} | |||
void SlidingWindowTransposeBackwardImpl::exec(_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) | |||
{ | |||
check_exec(diff.layout, grad.layout, workspace.size); | |||
auto stream = cuda_stream(handle()); | |||
int N = grad.layout[0], C = grad.layout[1], | |||
OH = grad.layout[2], OW = grad.layout[3]; | |||
int IH = diff.layout[2], IW = diff.layout[3]; | |||
int ph = param().pad_h, pw = param().pad_w; | |||
int sh = param().stride_h, sw = param().stride_w; | |||
int dh = param().dilate_h, dw = param().dilate_w; | |||
int wh = param().window_h, ww = param().window_w; | |||
#define cb(DType) \ | |||
if (diff.layout.dtype == DType()) { \ | |||
using T = DTypeTrait<DType>::ctype; \ | |||
sliding_window_transpose::backward(diff.ptr<T>(), grad.ptr<T>(), \ | |||
N, C, IH, IW, OH, OW, \ | |||
ph, pw, sh, sw, dh, dw, wh, ww, \ | |||
stream); \ | |||
return; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb); | |||
#undef cb | |||
megdnn_assert_internal(0); | |||
} | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,45 @@ | |||
/** | |||
* \file dnn/src/cuda/sliding_window_transpose/opr_impl.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megdnn/oprs.h" | |||
#include <cuda_runtime_api.h> | |||
namespace megdnn { | |||
namespace cuda { | |||
class SlidingWindowTransposeForwardImpl: public SlidingWindowTransposeForward { | |||
public: | |||
using SlidingWindowTransposeForward::SlidingWindowTransposeForward; | |||
void exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout &, | |||
const TensorLayout &) override { | |||
return 0; | |||
} | |||
}; | |||
class SlidingWindowTransposeBackwardImpl: public SlidingWindowTransposeBackward { | |||
public: | |||
using SlidingWindowTransposeBackward::SlidingWindowTransposeBackward; | |||
void exec(_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout &, | |||
const TensorLayout &) override { | |||
return 0; | |||
} | |||
}; | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,133 @@ | |||
/** | |||
* \file dnn/src/cuda/sliding_window_transpose/kernel.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/cuda/sliding_window_transpose/sliding_window_transpose.cuh" | |||
#include "megdnn/dtype.h" | |||
#include "src/cuda/utils.cuh" | |||
#include <cstdio> | |||
namespace megdnn { | |||
namespace cuda { | |||
namespace sliding_window_transpose { | |||
template <typename T> | |||
__global__ void forward_kernel(const T *src, T *dst, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int WH, int WW) | |||
{ | |||
int id = threadIdx.x + blockIdx.x * blockDim.x; | |||
if (id < N*C*IH*IW) { | |||
int nc = id / (IH*IW); | |||
int ih = id % (IH*IW) / IW; | |||
int iw = id % (IH*IW) % IW; | |||
dst[nc*IH*IW + ih*IW + iw] = 0.0f; | |||
int oh_max = min((ih+ph) / sh, OH-1); | |||
int oh_min = max((ih+ph-(WH-1)*dh+sh-1) / sh, 0); | |||
int ow_max = min((iw+pw) / sw, OW-1); | |||
int ow_min = max((iw+pw-(WW-1)*dw+sw-1) / sw, 0); | |||
for (int oh = oh_min; oh <= oh_max; ++oh) | |||
for (int ow = ow_min; ow <= ow_max; ++ow) | |||
{ | |||
if ((ih+ph - sh*oh)%dh==0 && (iw+pw - sw*ow)%dw==0){ | |||
int wh = ih+ph - sh*oh - (ih+ph - sh*oh)/dh * (dh-1); | |||
int ww = iw+pw - sw*ow - (iw+pw - sw*ow)/dw * (dw-1); | |||
dst[nc*IH*IW + ih*IW + iw] += | |||
src[nc*OH*OW*WH*WW + oh*OW*WH*WW + ow*WH*WW + | |||
wh*WW + ww]; | |||
} | |||
} | |||
} | |||
} | |||
template <typename T> | |||
void forward(const T* src, T* dst, int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream) { | |||
int threads = NR_THREADS; | |||
int blocks = DIVUP(N*C*IH*IW, threads); | |||
forward_kernel<<<blocks, threads, 0, stream>>>(src, dst, | |||
N, C, IH, IW, OH, OW, | |||
ph, pw, sh, sw, dh, dw, wh, ww); | |||
after_kernel_launch(); | |||
} | |||
#define grid_y_max 512 | |||
template <typename T> | |||
__global__ void backward_kernel(const T *diff, T *grad, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int WH, int WW) | |||
{ | |||
int NC = N * C; | |||
int WP = WH*WW; | |||
for (int wp = threadIdx.x; wp < WP; wp += blockDim.x) { | |||
int nc = blockIdx.y; | |||
while (nc < NC) { | |||
int wh = wp / WW; | |||
int ww = wp % WW; | |||
int op = threadIdx.y + blockIdx.x * blockDim.y; | |||
if (op < OH * OW) { | |||
int oh = op / OW; | |||
int ow = op % OW; | |||
int ih = -ph + sh * oh + wh* dh; | |||
int iw = -pw + sw * ow + ww* dw; | |||
int dst_pos = nc * OH * OW * WH * WW + op * WH * WW + wp; | |||
int src_pos = nc * IH * IW + ih * IW + iw; | |||
grad[dst_pos] = (ih >= 0 && ih < IH && iw >= 0 && iw < IW) | |||
? diff[src_pos] | |||
: 0.0f; | |||
} | |||
nc += grid_y_max; | |||
} | |||
} | |||
} | |||
template <typename T> | |||
void backward(const T *diff, T *grad, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream) | |||
{ | |||
int spatial_size = OH * OW; | |||
int kernel_size = wh * ww; | |||
int tx = min(NR_THREADS, kernel_size); | |||
int ty = NR_THREADS / tx; | |||
megdnn_assert(ty > 0); | |||
int bx = DIVUP(spatial_size, ty); | |||
int by = N * C; | |||
backward_kernel<<<dim3(bx, std::min(grid_y_max, by)), dim3(tx, ty), 0, | |||
stream>>>(diff, grad, N, C, IH, IW, OH, OW, ph, pw, sh, sw, dh, dw, | |||
wh, ww); | |||
after_kernel_launch(); | |||
} | |||
#undef grid_y_max | |||
#define INST(T) \ | |||
template void forward<T>(const T *, T *, int, int, int, int, int, int, \ | |||
int, int, int, int, int, int, int, int, \ | |||
cudaStream_t); \ | |||
template void backward<T>(const T *, T *, int, int, int, int, int, int, \ | |||
int, int, int, int, int, int, int, int, \ | |||
cudaStream_t); | |||
#define cb(DType) \ | |||
INST(DTypeTrait<DType>::ctype) | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
} // namespace sliding_window_transpose | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,33 @@ | |||
/** | |||
* \file dnn/src/cuda/sliding_window_transpose/kernel.cuh | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include <cuda_runtime_api.h> | |||
namespace megdnn { | |||
namespace cuda { | |||
namespace sliding_window_transpose { | |||
template <typename T> | |||
void forward(const T *src, T *dst, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream); | |||
template <typename T> | |||
void backward(const T *diff, T *grad, | |||
int N, int C, int IH, int IW, int OH, int OW, | |||
int ph, int pw, int sh, int sw, int dh, int dw, int wh, int ww, | |||
cudaStream_t stream); | |||
} // namespace sliding_window_transpose | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -73,6 +73,7 @@ | |||
#include "src/naive/separable_conv/opr_impl.h" | |||
#include "src/naive/separable_filter/opr_impl.h" | |||
#include "src/naive/sleep/opr_impl.h" | |||
#include "src/naive/sliding_window_transpose/opr_impl.h" | |||
#include "src/naive/split/opr_impl.h" | |||
#include "src/naive/svd/opr_impl.h" | |||
#include "src/naive/tensor_remap/opr_impl.h" | |||
@@ -0,0 +1,141 @@ | |||
/** | |||
* \file dnn/src/naive/sliding_window_transpose/opr_impl.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/naive/sliding_window_transpose/opr_impl.h" | |||
#include "src/common/utils.h" | |||
#include "src/naive/handle.h" | |||
#include <cstring> | |||
namespace megdnn { | |||
namespace naive { | |||
template <typename T> | |||
void SlidingWindowTransposeForwardImpl::exec_internal(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst) | |||
{ | |||
int N = dst.layout.shape[0], C = dst.layout.shape[1], | |||
IH = dst.layout.shape[2], IW = dst.layout.shape[3]; | |||
auto sptr = src.ptr<T>(); | |||
auto dptr = dst.ptr<T>(); | |||
size_t idx = 0; | |||
int window_h = static_cast<int>(param().window_h); | |||
int window_w = static_cast<int>(param().window_w); | |||
int pad_h = static_cast<int>(param().pad_h); | |||
int pad_w = static_cast<int>(param().pad_w); | |||
int stride_h = static_cast<int>(param().stride_h); | |||
int stride_w = static_cast<int>(param().stride_w); | |||
int dilate_h = static_cast<int>(param().dilate_h); | |||
int dilate_w = static_cast<int>(param().dilate_w); | |||
int equ_window_h = dilate_h * (window_h-1) + 1; | |||
int equ_window_w = dilate_w * (window_w-1) + 1; | |||
memset(dptr, 0, sizeof(T) * N*C*IH*IW); | |||
for (int n = 0; n < N; ++n) | |||
for (int c = 0; c < C; ++c) | |||
{ | |||
int ih = -pad_h; | |||
for (; ih+equ_window_h <= IH+pad_h; ih += stride_h) { | |||
int iw = -pad_w; | |||
for (; iw+equ_window_w <= IW+pad_w; iw += stride_w) { | |||
for (int kh = 0; kh < window_h; ++kh) | |||
for (int kw = 0; kw < window_w; ++kw) | |||
{ | |||
int ih2 = ih+dilate_h*kh, iw2 = iw+dilate_w*kw; | |||
if (ih2 >= 0 && ih2 < IH && iw2 >= 0 && iw2 < IW) { | |||
dptr[n*C*IH*IW + c*IH*IW + ih2*IW + iw2] += | |||
sptr[idx*window_h*window_w + kh*window_w + kw]; | |||
} | |||
} | |||
++idx; | |||
} | |||
} | |||
} | |||
} | |||
void SlidingWindowTransposeForwardImpl::exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) | |||
{ | |||
check_exec(src.layout, dst.layout, workspace.size); | |||
#define cb(DType) \ | |||
if (src.layout.dtype.enumv() == DTypeTrait<DType>::enumv) { \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR( \ | |||
exec_internal<typename DTypeTrait<DType>::ctype>(src, dst); \ | |||
); \ | |||
return; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb); | |||
#undef cb | |||
megdnn_assert_internal(0); | |||
} | |||
template <typename T> | |||
void SlidingWindowTransposeBackwardImpl::exec_internal(_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad) | |||
{ | |||
int N = diff.layout.shape[0], C = diff.layout.shape[1], | |||
IH = diff.layout.shape[2], IW = diff.layout.shape[3]; | |||
auto sptr = grad.ptr<T>(); | |||
auto dptr = diff.ptr<T>(); | |||
size_t idx = 0; | |||
int window_h = static_cast<int>(param().window_h); | |||
int window_w = static_cast<int>(param().window_w); | |||
int pad_h = static_cast<int>(param().pad_h); | |||
int pad_w = static_cast<int>(param().pad_w); | |||
int stride_h = static_cast<int>(param().stride_h); | |||
int stride_w = static_cast<int>(param().stride_w); | |||
int dilate_h = static_cast<int>(param().dilate_h); | |||
int dilate_w = static_cast<int>(param().dilate_w); | |||
int equ_window_h = dilate_h * (window_h-1) + 1; | |||
int equ_window_w = dilate_w * (window_w-1) + 1; | |||
for (int n = 0; n < N; ++n) | |||
for (int c = 0; c < C; ++c) | |||
{ | |||
int ih = -pad_h; | |||
for (; ih+equ_window_h <= IH+pad_h; ih += stride_h) { | |||
int iw = -pad_w; | |||
for (; iw+equ_window_w <= IW+pad_w; iw += stride_w) { | |||
for (int kh = 0; kh < window_h; ++kh) | |||
for (int kw = 0; kw < window_w; ++kw) | |||
{ | |||
int ih2 = ih+dilate_h*kh, iw2 = iw+dilate_w*kw; | |||
sptr[idx*window_h*window_w + kh*window_w + kw] = | |||
ih2 >= 0 && ih2 < IH && | |||
iw2 >= 0 && iw2 < IW ? | |||
dptr[n*C*IH*IW + c*IH*IW + ih2*IW + iw2] : 0.0f; | |||
} | |||
++idx; | |||
} | |||
} | |||
} | |||
} | |||
void SlidingWindowTransposeBackwardImpl::exec(_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) | |||
{ | |||
check_exec(diff.layout, grad.layout, workspace.size); | |||
#define cb(DType) \ | |||
if (diff.layout.dtype == DType()) { \ | |||
MEGDNN_DISPATCH_CPU_KERN_OPR( \ | |||
exec_internal<typename DTypeTrait<DType>::ctype>(diff, grad); \ | |||
); \ | |||
return; \ | |||
} | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb); | |||
#undef cb | |||
megdnn_assert_internal(0); | |||
} | |||
} // namespace naive | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen | |||
@@ -0,0 +1,51 @@ | |||
/** | |||
* \file dnn/src/naive/sliding_window_transpose/opr_impl.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megdnn/oprs.h" | |||
namespace megdnn { | |||
namespace naive { | |||
class SlidingWindowTransposeForwardImpl: public SlidingWindowTransposeForward { | |||
public: | |||
using SlidingWindowTransposeForward::SlidingWindowTransposeForward; | |||
void exec(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout &, | |||
const TensorLayout &) override { | |||
return 0; | |||
} | |||
private: | |||
template <typename T> | |||
void exec_internal(_megdnn_tensor_in src, | |||
_megdnn_tensor_out dst); | |||
}; | |||
class SlidingWindowTransposeBackwardImpl: public SlidingWindowTransposeBackward { | |||
public: | |||
using SlidingWindowTransposeBackward::SlidingWindowTransposeBackward; | |||
void exec(_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad, | |||
_megdnn_workspace workspace) override; | |||
size_t get_workspace_in_bytes(const TensorLayout &, | |||
const TensorLayout &) override { | |||
return 0; | |||
} | |||
private: | |||
template <typename T> | |||
void exec_internal(_megdnn_tensor_in diff, | |||
_megdnn_tensor_out grad); | |||
}; | |||
} // namespace naive | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,86 @@ | |||
/** | |||
* \file dnn/test/common/sliding_window_transpose.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megdnn/opr_param_defs.h" | |||
#include "megdnn/basic_types.h" | |||
#include <cstddef> | |||
namespace megdnn { | |||
namespace test { | |||
namespace sliding_window_transpose { | |||
struct TestArg { | |||
param::SlidingWindowTranspose param; | |||
TensorShape ishape; | |||
TestArg(param::SlidingWindowTranspose param, TensorShape ishape) | |||
: param(param), ishape(ishape) {} | |||
}; | |||
inline std::vector<TestArg> get_args() { | |||
std::vector<TestArg> args; | |||
// clang-format off | |||
for (uint32_t ih : {25, 96}) | |||
for (uint32_t iw : {26, 128}) | |||
for (uint32_t ph : {0, 1}) | |||
for (uint32_t pw : {0, 1}) | |||
for (uint32_t sh : {1, 2}) | |||
for (uint32_t sw : {1, 2}) | |||
for (uint32_t dh : {1, 2}) | |||
for (uint32_t dw : {1, 2}) | |||
for (uint32_t wh : {3, 4}) | |||
for (uint32_t ww : {3, 4}) { | |||
unsigned long int oh = (ih + 2 * ph - dh * (wh-1)-1) / sh + 1; | |||
unsigned long int ow = (iw + 2 * pw - dw * (ww-1)-1) / sw + 1; | |||
args.emplace_back(param::SlidingWindowTranspose{ih, iw, ph, pw, sh, sw, dh, dw, wh, ww}, | |||
TensorShape{2, 3, oh, ow, wh, ww}); | |||
} | |||
// clang-format on | |||
// large window case | |||
args.emplace_back(param::SlidingWindowTranspose{96, 128, 0, 0, 1, 1, 1, 1, 32, 64}, | |||
TensorShape{2, 3, 65, 65, 32, 64}); | |||
// // large size | |||
args.emplace_back(param::SlidingWindowTranspose{28, 24, 0, 0, 1, 1, 1, 1, 1, 1}, | |||
TensorShape{128, 128, 28, 24, 1, 1}); | |||
return args; | |||
} | |||
inline std::vector<TestArg> get_benchmark_args() { | |||
std::vector<TestArg> args; | |||
// clang-format off | |||
for (uint32_t ph : {0, 1}) | |||
for (uint32_t pw : {0, 1}) | |||
for (uint32_t sh : {1, 2}) | |||
for (uint32_t sw : {1, 2}) | |||
for (uint32_t dh : {1, 2}) | |||
for (uint32_t dw : {1, 2}) | |||
for (uint32_t wh : {3, 4}) | |||
for (uint32_t ww : {3, 4}) | |||
for (uint32_t b : {1, 64}) | |||
for (uint32_t c : {64, 128}) | |||
for (uint32_t hw : {64, 128}) { | |||
unsigned long int o_hw = (hw + 2 * ph - dh * (wh-1)-1) / sh + 1; | |||
args.emplace_back(param::SlidingWindowTranspose{hw, hw, ph, pw, sh, sw, dh, dw, wh, ww}, | |||
TensorShape{b, c, o_hw, o_hw, wh, ww}); | |||
} | |||
// clang-format on | |||
// large size | |||
args.emplace_back(param::SlidingWindowTranspose{28, 24, 0, 0, 1, 1, 1, 1, 1, 1}, | |||
TensorShape{1024, 128, 28, 24, 1, 1}); | |||
return args; | |||
} | |||
} // namespace sliding_window_transpose | |||
} // namespace test | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,96 @@ | |||
/** | |||
* \file dnn/test/cuda/sliding_window_transpose.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "test/cuda/fixture.h" | |||
#include "test/common/checker.h" | |||
#include "test/common/sliding_window_transpose.h" | |||
#include "test/common/rng.h" | |||
#include "test/cuda/benchmark.h" | |||
namespace megdnn { | |||
namespace test { | |||
TEST_F(CUDA, SLIDINGWINDOWTRANSPOSE_FORWARD) | |||
{ | |||
UniformFloatRNG rng(0, 1); | |||
auto args = sliding_window_transpose::get_args(); | |||
for (auto &&arg: args) { | |||
Checker<SlidingWindowTransposeForward> checker(handle_cuda()); | |||
checker.set_rng(0, &rng); | |||
checker.set_epsilon(1e-2); | |||
TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32()); | |||
TensorLayout olayout; | |||
{ | |||
auto opr = handle_cuda()->create_operator<SlidingWindowTransposeForward>(); | |||
opr->param() = arg.param; | |||
opr->deduce_layout(ilayout, olayout); | |||
} | |||
auto set_dtype = [&checker](DType dtype) | |||
{ | |||
checker.set_dtype(0, dtype). | |||
set_dtype(1, dtype); | |||
}; | |||
set_dtype(dtype::Float32()); | |||
checker.set_param(arg.param).exec(TensorShapeArray{ | |||
ilayout, olayout}); | |||
set_dtype(dtype::Float16()); | |||
checker.set_param(arg.param).exec(TensorShapeArray{ | |||
ilayout, olayout}); | |||
} | |||
} | |||
#if MEGDNN_WITH_BENCHMARK | |||
TEST_F(CUDA, BENCHMARK_SLIDINGWINDOWTRANSPOSE_FORWARD) | |||
{ | |||
auto args = sliding_window_transpose::get_benchmark_args(); | |||
for (auto &&arg: args) { | |||
CUBenchmarker<SlidingWindowTransposeForward> bencher(handle_cuda()); | |||
bencher.set_param(arg.param).set_dtype(0, dtype::Float32()). | |||
exec(TensorShapeArray{ | |||
arg.ishape, {}}); | |||
} | |||
} | |||
#endif | |||
TEST_F(CUDA, SLIDINGWINDOWTRANSPOSE_BACKWARD) | |||
{ | |||
UniformFloatRNG rng(0, 1); | |||
auto args = sliding_window_transpose::get_args(); | |||
for (auto &&arg: args) { | |||
Checker<SlidingWindowTransposeBackward> checker(handle_cuda()); | |||
// checker.set_epsilon(1e-2); | |||
checker.set_rng(0, &rng); | |||
TensorLayout ilayout = TensorLayout(arg.ishape, dtype::Float32()); | |||
TensorLayout olayout; | |||
{ | |||
auto opr = handle_cuda()->create_operator<SlidingWindowTranspose>(); | |||
opr->param() = arg.param; | |||
opr->deduce_layout(ilayout, olayout); | |||
} | |||
auto set_dtype = [&checker](DType dtype) | |||
{ | |||
checker.set_dtype(0, dtype). | |||
set_dtype(1, dtype); | |||
}; | |||
set_dtype(dtype::Float32()); | |||
checker.set_param(arg.param).exec(TensorShapeArray{ | |||
olayout, ilayout}); | |||
set_dtype(dtype::Float16()); | |||
checker.set_param(arg.param).exec(TensorShapeArray{ | |||
olayout, ilayout}); | |||
} | |||
} | |||
} // namespace test | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen | |||
@@ -0,0 +1,61 @@ | |||
/** | |||
* \file dnn/test/naive/sliding_window_transpose.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "test/naive/fixture.h" | |||
#include "megdnn/oprs/nn.h" | |||
#include "test/common/checker.h" | |||
using namespace megdnn; | |||
using namespace test; | |||
TEST_F(NAIVE, SlidingWindowTranspose_FORWARD) { | |||
Checker<SlidingWindowTranspose> checker(handle(), /* check_dispatch */false); | |||
SlidingWindowTranspose::Param param(3,3,0,0,1,1,1,1,2,2); | |||
checker.set_param(param).exect( | |||
Testcase{TensorValue({1, 1, 2, 2, 2, 2}, dtype::Uint8(), | |||
{0,1,3,4, | |||
1,2,4,5, | |||
3,4,6,7, | |||
4,5,7,8}), {}}, | |||
Testcase{{}, | |||
TensorValue({1, 1, 3, 3}, dtype::Uint8(), | |||
{0,2,2, | |||
6,16,10, | |||
6,14,8})}); | |||
param.out_h = 6; | |||
param.out_w = 7; | |||
param.pad_h = 1; | |||
param.pad_w = 1; | |||
param.stride_h = 2; | |||
param.stride_w = 2; | |||
param.dilate_h = 2; | |||
param.dilate_w = 2; | |||
param.window_h = 3; | |||
param.window_w = 3; | |||
checker.set_param(param).exect( | |||
Testcase{TensorValue({1, 1, 2, 3, 3, 3}, dtype::Uint8(), | |||
{0,0,0,0,8,10,0,22,24, | |||
0,0,0,8,10,12,22,24,26, | |||
0,0,0,10,12,0,24,26,0, | |||
0,8,10,0,22,24,0,36,38, | |||
8,10,12,22,24,26,36,38,40, | |||
10,12,0,24,26,0,38,40,0}), {}}, | |||
Testcase{{}, | |||
TensorValue({1, 1, 6, 7}, dtype::Uint8(), | |||
{0,0,0,0,0,0,0, | |||
0,32,0,60,0,48,0, | |||
0,0,0,0,0,0,0, | |||
0,88,0,144,0,104,0, | |||
0,0,0,0,0,0,0, | |||
0,72,0,114,0,80,0})}); | |||
} |
@@ -71,6 +71,7 @@ __all__ = [ | |||
"resize", | |||
"sigmoid", | |||
"sliding_window", | |||
"sliding_window_transpose", | |||
"softmax", | |||
"softplus", | |||
"sync_batch_norm", | |||
@@ -1396,6 +1397,60 @@ def sliding_window( | |||
return output | |||
def sliding_window_transpose( | |||
inp: Tensor, | |||
output_size: Union[int, Tuple[int, int]], | |||
kernel_size: Union[int, Tuple[int, int]], | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
stride: Union[int, Tuple[int, int]] = 1, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
) -> Tensor: | |||
""" | |||
Sum over the sliding windows on the corresponding input location. | |||
Refer to :class:`~.SlidingWindowTranspose` for more information. | |||
:param inp: input tensor. | |||
:param output_size: shape of output tensor. | |||
:param kernel_size: size of the window. | |||
:param padding: implicit zero padding added on both sides of input. Default: 0 | |||
:param stride: stride of the window. Default: 1 | |||
:param dilation: dilation of the window. Default: 1 | |||
:return: output tensor. | |||
""" | |||
output_h, output_w = _pair_nonzero(output_size) | |||
padding_h, padding_w = _pair(padding) | |||
stride_h, stride_w = _pair_nonzero(stride) | |||
dilation_h, dilation_w = _pair_nonzero(dilation) | |||
window_h, window_w = _pair_nonzero(kernel_size) | |||
expected_h = ( | |||
output_h + 2 * padding_h - dilation_h * (window_h - 1) - 1 | |||
) // stride_h + 1 | |||
expected_w = ( | |||
output_w + 2 * padding_w - dilation_w * (window_w - 1) - 1 | |||
) // stride_w + 1 | |||
assert inp.ndim == 6, "the input dimension of sliding_window_transpose should be 6" | |||
assert ( | |||
inp.shape[2] == expected_h and inp.shape[3] == expected_w | |||
), "the input shape and output size do not match" | |||
op = builtin.SlidingWindowTranspose( | |||
out_h=output_h, | |||
out_w=output_w, | |||
pad_h=padding_h, | |||
pad_w=padding_w, | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
dilate_h=dilation_h, | |||
dilate_w=dilation_w, | |||
window_h=window_h, | |||
window_w=window_w, | |||
) | |||
(output,) = apply(op, inp) | |||
return output | |||
interpolate = deprecated_func("1.3", "megengine.functional.vision", "interpolate", True) | |||
roi_pooling = deprecated_func("1.3", "megengine.functional.vision", "roi_pooling", True) | |||
roi_align = deprecated_func("1.3", "megengine.functional.vision", "roi_align", True) | |||
@@ -34,4 +34,4 @@ from .normalization import GroupNorm, InstanceNorm, LayerNorm | |||
from .pooling import AvgPool2d, MaxPool2d | |||
from .quant_dequant import DequantStub, QuantStub | |||
from .sequential import Sequential | |||
from .sliding_window import SlidingWindow | |||
from .sliding_window import SlidingWindow, SlidingWindowTranspose |
@@ -8,7 +8,7 @@ | |||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
from typing import Tuple, Union | |||
from ..functional import sliding_window | |||
from ..functional import sliding_window, sliding_window_transpose | |||
from .module import Module | |||
@@ -86,3 +86,87 @@ class SlidingWindow(Module): | |||
return sliding_window( | |||
inp, self.kernel_size, self.padding, self.stride, self.dilation | |||
) | |||
class SlidingWindowTranspose(Module): | |||
r""" | |||
Opposite opration of SlidingWindow, sum over the sliding windows on the | |||
corresponding input location. Given an input of the size | |||
:math:`(N, C, IH, IW, window_h, window_w)` and :attr:`output_size`, the | |||
output shape would be :math:`(N, C, output\_size_{h}, output\_size_{w})` and the | |||
arguments must satisfy | |||
.. math:: | |||
\text{IH} = \lfloor \frac{\text{output_size}_{h} + 2 * \text{padding}_{h} - | |||
\text{dilation}_{h} * (\text{kernel_size}_{h} - 1) - 1}{\text{stride}_{h}} + 1 \rfloor | |||
.. math:: | |||
\text{IW} = \lfloor \frac{\text{output_size}_{w} + 2 * \text{padding}_{w} - | |||
\text{dilation}_{w} * (\text{kernel_size}_{w} - 1) - 1}{\text{stride}_{w}} + 1 \rfloor | |||
For each output location, we have: | |||
.. math:: | |||
\text{out}_{n, c, oh, ow} = \sum_{n,c,oh,ow=location(n, c, ih, iw, wh, ww)}\text{src}_{n, c, ih, iw, wh, ww} | |||
.. math:: | |||
\text{location}(n, c, ih, iw, wh, ww) &= (n, c, oh+wh, ow+ww) \\ | |||
\text{where } & oh=-pad_h+ih \times stride_h + (wh-1) \times (dilation_h-1) \\ | |||
& ow=-pad_w+iw \times stride_w + (ww-1) \times (dilation_w-1) | |||
:param output_size: the size of the output tensor. | |||
:param kernel_size: the size of the window to take a max over. | |||
:param padding: implicit zero padding to be added on both sides. Default: 0 | |||
:param stride: the stride of the window. Default: 1 | |||
:param dilation: the dilation of the window. Default: 1 | |||
Example: | |||
.. testcode:: | |||
from megengine import tensor | |||
import megengine.module as M | |||
import numpy as np | |||
inp = tensor(np.arange(20).reshape(1,1,4,5)) | |||
unfold = M.SlidingWindow(kernel_size=3, padding=0, stride=1, dilation=1) | |||
fold = M.SlidingWindowTranspose((4,5), kernel_size=3, padding=0, stride=1, dilation=1) | |||
out = fold(unfold(inp)) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[[[ 0 2 6 6 4] | |||
[10 24 42 32 18] | |||
[20 44 72 52 28] | |||
[15 32 51 36 19]]]] | |||
""" | |||
def __init__( | |||
self, | |||
output_size: Union[int, Tuple[int, int]], | |||
kernel_size: Union[int, Tuple[int, int]], | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
stride: Union[int, Tuple[int, int]] = 1, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
**kwargs | |||
): | |||
super(SlidingWindowTranspose, self).__init__(**kwargs) | |||
self.output_size = output_size | |||
self.kernel_size = kernel_size | |||
self.padding = padding | |||
self.stride = stride | |||
self.dilation = dilation | |||
def forward(self, inp): | |||
return sliding_window_transpose( | |||
inp, | |||
self.output_size, | |||
self.kernel_size, | |||
self.padding, | |||
self.stride, | |||
self.dilation, | |||
) |
@@ -953,3 +953,39 @@ def test_sliding_window(): | |||
tensor(inp), (wh, ww), padding=(ph, pw), stride=(sh, sw), dilation=(dh, dw) | |||
) | |||
np.testing.assert_equal(gt_out, out.numpy()) | |||
def test_sliding_window_transpose(): | |||
N, C, H, W = 2, 3, 7, 8 | |||
ph, pw = 1, 2 | |||
sh, sw = 2, 1 | |||
wh, ww = 3, 2 | |||
dh, dw = 1, 3 | |||
s = lambda i, p, s, d, w: (i + p * 2 - (w - 1) * d - 1) // s + 1 | |||
inp = np.random.normal( | |||
size=(N, C, s(H, ph, sh, dh, wh), s(W, pw, sw, dw, ww), wh, ww) | |||
).astype(np.float32) | |||
gt_out = np.zeros((N, C, H, W), dtype=np.float32) | |||
for n, c in itertools.product(*map(range, inp.shape[:2])): | |||
oh = 0 | |||
for ih in range(-ph, H + ph - dh * (wh - 1), sh): | |||
ow = 0 | |||
for iw in range(-pw, W + pw - dw * (ww - 1), sw): | |||
for kh, kw in itertools.product(*map(range, inp.shape[-2:])): | |||
ih2 = ih + dh * kh | |||
iw2 = iw + dw * kw | |||
if ih2 >= 0 and ih2 < H and iw2 >= 0 and iw2 < W: | |||
gt_out[n, c, ih2, iw2] += inp[n, c, oh, ow, kh, kw] | |||
ow += 1 | |||
oh += 1 | |||
out = F.sliding_window_transpose( | |||
tensor(inp), | |||
(H, W), | |||
(wh, ww), | |||
padding=(ph, pw), | |||
stride=(sh, sw), | |||
dilation=(dh, dw), | |||
) | |||
np.testing.assert_equal(gt_out, out.numpy()) |
@@ -35,6 +35,8 @@ | |||
#include "megbrain/opr/tensor_gen.h" | |||
#include "megbrain/opr/tensor_manip.h" | |||
#include "megbrain/opr/utility.h" | |||
#include "megbrain/opr/dnn/images2neibs.h" | |||
#include "megbrain/opr/dnn/sliding_window_transpose.h" | |||
#include "../op_trait.h" | |||
@@ -658,4 +660,17 @@ OP_TRAIT_REG(LSQ, LSQ).apply_on_var_node(apply_on_var_node).fallback(); | |||
} // namespace lsq | |||
} // namespace | |||
} // namespace mgb::imperative | |||
namespace { namespace sliding_window_transpose { | |||
auto apply_on_var_node( | |||
const OpDef& def, | |||
const VarNodeArray& inputs) { | |||
auto&& op = static_cast<const SlidingWindowTranspose&>(def); | |||
OperatorNodeConfig config{op.make_name()}; | |||
return opr::SlidingWindowTranspose::make(inputs[0], op.param(), config); | |||
} | |||
OP_TRAIT_REG(SlidingWindowTranspose, SlidingWindowTranspose) | |||
.apply_on_var_node(apply_on_var_node) | |||
.fallback(); | |||
}} // sliding_window_transpose | |||
} // namespace mgb::imperative |
@@ -81,6 +81,8 @@ def BatchConvBias : MgbHashableOp<"BatchConvBias", [BatchConvBiasParam, Executio | |||
def Images2Neibs : MgbHashableOp<"Images2Neibs", [Images2NeibsParam]>; | |||
def SlidingWindowTranspose : MgbHashableOp<"SlidingWindowTranspose", [SlidingWindowTransposeParam]>; | |||
def BatchNorm : MgbHashableOp<"BatchNorm", [BNParam]>; | |||
def ROIAlign: MgbHashableOp<"ROIAlign", [ROIAlignParam]>; | |||
@@ -16,6 +16,8 @@ | |||
#include "megbrain/opr/dnn/correlation.h" | |||
#include "megbrain/opr/dnn/fake_quant.h" | |||
#include "megbrain/opr/dnn/images2neibs.h" | |||
#include "megbrain/opr/dnn/sliding_window_transpose.h" | |||
#include "megbrain/opr/dnn/adaptive_pooling.h" | |||
#include "megbrain/opr/dnn/local.h" | |||
#include "megbrain/opr/dnn/lrn.h" | |||
#include "megbrain/opr/dnn/lsq.h" | |||
@@ -531,6 +533,9 @@ MGB_SEREG_OPR(ConvolutionBackwardFilterV2, 0); | |||
MGB_SEREG_OPR(Images2Neibs, 1); | |||
MGB_SEREG_OPR(Images2NeibsBackward, 2); | |||
MGB_SEREG_OPR(SlidingWindowTranspose, 1); | |||
MGB_SEREG_OPR(SlidingWindowTransposeBackward, 2); | |||
using LocalV2 = Local; | |||
using LocalBackwardDataV2 = LocalBackwardData; | |||
using LocalBackwardFilterV2 = LocalBackwardFilter; | |||
@@ -0,0 +1,36 @@ | |||
/** | |||
* \file src/opr/impl/dnn/sliding_window_transpose.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "megbrain/opr/dnn/sliding_window_transpose.h" | |||
#include "megbrain/graph/grad_impl.h" | |||
#include "../internal/megdnn_opr_wrapper.inl" | |||
using namespace mgb; | |||
using namespace opr; | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(SlidingWindowTransposeForward); | |||
MEGDNN_OPR_INIT1(SlidingWindowTransposeForward, "sliding_window_transpose") | |||
#if MGB_ENABLE_GRAD | |||
MGB_IMPL_OPR_GRAD(SlidingWindowTransposeForward) { | |||
mgb_assert(wrt_idx == 0 && out_grad.size() == 2 && !out_grad[1]); | |||
return SlidingWindowTransposeBackward::make( | |||
out_grad[0], opr.input(0), opr.param()).node(); | |||
} | |||
#endif | |||
MGB_DYN_TYPE_OBJ_FINAL_IMPL(SlidingWindowTransposeBackward); | |||
MEGDNN_OPR_INIT2(SlidingWindowTransposeBackward, "sliding_window_transpose_grad", 1, false); | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} | |||
@@ -0,0 +1,49 @@ | |||
/** | |||
* \file src/opr/include/megbrain/opr/dnn/sliding_window_transpose.h | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "megbrain/opr/internal/megdnn_opr_wrapper.h" | |||
#include "megdnn/oprs.h" | |||
namespace mgb { | |||
namespace opr { | |||
MGB_DEFINE_OPR_CLASS(SlidingWindowTransposeForward, | |||
intl::MegDNNOprWrapperFwd<megdnn::SlidingWindowTransposeForward>) // { | |||
public: | |||
SlidingWindowTransposeForward(VarNode *src, | |||
const Param ¶m, | |||
const OperatorNodeConfig &config); | |||
static SymbolVar make(SymbolVar src, | |||
const Param ¶m = {}, | |||
const OperatorNodeConfig &config = {}); | |||
}; | |||
using SlidingWindowTranspose = SlidingWindowTransposeForward; | |||
MGB_DEFINE_OPR_CLASS(SlidingWindowTransposeBackward, | |||
intl::MegDNNOprWrapperBwd<megdnn::SlidingWindowTransposeBackward>) // { | |||
public: | |||
SlidingWindowTransposeBackward(VarNode *diff, VarNode *src_for_shape, | |||
const Param ¶m, | |||
const OperatorNodeConfig &config); | |||
static SymbolVar make(SymbolVar diff, SymbolVar src_for_shape, | |||
const Param ¶m = {}, | |||
const OperatorNodeConfig &config = {}); | |||
}; | |||
} // namespace opr | |||
} // namespace mgb | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -0,0 +1,64 @@ | |||
/** | |||
* \file src/opr/test/dnn/sliding_window_transpose.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "megbrain/test/helper.h" | |||
#include "megbrain/test/autocheck.h" | |||
#include "megbrain/test/megdnn_helper.h" | |||
#include "megbrain/opr/dnn/sliding_window_transpose.h" | |||
#include "megdnn/oprs.h" | |||
using namespace mgb; | |||
TEST(TestOprDNN, SlidingWindowTranspose) { | |||
using Checker = AutoOprChecker<1, 1>; | |||
opr::SlidingWindowTranspose::Param param; | |||
param.pad_h = 1; | |||
param.pad_w = 2; | |||
param.stride_w = 2; | |||
param.window_h = 4; | |||
param.dilate_h = 2; | |||
unsigned long ih = 16, iw = 15; | |||
unsigned long oh = (ih + 2 * param.pad_h - param.dilate_h * (param.window_h-1)-1) / param.stride_h + 1; | |||
unsigned long ow = (iw + 2 * param.pad_w - param.dilate_w * (param.window_w-1)-1) / param.stride_w + 1; | |||
param.out_h = ih; | |||
param.out_w = iw; | |||
auto make_graph = [&](const Checker::SymInpArray &inputs) -> | |||
Checker::SymOutArray { | |||
return {opr::SlidingWindowTranspose::make(inputs[0], param)}; | |||
}; | |||
auto fwd = [&](Checker::NumOutArray &dest, Checker::NumInpArray inp) { | |||
auto opr = megdnn_naive_handle()-> | |||
create_operator<megdnn::SlidingWindowTranspose>(); | |||
opr->param() = param; | |||
TensorLayout dest_layout; | |||
opr->deduce_layout(inp[0]->layout(), dest_layout); | |||
std::vector<dt_byte> workspace( | |||
opr->get_workspace_in_bytes(inp[0]->layout(), dest_layout)); | |||
dest[0].dtype(dtype::Float32()). | |||
comp_node(inp[0]->comp_node()).resize(dest_layout); | |||
opr->exec(inp[0]->as_megdnn(), dest[0].as_megdnn(), | |||
{workspace.data(), workspace.size()}); | |||
}; | |||
Checker::RunOptions opt; | |||
opt.numdiff_eps = 1; | |||
Checker checker{make_graph, fwd}; | |||
checker. | |||
run({TensorShape{2, 3, oh, ow, param.window_h, param.window_w}}, opt). | |||
run({TensorShape{4, 5, oh, ow, param.window_h, param.window_w}}, opt). | |||
run({TensorShape{3, 2, oh, ow, param.window_h, param.window_w}}, opt); | |||
} | |||
// vim: syntax=cpp.doxygen foldmethod=marker foldmarker=f{{{,f}}} |
@@ -112,6 +112,7 @@ union OperatorParam { | |||
param.PoissonRNG = 78, | |||
param.PermutationRNG = 79, | |||
param.BetaRNG = 80, | |||
param.SlidingWindowTranspose = 81, | |||
} | |||
table Operator { | |||