@@ -754,6 +754,42 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||||
return new_conv_opr.node()->owner_opr(); | return new_conv_opr.node()->owner_opr(); | ||||
}; | }; | ||||
auto replace_convbias_opr = [use_f32_comp](OperatorNodeBase* opr, | |||||
const VarNodeArray& new_inp) { | |||||
auto& convbias_opr = opr->cast_final_safe<opr::ConvBiasForward>(); | |||||
auto new_param = convbias_opr.param(); | |||||
if (use_f32_comp) { | |||||
new_param.compute_mode = | |||||
megdnn::param::ConvBias::ComputeMode::FLOAT32; | |||||
} | |||||
mgb_assert(new_inp[0]->dtype() == dtype::Float16(), | |||||
"inp %s:%s, owner_opr:%s", new_inp[0]->dtype().name(), | |||||
new_inp[0]->name().c_str(), | |||||
new_inp[0]->owner_opr()->name().c_str()); | |||||
mgb_assert(new_inp[1]->dtype() == dtype::Float16(), | |||||
"inp %s:%s, owner_opr:%s", new_inp[1]->dtype().name(), | |||||
new_inp[1]->name().c_str(), | |||||
new_inp[1]->owner_opr()->name().c_str()); | |||||
if(opr->input().size() == 2) { | |||||
auto new_conv_opr = opr::ConvBias::make( | |||||
new_inp[0], new_inp[1], new_param, convbias_opr.execution_policy(), | |||||
convbias_opr.config()); | |||||
return new_conv_opr.node()->owner_opr(); | |||||
} else if(opr->input().size() == 3) { | |||||
auto new_conv_opr = opr::ConvBias::make( | |||||
new_inp[0], new_inp[1], new_inp[2], new_param, convbias_opr.execution_policy(), | |||||
convbias_opr.config()); | |||||
return new_conv_opr.node()->owner_opr(); | |||||
} else { | |||||
mgb_assert(opr->input().size() == 4, "invalid input size %zu", | |||||
opr->input().size()); | |||||
auto new_conv_opr = opr::ConvBias::make( | |||||
new_inp[0], new_inp[1], new_inp[2], new_inp[3], new_param, convbias_opr.execution_policy(), | |||||
convbias_opr.config()); | |||||
return new_conv_opr.node()->owner_opr(); | |||||
} | |||||
}; | |||||
auto replace_matmul_opr = [use_f32_comp](OperatorNodeBase* opr, | auto replace_matmul_opr = [use_f32_comp](OperatorNodeBase* opr, | ||||
const VarNodeArray& new_inp) { | const VarNodeArray& new_inp) { | ||||
mgb_assert(opr->input().size() == new_inp.size()); | mgb_assert(opr->input().size() == new_inp.size()); | ||||
@@ -888,6 +924,7 @@ std::unique_ptr<ConvertF32ToF16Pass> ConvertF32ToF16Pass::make( | |||||
replace_func[opr::Host2DeviceCopy::typeinfo()] = replace_h2d_opr; | replace_func[opr::Host2DeviceCopy::typeinfo()] = replace_h2d_opr; | ||||
replace_func[opr::SharedDeviceTensor::typeinfo()] = replace_sdt_opr; | replace_func[opr::SharedDeviceTensor::typeinfo()] = replace_sdt_opr; | ||||
replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | replace_func[opr::Convolution::typeinfo()] = replace_conv_opr; | ||||
replace_func[opr::ConvBias::typeinfo()] = replace_convbias_opr; | |||||
replace_func[opr::MatrixMul::typeinfo()] = replace_matmul_opr; | replace_func[opr::MatrixMul::typeinfo()] = replace_matmul_opr; | ||||
replace_func[opr::Reduce::typeinfo()] = replace_reduce_opr; | replace_func[opr::Reduce::typeinfo()] = replace_reduce_opr; | ||||
replace_func[opr::ImmutableTensor::typeinfo()] = replace_imt_opr; | replace_func[opr::ImmutableTensor::typeinfo()] = replace_imt_opr; | ||||
@@ -1622,7 +1659,9 @@ void FuseConvBiasNonlinPass::apply(OptState& state) const { | |||||
param.stride_h, | param.stride_h, | ||||
param.stride_w, | param.stride_w, | ||||
param.dilate_h, | param.dilate_h, | ||||
param.dilate_w}; | |||||
param.dilate_w, | |||||
0, | |||||
param.compute_mode}; | |||||
}; | }; | ||||
auto check_bias_shape = [&](opr::Convolution* conv, VarNode* bias) -> bool { | auto check_bias_shape = [&](opr::Convolution* conv, VarNode* bias) -> bool { | ||||
@@ -880,6 +880,64 @@ TEST(TestGoptInference, Float32TOFloat16) { | |||||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | ||||
} | } | ||||
TEST(TestGoptInference, Float32TOFloat16C32) { | |||||
CompNode cn = CompNode::load("cpu0"); | |||||
HostTensorGenerator<> gen(0, 1, 0); | |||||
auto host_x0 = gen({1, 4, 1, 1}, cn), host_x1 = gen({2, 3, 16, 8}, cn), | |||||
host_x2 = gen({4, 3, 1, 1}, cn); | |||||
auto graph = ComputingGraph::make(); | |||||
auto make_f32_to_f16_graph = [&]() { | |||||
graph->options().graph_opt_level = 0; | |||||
auto d0 = opr::Host2DeviceCopy::make(*graph, host_x0), | |||||
d1 = opr::Host2DeviceCopy::make(*graph, host_x1), | |||||
d2 = opr::SharedDeviceTensor::make(*graph, *host_x2); | |||||
auto y = opr::ConvBias::make(d1, d2, d0); | |||||
y = opr::Reduce::make(y, {}, y.make_scalar(1)); | |||||
SymbolVar y_opt; | |||||
auto options = gopt::OptimizeForInferenceOptions{}; | |||||
options.enable_f16_io_f32_comp(); | |||||
unpack_vector(gopt::optimize_for_inference({y}, options), y_opt); | |||||
return y_opt; | |||||
}; | |||||
auto make_f16_graph = [&]() { | |||||
auto d0 = opr::TypeCvt::make(opr::TypeCvt::make( | |||||
opr::Host2DeviceCopy::make(*graph, host_x0), | |||||
dtype::Float16{}), dtype::Float32{}), | |||||
d1 = opr::TypeCvt::make(opr::TypeCvt::make( | |||||
opr::Host2DeviceCopy::make(*graph, host_x1), | |||||
dtype::Float16{}), dtype::Float32{}), | |||||
d2 = opr::TypeCvt::make(opr::TypeCvt::make( | |||||
opr::SharedDeviceTensor::make(*graph, *host_x2), | |||||
dtype::Float16{}), dtype::Float32{}); | |||||
auto y = opr::ConvBias::make(d1, d2, d0); | |||||
y = opr::Reduce::make(y, {}, y.make_scalar(1)); | |||||
y = opr::TypeCvt::make( | |||||
opr::TypeCvt::make(y, dtype::Float16{}), | |||||
dtype::Float32{}); | |||||
return y; | |||||
}; | |||||
auto y_opt = make_f32_to_f16_graph(); | |||||
auto y = make_f16_graph(); | |||||
ASSERT_EQ(find_opr<opr::ConvBias>(y_opt).param().compute_mode, | |||||
opr::ConvBias::Param::ConvBias::ComputeMode::FLOAT32); | |||||
ASSERT_EQ(y_opt.dtype(), dtype::Float32{}); | |||||
ASSERT_EQ(y.dtype(), dtype::Float32{}); | |||||
HostTensorND host_y_opt, host_y; | |||||
auto func = graph->compile({make_callback_copy(y, host_y), | |||||
make_callback_copy(y_opt, host_y_opt)}); | |||||
func->execute(); | |||||
MGB_ASSERT_TENSOR_NEAR(host_y, host_y_opt, 1e-3); | |||||
} | |||||
TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) { | TEST(TestGoptInference, Float32TOFloat16EndpointElemwise) { | ||||
CompNode cn = CompNode::load("cpu0"); | CompNode cn = CompNode::load("cpu0"); | ||||
HostTensorGenerator<> gen(0, 1, 0); | HostTensorGenerator<> gen(0, 1, 0); | ||||