@@ -0,0 +1,179 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
namespace { | |||
#define DIVUP(x, y) (((x) + (y)-1) / (y)) | |||
enum DepthwiseConv2dDirection { DIRECTION_FORWARD, DIRECTION_BACKWARD }; | |||
template <typename ThreadConfig_, int oh_, int ow_> | |||
struct OutTileConfig { | |||
using ThreadConfig = ThreadConfig_; | |||
static int const unroll_h = oh_; | |||
static int const unroll_w = ThreadConfig::thread_x * ow_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
static int const block_h = unroll_h * ThreadConfig::thread_y; | |||
static int const block_w = unroll_w; | |||
}; | |||
template <int fh_, int fw_> | |||
struct FilterTileConfig { | |||
static int const unroll_h = fh_; | |||
static int const unroll_w = fw_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
template <int x_, int y_> | |||
struct ThreadConfig { | |||
static int const thread_x = x_; | |||
static_assert((thread_x & (thread_x - 1)) == 0, "thread_x must be pow of 2!"); | |||
static int const thread_y = y_; | |||
static int const nr_threads = x_ * y_; | |||
}; | |||
template < | |||
typename ldg_dtype, typename ThreadConfig_, typename OutTileConfig_, | |||
typename FilterTileConfig_, int stride_w, int stride_h> | |||
struct ConvTraitInner { | |||
using ThreadConfig = ThreadConfig_; | |||
using OutTileConfig = OutTileConfig_; | |||
using FilterTileConfig = FilterTileConfig_; | |||
using CompType = ldg_dtype; | |||
struct SrcTileConfig { | |||
static int const unroll_h = | |||
OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1; | |||
static int const unroll_w = | |||
(OutTileConfig::unroll_w - 1) * stride_w + FilterTileConfig::unroll_w; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
struct SrcTileCount { | |||
static int const smem_src_h = | |||
(OutTileConfig::block_h - 1) * stride_h + FilterTileConfig::unroll_h; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_src_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = | |||
DIVUP((OutTileConfig::block_w - 1) * stride_w + | |||
FilterTileConfig::unroll_w * ThreadConfig::thread_x, | |||
2) * | |||
2; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = | |||
smem_w > ThreadConfig::nr_threads ? ThreadConfig::nr_threads : smem_w; | |||
static int const load_h = 1; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
struct FilterTileCount { | |||
static int const smem_flt_h = FilterTileConfig::unroll_h; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_flt_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = FilterTileConfig::unroll_w * ThreadConfig::thread_x; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = smem_w > 32 ? 32 : smem_w; | |||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
}; | |||
#define CHECK_AB_FWD(a, b) \ | |||
if (param.out_w > b * 4) { \ | |||
if (param.stride_h == 1 && param.stride_w == 1) { \ | |||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||
using IConvTrait = ConvTraitInner< \ | |||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 1, 1>; \ | |||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||
\ | |||
if (device_prop.regsPerBlock < \ | |||
4 * 32 * \ | |||
(FilterTileConfig_::unroll_h * \ | |||
FilterTileConfig_::unroll_w * 2 + \ | |||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||
device_prop.sharedMemPerBlock < \ | |||
static_cast<size_t>( \ | |||
(SrcTileCount::smem_size + \ | |||
FilterTileCount::smem_size))) { \ | |||
return false; \ | |||
} \ | |||
return true; \ | |||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||
using IConvTrait = ConvTraitInner< \ | |||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 2, 2>; \ | |||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||
\ | |||
if (device_prop.regsPerBlock < \ | |||
4 * 32 * \ | |||
(FilterTileConfig_::unroll_h * \ | |||
FilterTileConfig_::unroll_w * 2 + \ | |||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||
device_prop.sharedMemPerBlock < \ | |||
static_cast<size_t>( \ | |||
(SrcTileCount::smem_size + \ | |||
FilterTileCount::smem_size))) { \ | |||
return false; \ | |||
} \ | |||
return true; \ | |||
} \ | |||
} | |||
#define CHECK_AB_BWD(a, b) \ | |||
if (param.out_w > b * 4) { \ | |||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||
using IConvTrait = ConvTraitInner< \ | |||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 1, 1>; \ | |||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||
\ | |||
if (device_prop.regsPerBlock < \ | |||
4 * 32 * \ | |||
(FilterTileConfig_::unroll_h * \ | |||
FilterTileConfig_::unroll_w * 2 + \ | |||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||
device_prop.sharedMemPerBlock < \ | |||
static_cast<size_t>( \ | |||
(SrcTileCount::smem_size + FilterTileCount::smem_size))) { \ | |||
return false; \ | |||
} \ | |||
return true; \ | |||
} | |||
#define CHECK_A(a, cb) \ | |||
if (param.flt_w > a * 4) { \ | |||
CHECK_AB_##cb( \ | |||
a, \ | |||
15) else CHECK_AB_##cb(a, 14) else CHECK_AB_##cb(a, 13) else CHECK_AB_##cb(a, 12) else CHECK_AB_##cb(a, 11) else CHECK_AB_##cb(a, 10) else CHECK_AB_##cb(a, 9) else CHECK_AB_##cb(a, 8) else CHECK_AB_##cb(a, 7) else CHECK_AB_##cb(a, 6) else CHECK_AB_##cb(a, 5) else CHECK_AB_##cb(a, 4) else CHECK_AB_##cb(a, 3) else CHECK_AB_##cb(a, 2) else CHECK_AB_##cb(a, 1) else CHECK_AB_##cb(a, 0) \ | |||
} | |||
#define CHECK(cb) \ | |||
CHECK_A(6, cb) \ | |||
else CHECK_A(4, cb) else CHECK_A(2, cb) else CHECK_A(0, cb) | |||
} // namespace |
@@ -1,5 +1,5 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.inl | |||
* \file dnn/src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
@@ -9,35 +9,10 @@ | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "depthwise_large_filter.cuh" | |||
#include "src/cuda/cuda_shfl_compat.cuh" | |||
namespace { | |||
enum DepthwiseConv2dDirection { DIRECTION_FORWARD, DIRECTION_BACKWARD }; | |||
template <typename ThreadConfig_, int oh_, int ow_> | |||
struct OutTileConfig { | |||
using ThreadConfig = ThreadConfig_; | |||
static int const unroll_h = oh_; | |||
static int const unroll_w = ThreadConfig::thread_x * ow_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
static int const block_h = unroll_h * ThreadConfig::thread_y; | |||
static int const block_w = unroll_w; | |||
}; | |||
template <int fh_, int fw_> | |||
struct FilterTileConfig { | |||
static int const unroll_h = fh_; | |||
static int const unroll_w = fw_; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
template <int x_, int y_> | |||
struct ThreadConfig { | |||
static int const thread_x = x_; | |||
static_assert((thread_x & (thread_x - 1)) == 0, "thread_x must be pow of 2!"); | |||
static int const thread_y = y_; | |||
static int const nr_threads = x_ * y_; | |||
}; | |||
namespace { | |||
template < | |||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | |||
@@ -87,49 +62,12 @@ struct ConvTrait { | |||
using FilterTileConfig = FilterTileConfig_; | |||
using CompType = ldg_dtype; | |||
struct SrcTileConfig { | |||
static int const unroll_h = | |||
OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1; | |||
static int const unroll_w = | |||
(OutTileConfig::unroll_w - 1) * stride_w + FilterTileConfig::unroll_w; | |||
static int const unroll_size = unroll_h * unroll_w; | |||
}; | |||
struct SrcTileCount { | |||
static int const smem_src_h = | |||
(OutTileConfig::block_h - 1) * stride_h + FilterTileConfig::unroll_h; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_src_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = | |||
DIVUP((OutTileConfig::block_w - 1) * stride_w + | |||
FilterTileConfig::unroll_w * ThreadConfig::thread_x, | |||
2) * | |||
2; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = | |||
smem_w > ThreadConfig::nr_threads ? ThreadConfig::nr_threads : smem_w; | |||
static int const load_h = 1; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
struct FilterTileCount { | |||
static int const smem_flt_h = FilterTileConfig::unroll_h; | |||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||
static int const smem_load_h = smem_flt_h + smem_buff_h; | |||
static int const smem_h = smem_load_h + smem_buff_h; | |||
static int const smem_w = FilterTileConfig::unroll_w * ThreadConfig::thread_x; | |||
static int const smem_size = smem_h * smem_w; | |||
static int const load_w = smem_w > 32 ? 32 : smem_w; | |||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||
static int const reg_h = 1; | |||
static int const reg_w = DIVUP(smem_w, load_w); | |||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||
}; | |||
using CI = ConvTraitInner< | |||
ldg_dtype, ThreadConfig_, OutTileConfig_, FilterTileConfig_, stride_w, | |||
stride_h>; | |||
using SrcTileConfig = typename CI::SrcTileConfig; | |||
using SrcTileCount = typename CI::SrcTileCount; | |||
using FilterTileCount = typename CI::FilterTileCount; | |||
using SrcGlobal2ShareVisitor = Global2SharedMem< | |||
CompType, DepthwiseConv2dDirection::DIRECTION_FORWARD, ThreadConfig, | |||
@@ -272,14 +210,15 @@ __device__ __forceinline__ void Global2SharedMem< | |||
// CUDA kernel to compute the depthwise convolution forward pass in NCHW format, | |||
// tailored for small images up to 32x32. Stride and depth multiplier must be 1. | |||
// Padding must be 'SAME', which allows to reuse the index computation. Only | |||
// use this kernel if CanLaunchDepthwiseConv2dGPUSmall(args) returns true. | |||
// use this kernel if CanLaunchDepthwiseConv2dGPU(args) returns true. | |||
// Tiles of the input and filter tensors are loaded into shared memory before | |||
// performing the convolution. Each thread handles two elements per iteration, | |||
// one each in the lower and upper half of a tile. | |||
// Backprop input direction is the same as forward direction with the filter | |||
// rotated by 180°. | |||
#if CUDA_VERSION >= 9000 | |||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||
__global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
__global__ void DepthwiseConv2dGPUKernelNCHW( | |||
const Param param, const __half* input, const __half* filter, __half* output) { | |||
using T = __half; | |||
using T2 = __half2; | |||
@@ -380,16 +319,18 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
f_w * 2; | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w] = | |||
*reinterpret_cast<T2*>(smem_flt_ptr + flt_offset); | |||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = { | |||
f_w > 0 ? reg_flt[0][f_h * t2_flt_unroll_w + f_w - 1].y | |||
: static_cast<T>(0.0), | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||
if (f_w > 0) { | |||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = { | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w - 1].y, | |||
reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||
} else { | |||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = { | |||
0.0, reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||
} | |||
} | |||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = { | |||
static_cast<T>(0.0), static_cast<T>(0.0)}; | |||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = {0.0, 0.0}; | |||
reg_flt[1][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = { | |||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 2].y, | |||
static_cast<T>(0.0)}; | |||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 2].y, 0.0}; | |||
} | |||
#pragma unroll | |||
@@ -444,9 +385,10 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
} | |||
} | |||
} | |||
#endif | |||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | |||
__global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
__global__ void DepthwiseConv2dGPUKernelNCHW( | |||
const Param param, const float* input, const float* filter, float* output) { | |||
using T = float; | |||
using T2 = float2; | |||
@@ -530,11 +472,6 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
[(off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h * | |||
SrcTileCount::smem_w + | |||
s_w]; | |||
if (off_ochannel == 0 && off_obw == 0 && off_obh == 0 && off_oh == 30 && | |||
off_ow == 0) { | |||
printf("reg_src[%d] = %f\n", s_h * SrcTileConfig::unroll_w + s_w, | |||
reg_src[s_h * SrcTileConfig::unroll_w + s_w]); | |||
} | |||
} | |||
} | |||
@@ -561,15 +498,6 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] * | |||
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw + | |||
ow * stride_w]; | |||
if (off_ochannel == 0 && off_obw == 0 && off_obh == 0 && | |||
off_oh == 30) { | |||
printf("sum[%d] += %f * %f\nsum = %f\n", | |||
oh * OutTileConfig::unroll_w + ow, | |||
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw], | |||
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + | |||
fw + ow * stride_w], | |||
sum[oh * OutTileConfig::unroll_w + ow]); | |||
} | |||
} | |||
} | |||
} | |||
@@ -610,7 +538,7 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||
template < | |||
typename T, typename T2, DepthwiseConv2dDirection kDirection, int unroll_fw, | |||
int unroll_ow, int stride> | |||
void LaunchDepthwiseConv2dGPUSmall( | |||
void LaunchDepthwiseConv2dGPU( | |||
const Param& param, const T* input, const T* filter, T* output, | |||
cudaStream_t stream) { | |||
static int const unroll_oh = 1, unroll_fh = 1; | |||
@@ -633,22 +561,21 @@ void LaunchDepthwiseConv2dGPUSmall( | |||
(SrcTileCount::smem_size + FilterTileCount::smem_size) * sizeof(T); | |||
void (*kernel)(const Param, const T*, const T*, T*); | |||
kernel = DepthwiseConv2dGPUKernelNCHWSmall<IConvTrait, kDirection>; | |||
kernel = DepthwiseConv2dGPUKernelNCHW<IConvTrait, kDirection>; | |||
kernel<<<grid, block, shared_storage, stream>>>(param, input, filter, output); | |||
after_kernel_launch(); | |||
} | |||
#define INSTANCE_AB(type1, type2, a, b, direction) \ | |||
if (param.out_w > b * 4) { \ | |||
printf("param.out_w = %d, b = %d\n", param.out_w, b); \ | |||
if (direction == DepthwiseConv2dDirection::DIRECTION_BACKWARD || \ | |||
(param.stride_h == 1 && param.stride_w == 1)) { \ | |||
LaunchDepthwiseConv2dGPUSmall<type1, type2, direction, a + 2, b + 1, 1>( \ | |||
param, src, flt, dst, stream); \ | |||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||
LaunchDepthwiseConv2dGPUSmall<type1, type2, direction, a + 2, b + 1, 2>( \ | |||
param, src, flt, dst, stream); \ | |||
} \ | |||
#define INSTANCE_AB(type1, type2, a, b, direction) \ | |||
if (param.out_w > b * 4) { \ | |||
if (direction == DepthwiseConv2dDirection::DIRECTION_BACKWARD || \ | |||
(param.stride_h == 1 && param.stride_w == 1)) { \ | |||
LaunchDepthwiseConv2dGPU<type1, type2, direction, a + 2, b + 1, 1>( \ | |||
param, src, flt, dst, stream); \ | |||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||
LaunchDepthwiseConv2dGPU<type1, type2, direction, a + 2, b + 1, 2>( \ | |||
param, src, flt, dst, stream); \ | |||
} \ | |||
} | |||
#define INSTANCE_A(type1, type2, a, direction) \ |
@@ -21,7 +21,7 @@ using namespace cuda; | |||
using namespace conv_bias; | |||
using namespace chanwise; | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.inl" | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
@@ -9,6 +9,7 @@ | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh" | |||
#include "src/common/conv_bias.h" | |||
#include "src/cuda/conv_bias/algo.h" | |||
#include "src/cuda/conv_bias/chanwise/kern.cuh" | |||
@@ -20,26 +21,13 @@ using namespace conv_bias; | |||
namespace { | |||
inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | |||
auto&& device_prop = cuda::current_device_prop(); | |||
int flt_smem_w = (param.flt_w + 3) / 4 * 4; | |||
int flt_smem_h = 3; | |||
int flt_reg_per_thread = | |||
flt_smem_w > 32 ? (flt_smem_w + 31) / 32 : 1 + flt_smem_w / 4; | |||
int ow = param.out_w > 64 ? 64 : param.out_w; | |||
int src_smem_w = ow + flt_smem_w - 1; | |||
int src_smem_h = flt_smem_h + param.flt_h - 1; | |||
int src_reg_per_thread = src_smem_w > 128 ? (flt_smem_w + 127) / 128 | |||
: 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1; | |||
int out_reg_per_thread = (ow + 3) / 4 * 4; | |||
if (device_prop.regsPerBlock < 4 * 32 * | |||
(flt_reg_per_thread * 2 + | |||
src_reg_per_thread + out_reg_per_thread) || | |||
device_prop.sharedMemPerBlock < | |||
static_cast<size_t>( | |||
flt_smem_w * flt_smem_h * 2 + src_smem_w * src_smem_h)) { | |||
return false; | |||
if ((param.stride_h == 1 && param.stride_w == 1) || | |||
(param.stride_h == 2 && param.stride_w == 2)) { | |||
auto&& device_prop = cuda::current_device_prop(); | |||
static int const unroll_oh = 1, unroll_fh = 1; | |||
CHECK(FWD) | |||
} | |||
return true; | |||
return false; | |||
} | |||
} // anonymous namespace | |||
@@ -64,8 +52,8 @@ bool ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::is_available( | |||
return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | |||
args.src_layout->dtype.category() == DTypeCategory::FLOAT && | |||
args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | |||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.dilation[0] == 1 && | |||
fm.dilation[1] == 1 && !fm.should_flip && | |||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.ocpg == 1 && | |||
fm.dilation[0] == 1 && fm.dilation[1] == 1 && !fm.should_flip && | |||
is_available_depthwise_large_filter(param); | |||
} | |||
@@ -68,7 +68,7 @@ public: | |||
const TensorLayout& grad); | |||
convolution::ForwardSizeArgs as_fwd_args() const { | |||
return {handle, diff_layout, filter_layout, filter_meta, grad_layout}; | |||
return {handle, grad_layout, filter_layout, filter_meta, diff_layout}; | |||
} | |||
}; | |||
struct ExecArgs : public SizeArgs { | |||
@@ -9,6 +9,7 @@ | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh" | |||
#include "src/cuda/convolution/backward_data/algo.h" | |||
#include "src/cuda/convolution/chanwise/kern.cuh" | |||
#include "src/cuda/utils.h" | |||
@@ -19,29 +20,13 @@ using namespace convolution; | |||
namespace { | |||
inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | |||
auto&& device_prop = cuda::current_device_prop(); | |||
int flt_smem_w = (param.flt_w + 3) / 4 * 4; | |||
int flt_smem_h = 3; | |||
int flt_reg_per_thread = | |||
flt_smem_w > 32 ? (flt_smem_w + 31) / 32 : 1 + flt_smem_w / 4; | |||
int ow = param.out_w > 64 ? 64 : param.out_w; | |||
int src_smem_w = ow + flt_smem_w - 1; | |||
int src_smem_h = flt_smem_h + param.flt_h - 1; | |||
int src_reg_per_thread = src_smem_w > 128 ? (flt_smem_w + 127) / 128 | |||
: 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1; | |||
int out_reg_per_thread = (ow + 3) / 4 * 4; | |||
if (device_prop.regsPerBlock < 4 * 32 * | |||
(flt_reg_per_thread * 2 + | |||
src_reg_per_thread + out_reg_per_thread) || | |||
device_prop.sharedMemPerBlock < | |||
static_cast<size_t>( | |||
flt_smem_w * flt_smem_h * 2 + src_smem_w * src_smem_h)) { | |||
return false; | |||
if ((param.stride_h == 1 && param.stride_w == 1) || | |||
(param.stride_h == 2 && param.stride_w == 2)) { | |||
auto&& device_prop = cuda::current_device_prop(); | |||
static int const unroll_oh = 1, unroll_fh = 1; | |||
CHECK(BWD) | |||
} | |||
printf("param.src_w = %d, param.src_h = %d, param.out_w = %d, param.out_h = %d\n", | |||
param.src_w, param.src_h, param.out_w, param.out_h); | |||
return (param.stride_h == 1 && param.stride_w == 1) || | |||
(param.stride_h == 2 && param.stride_w == 2); | |||
return false; | |||
} | |||
} // anonymous namespace | |||
@@ -59,13 +44,15 @@ bool ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::is_available( | |||
return false; | |||
} | |||
auto param = chanwise::Param::from_fwd_args(args.as_fwd_args()); | |||
auto param = chanwise::Param::from_fwd_args( | |||
{args.handle, args.diff_layout, args.filter_layout, args.filter_meta, | |||
args.grad_layout}); | |||
auto&& fm = args.filter_meta; | |||
return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | |||
args.diff_layout->dtype.category() == DTypeCategory::FLOAT && | |||
args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | |||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.dilation[0] == 1 && | |||
fm.dilation[1] == 1 && !fm.should_flip && | |||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.ocpg == 1 && | |||
fm.dilation[0] == 1 && fm.dilation[1] == 1 && !fm.should_flip && | |||
is_available_depthwise_large_filter(param); | |||
} | |||
@@ -76,7 +63,9 @@ size_t ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::get_workspace_in_b | |||
void ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::exec( | |||
const ExecArgs& args) const { | |||
auto kparam = chanwise::Param::from_fwd_args(args.as_fwd_args()); | |||
auto kparam = chanwise::Param::from_fwd_args( | |||
{args.handle, args.diff_layout, args.filter_layout, args.filter_meta, | |||
args.grad_layout}); | |||
auto stream = cuda_stream(args.handle); | |||
switch (args.diff_layout->dtype.enumv()) { | |||
case DTypeEnum::Float32: | |||
@@ -1,5 +1,5 @@ | |||
/** | |||
* \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cu | |||
* \file dnn/src/cuda/conv_bias/chanwise/bwd_large_filter.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
@@ -21,7 +21,7 @@ using namespace cuda; | |||
using namespace convolution; | |||
using namespace chanwise; | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.inl" | |||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
@@ -739,7 +739,7 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) { | |||
param.sparse = param::Convolution::Sparse::GROUP; | |||
checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype); | |||
float scale = 64.f / sqrt(fh * fh); | |||
UniformFloatRNG rng(1.0, 1.0); | |||
UniformFloatRNG rng(scale, scale * 2); | |||
checker.set_rng(0, &rng).set_rng(1, &rng).set_rng(2, &rng); | |||
if (dtype.enumv() == DTypeEnum::Float16) | |||
checker.set_epsilon(1e-1); | |||
@@ -751,35 +751,35 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) { | |||
{n, g, h, h}}); | |||
}; | |||
run(4, 8, 32, 5, 5 / 2, 1); | |||
run(4, 8, 32, 7, 7/2, 1); | |||
run(4, 8, 32, 9, 9/2, 1); | |||
run(4, 8, 32, 11, 11/2, 1); | |||
run(4, 8, 32, 13, 13/2, 1); | |||
run(4, 8, 32, 15, 15/2, 1); | |||
run(4, 8, 32, 17, 17/2, 1); | |||
run(4, 8, 32, 19, 19/2, 1); | |||
run(4, 8, 32, 21, 21/2, 1); | |||
run(4, 8, 32, 23, 23/2, 1); | |||
run(4, 8, 32, 25, 25/2, 1); | |||
run(4, 8, 32, 27, 27/2, 1); | |||
run(4, 8, 32, 29, 29/2, 1); | |||
run(4, 8, 32, 31, 31/2, 1); | |||
run(4, 8, 32, 7, 7 / 2, 1); | |||
run(4, 8, 32, 9, 9 / 2, 1); | |||
run(4, 8, 32, 11, 11 / 2, 1); | |||
run(4, 8, 32, 13, 13 / 2, 1); | |||
run(4, 8, 32, 15, 15 / 2, 1); | |||
run(4, 8, 32, 17, 17 / 2, 1); | |||
run(4, 8, 32, 19, 19 / 2, 1); | |||
run(4, 8, 32, 21, 21 / 2, 1); | |||
run(4, 8, 32, 23, 23 / 2, 1); | |||
run(4, 8, 32, 25, 25 / 2, 1); | |||
run(4, 8, 32, 27, 27 / 2, 1); | |||
run(4, 8, 32, 29, 29 / 2, 1); | |||
run(4, 8, 32, 31, 31 / 2, 1); | |||
run(4, 8, 64, 5, 5 / 2, 2); | |||
run(4, 8, 64, 7, 7/3, 2); | |||
run(4, 8, 64, 9, 9/3, 2); | |||
run(4, 8, 64, 11, 11/3, 2); | |||
run(4, 8, 64, 13, 13/3, 2); | |||
run(4, 8, 64, 15, 15/3, 2); | |||
run(4, 8, 64, 17, 17/3, 2); | |||
run(4, 8, 64, 19, 19/3, 2); | |||
run(4, 8, 64, 21, 21/3, 2); | |||
run(4, 8, 64, 23, 23/3, 2); | |||
run(4, 8, 64, 25, 25/3, 2); | |||
run(4, 8, 64, 27, 27/3, 2); | |||
run(4, 8, 64, 29, 29/3, 2); | |||
run(4, 8, 64, 31, 31/3, 2); | |||
run(1, 2, 128, 31, 31/3, 2); | |||
run(1, 2, 256, 31, 31/3, 2); | |||
run(4, 8, 64, 7, 7 / 3, 2); | |||
run(4, 8, 64, 9, 9 / 3, 2); | |||
run(4, 8, 64, 11, 11 / 3, 2); | |||
run(4, 8, 64, 13, 13 / 3, 2); | |||
run(4, 8, 64, 15, 15 / 3, 2); | |||
run(4, 8, 64, 17, 17 / 3, 2); | |||
run(4, 8, 64, 19, 19 / 3, 2); | |||
run(4, 8, 64, 21, 21 / 3, 2); | |||
run(4, 8, 64, 23, 23 / 3, 2); | |||
run(4, 8, 64, 25, 25 / 3, 2); | |||
run(4, 8, 64, 27, 27 / 3, 2); | |||
run(4, 8, 64, 29, 29 / 3, 2); | |||
run(4, 8, 64, 31, 31 / 3, 2); | |||
run(1, 2, 128, 31, 31 / 3, 2); | |||
run(1, 2, 256, 31, 31 / 3, 2); | |||
} | |||
} | |||