@@ -0,0 +1,179 @@ | |||||
/** | |||||
* \file dnn/src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||||
* | |||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||||
* | |||||
* Unless required by applicable law or agreed to in writing, | |||||
* software distributed under the License is distributed on an | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
*/ | |||||
#pragma once | |||||
namespace { | |||||
#define DIVUP(x, y) (((x) + (y)-1) / (y)) | |||||
enum DepthwiseConv2dDirection { DIRECTION_FORWARD, DIRECTION_BACKWARD }; | |||||
template <typename ThreadConfig_, int oh_, int ow_> | |||||
struct OutTileConfig { | |||||
using ThreadConfig = ThreadConfig_; | |||||
static int const unroll_h = oh_; | |||||
static int const unroll_w = ThreadConfig::thread_x * ow_; | |||||
static int const unroll_size = unroll_h * unroll_w; | |||||
static int const block_h = unroll_h * ThreadConfig::thread_y; | |||||
static int const block_w = unroll_w; | |||||
}; | |||||
template <int fh_, int fw_> | |||||
struct FilterTileConfig { | |||||
static int const unroll_h = fh_; | |||||
static int const unroll_w = fw_; | |||||
static int const unroll_size = unroll_h * unroll_w; | |||||
}; | |||||
template <int x_, int y_> | |||||
struct ThreadConfig { | |||||
static int const thread_x = x_; | |||||
static_assert((thread_x & (thread_x - 1)) == 0, "thread_x must be pow of 2!"); | |||||
static int const thread_y = y_; | |||||
static int const nr_threads = x_ * y_; | |||||
}; | |||||
template < | |||||
typename ldg_dtype, typename ThreadConfig_, typename OutTileConfig_, | |||||
typename FilterTileConfig_, int stride_w, int stride_h> | |||||
struct ConvTraitInner { | |||||
using ThreadConfig = ThreadConfig_; | |||||
using OutTileConfig = OutTileConfig_; | |||||
using FilterTileConfig = FilterTileConfig_; | |||||
using CompType = ldg_dtype; | |||||
struct SrcTileConfig { | |||||
static int const unroll_h = | |||||
OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1; | |||||
static int const unroll_w = | |||||
(OutTileConfig::unroll_w - 1) * stride_w + FilterTileConfig::unroll_w; | |||||
static int const unroll_size = unroll_h * unroll_w; | |||||
}; | |||||
struct SrcTileCount { | |||||
static int const smem_src_h = | |||||
(OutTileConfig::block_h - 1) * stride_h + FilterTileConfig::unroll_h; | |||||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||||
static int const smem_load_h = smem_src_h + smem_buff_h; | |||||
static int const smem_h = smem_load_h + smem_buff_h; | |||||
static int const smem_w = | |||||
DIVUP((OutTileConfig::block_w - 1) * stride_w + | |||||
FilterTileConfig::unroll_w * ThreadConfig::thread_x, | |||||
2) * | |||||
2; | |||||
static int const smem_size = smem_h * smem_w; | |||||
static int const load_w = | |||||
smem_w > ThreadConfig::nr_threads ? ThreadConfig::nr_threads : smem_w; | |||||
static int const load_h = 1; | |||||
static int const reg_h = 1; | |||||
static int const reg_w = DIVUP(smem_w, load_w); | |||||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||||
}; | |||||
struct FilterTileCount { | |||||
static int const smem_flt_h = FilterTileConfig::unroll_h; | |||||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||||
static int const smem_load_h = smem_flt_h + smem_buff_h; | |||||
static int const smem_h = smem_load_h + smem_buff_h; | |||||
static int const smem_w = FilterTileConfig::unroll_w * ThreadConfig::thread_x; | |||||
static int const smem_size = smem_h * smem_w; | |||||
static int const load_w = smem_w > 32 ? 32 : smem_w; | |||||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||||
static int const reg_h = 1; | |||||
static int const reg_w = DIVUP(smem_w, load_w); | |||||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||||
}; | |||||
}; | |||||
#define CHECK_AB_FWD(a, b) \ | |||||
if (param.out_w > b * 4) { \ | |||||
if (param.stride_h == 1 && param.stride_w == 1) { \ | |||||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||||
using IConvTrait = ConvTraitInner< \ | |||||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 1, 1>; \ | |||||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||||
\ | |||||
if (device_prop.regsPerBlock < \ | |||||
4 * 32 * \ | |||||
(FilterTileConfig_::unroll_h * \ | |||||
FilterTileConfig_::unroll_w * 2 + \ | |||||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||||
device_prop.sharedMemPerBlock < \ | |||||
static_cast<size_t>( \ | |||||
(SrcTileCount::smem_size + \ | |||||
FilterTileCount::smem_size))) { \ | |||||
return false; \ | |||||
} \ | |||||
return true; \ | |||||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||||
using IConvTrait = ConvTraitInner< \ | |||||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 2, 2>; \ | |||||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||||
\ | |||||
if (device_prop.regsPerBlock < \ | |||||
4 * 32 * \ | |||||
(FilterTileConfig_::unroll_h * \ | |||||
FilterTileConfig_::unroll_w * 2 + \ | |||||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||||
device_prop.sharedMemPerBlock < \ | |||||
static_cast<size_t>( \ | |||||
(SrcTileCount::smem_size + \ | |||||
FilterTileCount::smem_size))) { \ | |||||
return false; \ | |||||
} \ | |||||
return true; \ | |||||
} \ | |||||
} | |||||
#define CHECK_AB_BWD(a, b) \ | |||||
if (param.out_w > b * 4) { \ | |||||
using FilterTileConfig_ = FilterTileConfig<unroll_fh, a + 2>; \ | |||||
using ThreadConfig_ = ThreadConfig<4, 32>; \ | |||||
using OutTileConfig_ = OutTileConfig<ThreadConfig_, unroll_oh, b + 1>; \ | |||||
using IConvTrait = ConvTraitInner< \ | |||||
float, ThreadConfig_, OutTileConfig_, FilterTileConfig_, 1, 1>; \ | |||||
using SrcTileConfig = typename IConvTrait::SrcTileConfig; \ | |||||
using SrcTileCount = typename IConvTrait::SrcTileCount; \ | |||||
using FilterTileCount = typename IConvTrait::FilterTileCount; \ | |||||
\ | |||||
if (device_prop.regsPerBlock < \ | |||||
4 * 32 * \ | |||||
(FilterTileConfig_::unroll_h * \ | |||||
FilterTileConfig_::unroll_w * 2 + \ | |||||
SrcTileConfig::unroll_h * SrcTileConfig::unroll_w) || \ | |||||
device_prop.sharedMemPerBlock < \ | |||||
static_cast<size_t>( \ | |||||
(SrcTileCount::smem_size + FilterTileCount::smem_size))) { \ | |||||
return false; \ | |||||
} \ | |||||
return true; \ | |||||
} | |||||
#define CHECK_A(a, cb) \ | |||||
if (param.flt_w > a * 4) { \ | |||||
CHECK_AB_##cb( \ | |||||
a, \ | |||||
15) else CHECK_AB_##cb(a, 14) else CHECK_AB_##cb(a, 13) else CHECK_AB_##cb(a, 12) else CHECK_AB_##cb(a, 11) else CHECK_AB_##cb(a, 10) else CHECK_AB_##cb(a, 9) else CHECK_AB_##cb(a, 8) else CHECK_AB_##cb(a, 7) else CHECK_AB_##cb(a, 6) else CHECK_AB_##cb(a, 5) else CHECK_AB_##cb(a, 4) else CHECK_AB_##cb(a, 3) else CHECK_AB_##cb(a, 2) else CHECK_AB_##cb(a, 1) else CHECK_AB_##cb(a, 0) \ | |||||
} | |||||
#define CHECK(cb) \ | |||||
CHECK_A(6, cb) \ | |||||
else CHECK_A(4, cb) else CHECK_A(2, cb) else CHECK_A(0, cb) | |||||
} // namespace |
@@ -1,5 +1,5 @@ | |||||
/** | /** | ||||
* \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.inl | |||||
* \file dnn/src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | ||||
* | * | ||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | ||||
@@ -9,35 +9,10 @@ | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
*/ | */ | ||||
#pragma once | #pragma once | ||||
#include "depthwise_large_filter.cuh" | |||||
#include "src/cuda/cuda_shfl_compat.cuh" | #include "src/cuda/cuda_shfl_compat.cuh" | ||||
namespace { | |||||
enum DepthwiseConv2dDirection { DIRECTION_FORWARD, DIRECTION_BACKWARD }; | |||||
template <typename ThreadConfig_, int oh_, int ow_> | |||||
struct OutTileConfig { | |||||
using ThreadConfig = ThreadConfig_; | |||||
static int const unroll_h = oh_; | |||||
static int const unroll_w = ThreadConfig::thread_x * ow_; | |||||
static int const unroll_size = unroll_h * unroll_w; | |||||
static int const block_h = unroll_h * ThreadConfig::thread_y; | |||||
static int const block_w = unroll_w; | |||||
}; | |||||
template <int fh_, int fw_> | |||||
struct FilterTileConfig { | |||||
static int const unroll_h = fh_; | |||||
static int const unroll_w = fw_; | |||||
static int const unroll_size = unroll_h * unroll_w; | |||||
}; | |||||
template <int x_, int y_> | |||||
struct ThreadConfig { | |||||
static int const thread_x = x_; | |||||
static_assert((thread_x & (thread_x - 1)) == 0, "thread_x must be pow of 2!"); | |||||
static int const thread_y = y_; | |||||
static int const nr_threads = x_ * y_; | |||||
}; | |||||
namespace { | |||||
template < | template < | ||||
typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | typename T, DepthwiseConv2dDirection kDirection, typename ThreadConfig_, | ||||
@@ -87,49 +62,12 @@ struct ConvTrait { | |||||
using FilterTileConfig = FilterTileConfig_; | using FilterTileConfig = FilterTileConfig_; | ||||
using CompType = ldg_dtype; | using CompType = ldg_dtype; | ||||
struct SrcTileConfig { | |||||
static int const unroll_h = | |||||
OutTileConfig::unroll_h + FilterTileConfig::unroll_h - 1; | |||||
static int const unroll_w = | |||||
(OutTileConfig::unroll_w - 1) * stride_w + FilterTileConfig::unroll_w; | |||||
static int const unroll_size = unroll_h * unroll_w; | |||||
}; | |||||
struct SrcTileCount { | |||||
static int const smem_src_h = | |||||
(OutTileConfig::block_h - 1) * stride_h + FilterTileConfig::unroll_h; | |||||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||||
static int const smem_load_h = smem_src_h + smem_buff_h; | |||||
static int const smem_h = smem_load_h + smem_buff_h; | |||||
static int const smem_w = | |||||
DIVUP((OutTileConfig::block_w - 1) * stride_w + | |||||
FilterTileConfig::unroll_w * ThreadConfig::thread_x, | |||||
2) * | |||||
2; | |||||
static int const smem_size = smem_h * smem_w; | |||||
static int const load_w = | |||||
smem_w > ThreadConfig::nr_threads ? ThreadConfig::nr_threads : smem_w; | |||||
static int const load_h = 1; | |||||
static int const reg_h = 1; | |||||
static int const reg_w = DIVUP(smem_w, load_w); | |||||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||||
}; | |||||
struct FilterTileCount { | |||||
static int const smem_flt_h = FilterTileConfig::unroll_h; | |||||
static int const smem_buff_h = FilterTileConfig::unroll_h; | |||||
static int const smem_load_h = smem_flt_h + smem_buff_h; | |||||
static int const smem_h = smem_load_h + smem_buff_h; | |||||
static int const smem_w = FilterTileConfig::unroll_w * ThreadConfig::thread_x; | |||||
static int const smem_size = smem_h * smem_w; | |||||
static int const load_w = smem_w > 32 ? 32 : smem_w; | |||||
static int const load_h = ThreadConfig::nr_threads / load_w; | |||||
static int const reg_h = 1; | |||||
static int const reg_w = DIVUP(smem_w, load_w); | |||||
static bool constexpr check_bounds_h = smem_h % load_h != 0; | |||||
static bool constexpr check_bounds_w = smem_w % load_w != 0; | |||||
}; | |||||
using CI = ConvTraitInner< | |||||
ldg_dtype, ThreadConfig_, OutTileConfig_, FilterTileConfig_, stride_w, | |||||
stride_h>; | |||||
using SrcTileConfig = typename CI::SrcTileConfig; | |||||
using SrcTileCount = typename CI::SrcTileCount; | |||||
using FilterTileCount = typename CI::FilterTileCount; | |||||
using SrcGlobal2ShareVisitor = Global2SharedMem< | using SrcGlobal2ShareVisitor = Global2SharedMem< | ||||
CompType, DepthwiseConv2dDirection::DIRECTION_FORWARD, ThreadConfig, | CompType, DepthwiseConv2dDirection::DIRECTION_FORWARD, ThreadConfig, | ||||
@@ -272,14 +210,15 @@ __device__ __forceinline__ void Global2SharedMem< | |||||
// CUDA kernel to compute the depthwise convolution forward pass in NCHW format, | // CUDA kernel to compute the depthwise convolution forward pass in NCHW format, | ||||
// tailored for small images up to 32x32. Stride and depth multiplier must be 1. | // tailored for small images up to 32x32. Stride and depth multiplier must be 1. | ||||
// Padding must be 'SAME', which allows to reuse the index computation. Only | // Padding must be 'SAME', which allows to reuse the index computation. Only | ||||
// use this kernel if CanLaunchDepthwiseConv2dGPUSmall(args) returns true. | |||||
// use this kernel if CanLaunchDepthwiseConv2dGPU(args) returns true. | |||||
// Tiles of the input and filter tensors are loaded into shared memory before | // Tiles of the input and filter tensors are loaded into shared memory before | ||||
// performing the convolution. Each thread handles two elements per iteration, | // performing the convolution. Each thread handles two elements per iteration, | ||||
// one each in the lower and upper half of a tile. | // one each in the lower and upper half of a tile. | ||||
// Backprop input direction is the same as forward direction with the filter | // Backprop input direction is the same as forward direction with the filter | ||||
// rotated by 180°. | // rotated by 180°. | ||||
#if CUDA_VERSION >= 9000 | |||||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | ||||
__global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
__global__ void DepthwiseConv2dGPUKernelNCHW( | |||||
const Param param, const __half* input, const __half* filter, __half* output) { | const Param param, const __half* input, const __half* filter, __half* output) { | ||||
using T = __half; | using T = __half; | ||||
using T2 = __half2; | using T2 = __half2; | ||||
@@ -380,16 +319,18 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
f_w * 2; | f_w * 2; | ||||
reg_flt[0][f_h * t2_flt_unroll_w + f_w] = | reg_flt[0][f_h * t2_flt_unroll_w + f_w] = | ||||
*reinterpret_cast<T2*>(smem_flt_ptr + flt_offset); | *reinterpret_cast<T2*>(smem_flt_ptr + flt_offset); | ||||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = { | |||||
f_w > 0 ? reg_flt[0][f_h * t2_flt_unroll_w + f_w - 1].y | |||||
: static_cast<T>(0.0), | |||||
reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||||
if (f_w > 0) { | |||||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = { | |||||
reg_flt[0][f_h * t2_flt_unroll_w + f_w - 1].y, | |||||
reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||||
} else { | |||||
reg_flt[1][f_h * t2_flt_unroll_w + f_w] = { | |||||
0.0, reg_flt[0][f_h * t2_flt_unroll_w + f_w].x}; | |||||
} | |||||
} | } | ||||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = { | |||||
static_cast<T>(0.0), static_cast<T>(0.0)}; | |||||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = {0.0, 0.0}; | |||||
reg_flt[1][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = { | reg_flt[1][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 1] = { | ||||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 2].y, | |||||
static_cast<T>(0.0)}; | |||||
reg_flt[0][f_h * t2_flt_unroll_w + t2_flt_unroll_w - 2].y, 0.0}; | |||||
} | } | ||||
#pragma unroll | #pragma unroll | ||||
@@ -444,9 +385,10 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
} | } | ||||
} | } | ||||
} | } | ||||
#endif | |||||
template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | template <typename ConvTrait, DepthwiseConv2dDirection kDirection> | ||||
__global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
__global__ void DepthwiseConv2dGPUKernelNCHW( | |||||
const Param param, const float* input, const float* filter, float* output) { | const Param param, const float* input, const float* filter, float* output) { | ||||
using T = float; | using T = float; | ||||
using T2 = float2; | using T2 = float2; | ||||
@@ -530,11 +472,6 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
[(off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h * | [(off_oh * stride_h + fh + s_h) % SrcTileCount::smem_h * | ||||
SrcTileCount::smem_w + | SrcTileCount::smem_w + | ||||
s_w]; | s_w]; | ||||
if (off_ochannel == 0 && off_obw == 0 && off_obh == 0 && off_oh == 30 && | |||||
off_ow == 0) { | |||||
printf("reg_src[%d] = %f\n", s_h * SrcTileConfig::unroll_w + s_w, | |||||
reg_src[s_h * SrcTileConfig::unroll_w + s_w]); | |||||
} | |||||
} | } | ||||
} | } | ||||
@@ -561,15 +498,6 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] * | reg_flt[inner_fh * FilterTileConfig::unroll_w + fw] * | ||||
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw + | reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + fw + | ||||
ow * stride_w]; | ow * stride_w]; | ||||
if (off_ochannel == 0 && off_obw == 0 && off_obh == 0 && | |||||
off_oh == 30) { | |||||
printf("sum[%d] += %f * %f\nsum = %f\n", | |||||
oh * OutTileConfig::unroll_w + ow, | |||||
reg_flt[inner_fh * FilterTileConfig::unroll_w + fw], | |||||
reg_src[(inner_fh + oh) * SrcTileConfig::unroll_w + | |||||
fw + ow * stride_w], | |||||
sum[oh * OutTileConfig::unroll_w + ow]); | |||||
} | |||||
} | } | ||||
} | } | ||||
} | } | ||||
@@ -610,7 +538,7 @@ __global__ void DepthwiseConv2dGPUKernelNCHWSmall( | |||||
template < | template < | ||||
typename T, typename T2, DepthwiseConv2dDirection kDirection, int unroll_fw, | typename T, typename T2, DepthwiseConv2dDirection kDirection, int unroll_fw, | ||||
int unroll_ow, int stride> | int unroll_ow, int stride> | ||||
void LaunchDepthwiseConv2dGPUSmall( | |||||
void LaunchDepthwiseConv2dGPU( | |||||
const Param& param, const T* input, const T* filter, T* output, | const Param& param, const T* input, const T* filter, T* output, | ||||
cudaStream_t stream) { | cudaStream_t stream) { | ||||
static int const unroll_oh = 1, unroll_fh = 1; | static int const unroll_oh = 1, unroll_fh = 1; | ||||
@@ -633,22 +561,21 @@ void LaunchDepthwiseConv2dGPUSmall( | |||||
(SrcTileCount::smem_size + FilterTileCount::smem_size) * sizeof(T); | (SrcTileCount::smem_size + FilterTileCount::smem_size) * sizeof(T); | ||||
void (*kernel)(const Param, const T*, const T*, T*); | void (*kernel)(const Param, const T*, const T*, T*); | ||||
kernel = DepthwiseConv2dGPUKernelNCHWSmall<IConvTrait, kDirection>; | |||||
kernel = DepthwiseConv2dGPUKernelNCHW<IConvTrait, kDirection>; | |||||
kernel<<<grid, block, shared_storage, stream>>>(param, input, filter, output); | kernel<<<grid, block, shared_storage, stream>>>(param, input, filter, output); | ||||
after_kernel_launch(); | after_kernel_launch(); | ||||
} | } | ||||
#define INSTANCE_AB(type1, type2, a, b, direction) \ | |||||
if (param.out_w > b * 4) { \ | |||||
printf("param.out_w = %d, b = %d\n", param.out_w, b); \ | |||||
if (direction == DepthwiseConv2dDirection::DIRECTION_BACKWARD || \ | |||||
(param.stride_h == 1 && param.stride_w == 1)) { \ | |||||
LaunchDepthwiseConv2dGPUSmall<type1, type2, direction, a + 2, b + 1, 1>( \ | |||||
param, src, flt, dst, stream); \ | |||||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||||
LaunchDepthwiseConv2dGPUSmall<type1, type2, direction, a + 2, b + 1, 2>( \ | |||||
param, src, flt, dst, stream); \ | |||||
} \ | |||||
#define INSTANCE_AB(type1, type2, a, b, direction) \ | |||||
if (param.out_w > b * 4) { \ | |||||
if (direction == DepthwiseConv2dDirection::DIRECTION_BACKWARD || \ | |||||
(param.stride_h == 1 && param.stride_w == 1)) { \ | |||||
LaunchDepthwiseConv2dGPU<type1, type2, direction, a + 2, b + 1, 1>( \ | |||||
param, src, flt, dst, stream); \ | |||||
} else if (param.stride_h == 2 && param.stride_w == 2) { \ | |||||
LaunchDepthwiseConv2dGPU<type1, type2, direction, a + 2, b + 1, 2>( \ | |||||
param, src, flt, dst, stream); \ | |||||
} \ | |||||
} | } | ||||
#define INSTANCE_A(type1, type2, a, direction) \ | #define INSTANCE_A(type1, type2, a, direction) \ |
@@ -21,7 +21,7 @@ using namespace cuda; | |||||
using namespace conv_bias; | using namespace conv_bias; | ||||
using namespace chanwise; | using namespace chanwise; | ||||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.inl" | |||||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh" | |||||
namespace megdnn { | namespace megdnn { | ||||
namespace cuda { | namespace cuda { | ||||
@@ -9,6 +9,7 @@ | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
*/ | */ | ||||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh" | |||||
#include "src/common/conv_bias.h" | #include "src/common/conv_bias.h" | ||||
#include "src/cuda/conv_bias/algo.h" | #include "src/cuda/conv_bias/algo.h" | ||||
#include "src/cuda/conv_bias/chanwise/kern.cuh" | #include "src/cuda/conv_bias/chanwise/kern.cuh" | ||||
@@ -20,26 +21,13 @@ using namespace conv_bias; | |||||
namespace { | namespace { | ||||
inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | ||||
auto&& device_prop = cuda::current_device_prop(); | |||||
int flt_smem_w = (param.flt_w + 3) / 4 * 4; | |||||
int flt_smem_h = 3; | |||||
int flt_reg_per_thread = | |||||
flt_smem_w > 32 ? (flt_smem_w + 31) / 32 : 1 + flt_smem_w / 4; | |||||
int ow = param.out_w > 64 ? 64 : param.out_w; | |||||
int src_smem_w = ow + flt_smem_w - 1; | |||||
int src_smem_h = flt_smem_h + param.flt_h - 1; | |||||
int src_reg_per_thread = src_smem_w > 128 ? (flt_smem_w + 127) / 128 | |||||
: 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1; | |||||
int out_reg_per_thread = (ow + 3) / 4 * 4; | |||||
if (device_prop.regsPerBlock < 4 * 32 * | |||||
(flt_reg_per_thread * 2 + | |||||
src_reg_per_thread + out_reg_per_thread) || | |||||
device_prop.sharedMemPerBlock < | |||||
static_cast<size_t>( | |||||
flt_smem_w * flt_smem_h * 2 + src_smem_w * src_smem_h)) { | |||||
return false; | |||||
if ((param.stride_h == 1 && param.stride_w == 1) || | |||||
(param.stride_h == 2 && param.stride_w == 2)) { | |||||
auto&& device_prop = cuda::current_device_prop(); | |||||
static int const unroll_oh = 1, unroll_fh = 1; | |||||
CHECK(FWD) | |||||
} | } | ||||
return true; | |||||
return false; | |||||
} | } | ||||
} // anonymous namespace | } // anonymous namespace | ||||
@@ -64,8 +52,8 @@ bool ConvBiasForwardImpl::AlgoDepthwiseLargeFilter::is_available( | |||||
return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | ||||
args.src_layout->dtype.category() == DTypeCategory::FLOAT && | args.src_layout->dtype.category() == DTypeCategory::FLOAT && | ||||
args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | ||||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.dilation[0] == 1 && | |||||
fm.dilation[1] == 1 && !fm.should_flip && | |||||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.ocpg == 1 && | |||||
fm.dilation[0] == 1 && fm.dilation[1] == 1 && !fm.should_flip && | |||||
is_available_depthwise_large_filter(param); | is_available_depthwise_large_filter(param); | ||||
} | } | ||||
@@ -68,7 +68,7 @@ public: | |||||
const TensorLayout& grad); | const TensorLayout& grad); | ||||
convolution::ForwardSizeArgs as_fwd_args() const { | convolution::ForwardSizeArgs as_fwd_args() const { | ||||
return {handle, diff_layout, filter_layout, filter_meta, grad_layout}; | |||||
return {handle, grad_layout, filter_layout, filter_meta, diff_layout}; | |||||
} | } | ||||
}; | }; | ||||
struct ExecArgs : public SizeArgs { | struct ExecArgs : public SizeArgs { | ||||
@@ -9,6 +9,7 @@ | |||||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | * "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
*/ | */ | ||||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter.cuh" | |||||
#include "src/cuda/convolution/backward_data/algo.h" | #include "src/cuda/convolution/backward_data/algo.h" | ||||
#include "src/cuda/convolution/chanwise/kern.cuh" | #include "src/cuda/convolution/chanwise/kern.cuh" | ||||
#include "src/cuda/utils.h" | #include "src/cuda/utils.h" | ||||
@@ -19,29 +20,13 @@ using namespace convolution; | |||||
namespace { | namespace { | ||||
inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | inline bool is_available_depthwise_large_filter(const chanwise::Param& param) { | ||||
auto&& device_prop = cuda::current_device_prop(); | |||||
int flt_smem_w = (param.flt_w + 3) / 4 * 4; | |||||
int flt_smem_h = 3; | |||||
int flt_reg_per_thread = | |||||
flt_smem_w > 32 ? (flt_smem_w + 31) / 32 : 1 + flt_smem_w / 4; | |||||
int ow = param.out_w > 64 ? 64 : param.out_w; | |||||
int src_smem_w = ow + flt_smem_w - 1; | |||||
int src_smem_h = flt_smem_h + param.flt_h - 1; | |||||
int src_reg_per_thread = src_smem_w > 128 ? (flt_smem_w + 127) / 128 | |||||
: 1 + (ow + 3) / 4 + flt_smem_w / 4 - 1; | |||||
int out_reg_per_thread = (ow + 3) / 4 * 4; | |||||
if (device_prop.regsPerBlock < 4 * 32 * | |||||
(flt_reg_per_thread * 2 + | |||||
src_reg_per_thread + out_reg_per_thread) || | |||||
device_prop.sharedMemPerBlock < | |||||
static_cast<size_t>( | |||||
flt_smem_w * flt_smem_h * 2 + src_smem_w * src_smem_h)) { | |||||
return false; | |||||
if ((param.stride_h == 1 && param.stride_w == 1) || | |||||
(param.stride_h == 2 && param.stride_w == 2)) { | |||||
auto&& device_prop = cuda::current_device_prop(); | |||||
static int const unroll_oh = 1, unroll_fh = 1; | |||||
CHECK(BWD) | |||||
} | } | ||||
printf("param.src_w = %d, param.src_h = %d, param.out_w = %d, param.out_h = %d\n", | |||||
param.src_w, param.src_h, param.out_w, param.out_h); | |||||
return (param.stride_h == 1 && param.stride_w == 1) || | |||||
(param.stride_h == 2 && param.stride_w == 2); | |||||
return false; | |||||
} | } | ||||
} // anonymous namespace | } // anonymous namespace | ||||
@@ -59,13 +44,15 @@ bool ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::is_available( | |||||
return false; | return false; | ||||
} | } | ||||
auto param = chanwise::Param::from_fwd_args(args.as_fwd_args()); | |||||
auto param = chanwise::Param::from_fwd_args( | |||||
{args.handle, args.diff_layout, args.filter_layout, args.filter_meta, | |||||
args.grad_layout}); | |||||
auto&& fm = args.filter_meta; | auto&& fm = args.filter_meta; | ||||
return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | return fm.group > 1 && args.filter_meta.format == Param::Format::NCHW && | ||||
args.diff_layout->dtype.category() == DTypeCategory::FLOAT && | args.diff_layout->dtype.category() == DTypeCategory::FLOAT && | ||||
args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | args.opr->param().compute_mode == Param::ComputeMode::DEFAULT && | ||||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.dilation[0] == 1 && | |||||
fm.dilation[1] == 1 && !fm.should_flip && | |||||
fm.spatial_ndim == 2 && fm.icpg == 1 && fm.ocpg == 1 && | |||||
fm.dilation[0] == 1 && fm.dilation[1] == 1 && !fm.should_flip && | |||||
is_available_depthwise_large_filter(param); | is_available_depthwise_large_filter(param); | ||||
} | } | ||||
@@ -76,7 +63,9 @@ size_t ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::get_workspace_in_b | |||||
void ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::exec( | void ConvolutionBackwardDataImpl::AlgoDepthwiseLargeFilter::exec( | ||||
const ExecArgs& args) const { | const ExecArgs& args) const { | ||||
auto kparam = chanwise::Param::from_fwd_args(args.as_fwd_args()); | |||||
auto kparam = chanwise::Param::from_fwd_args( | |||||
{args.handle, args.diff_layout, args.filter_layout, args.filter_meta, | |||||
args.grad_layout}); | |||||
auto stream = cuda_stream(args.handle); | auto stream = cuda_stream(args.handle); | ||||
switch (args.diff_layout->dtype.enumv()) { | switch (args.diff_layout->dtype.enumv()) { | ||||
case DTypeEnum::Float32: | case DTypeEnum::Float32: | ||||
@@ -1,5 +1,5 @@ | |||||
/** | /** | ||||
* \file dnn/src/cuda/conv_bias/chanwise/fwd_depthwise_large_filter.cu | |||||
* \file dnn/src/cuda/conv_bias/chanwise/bwd_large_filter.cu | |||||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | * MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | ||||
* | * | ||||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | * Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | ||||
@@ -21,7 +21,7 @@ using namespace cuda; | |||||
using namespace convolution; | using namespace convolution; | ||||
using namespace chanwise; | using namespace chanwise; | ||||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.inl" | |||||
#include "src/cuda/conv_bias/chanwise/depthwise_large_filter_algo.cuh" | |||||
namespace megdnn { | namespace megdnn { | ||||
namespace cuda { | namespace cuda { | ||||
@@ -739,7 +739,7 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) { | |||||
param.sparse = param::Convolution::Sparse::GROUP; | param.sparse = param::Convolution::Sparse::GROUP; | ||||
checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype); | checker.set_dtype(0, dtype).set_dtype(1, dtype).set_dtype(2, dtype); | ||||
float scale = 64.f / sqrt(fh * fh); | float scale = 64.f / sqrt(fh * fh); | ||||
UniformFloatRNG rng(1.0, 1.0); | |||||
UniformFloatRNG rng(scale, scale * 2); | |||||
checker.set_rng(0, &rng).set_rng(1, &rng).set_rng(2, &rng); | checker.set_rng(0, &rng).set_rng(1, &rng).set_rng(2, &rng); | ||||
if (dtype.enumv() == DTypeEnum::Float16) | if (dtype.enumv() == DTypeEnum::Float16) | ||||
checker.set_epsilon(1e-1); | checker.set_epsilon(1e-1); | ||||
@@ -751,35 +751,35 @@ TEST_F(CUDA, CONVOLUTION_BACKWARD_DEPTHWISE_LARGE_FILTER) { | |||||
{n, g, h, h}}); | {n, g, h, h}}); | ||||
}; | }; | ||||
run(4, 8, 32, 5, 5 / 2, 1); | run(4, 8, 32, 5, 5 / 2, 1); | ||||
run(4, 8, 32, 7, 7/2, 1); | |||||
run(4, 8, 32, 9, 9/2, 1); | |||||
run(4, 8, 32, 11, 11/2, 1); | |||||
run(4, 8, 32, 13, 13/2, 1); | |||||
run(4, 8, 32, 15, 15/2, 1); | |||||
run(4, 8, 32, 17, 17/2, 1); | |||||
run(4, 8, 32, 19, 19/2, 1); | |||||
run(4, 8, 32, 21, 21/2, 1); | |||||
run(4, 8, 32, 23, 23/2, 1); | |||||
run(4, 8, 32, 25, 25/2, 1); | |||||
run(4, 8, 32, 27, 27/2, 1); | |||||
run(4, 8, 32, 29, 29/2, 1); | |||||
run(4, 8, 32, 31, 31/2, 1); | |||||
run(4, 8, 32, 7, 7 / 2, 1); | |||||
run(4, 8, 32, 9, 9 / 2, 1); | |||||
run(4, 8, 32, 11, 11 / 2, 1); | |||||
run(4, 8, 32, 13, 13 / 2, 1); | |||||
run(4, 8, 32, 15, 15 / 2, 1); | |||||
run(4, 8, 32, 17, 17 / 2, 1); | |||||
run(4, 8, 32, 19, 19 / 2, 1); | |||||
run(4, 8, 32, 21, 21 / 2, 1); | |||||
run(4, 8, 32, 23, 23 / 2, 1); | |||||
run(4, 8, 32, 25, 25 / 2, 1); | |||||
run(4, 8, 32, 27, 27 / 2, 1); | |||||
run(4, 8, 32, 29, 29 / 2, 1); | |||||
run(4, 8, 32, 31, 31 / 2, 1); | |||||
run(4, 8, 64, 5, 5 / 2, 2); | run(4, 8, 64, 5, 5 / 2, 2); | ||||
run(4, 8, 64, 7, 7/3, 2); | |||||
run(4, 8, 64, 9, 9/3, 2); | |||||
run(4, 8, 64, 11, 11/3, 2); | |||||
run(4, 8, 64, 13, 13/3, 2); | |||||
run(4, 8, 64, 15, 15/3, 2); | |||||
run(4, 8, 64, 17, 17/3, 2); | |||||
run(4, 8, 64, 19, 19/3, 2); | |||||
run(4, 8, 64, 21, 21/3, 2); | |||||
run(4, 8, 64, 23, 23/3, 2); | |||||
run(4, 8, 64, 25, 25/3, 2); | |||||
run(4, 8, 64, 27, 27/3, 2); | |||||
run(4, 8, 64, 29, 29/3, 2); | |||||
run(4, 8, 64, 31, 31/3, 2); | |||||
run(1, 2, 128, 31, 31/3, 2); | |||||
run(1, 2, 256, 31, 31/3, 2); | |||||
run(4, 8, 64, 7, 7 / 3, 2); | |||||
run(4, 8, 64, 9, 9 / 3, 2); | |||||
run(4, 8, 64, 11, 11 / 3, 2); | |||||
run(4, 8, 64, 13, 13 / 3, 2); | |||||
run(4, 8, 64, 15, 15 / 3, 2); | |||||
run(4, 8, 64, 17, 17 / 3, 2); | |||||
run(4, 8, 64, 19, 19 / 3, 2); | |||||
run(4, 8, 64, 21, 21 / 3, 2); | |||||
run(4, 8, 64, 23, 23 / 3, 2); | |||||
run(4, 8, 64, 25, 25 / 3, 2); | |||||
run(4, 8, 64, 27, 27 / 3, 2); | |||||
run(4, 8, 64, 29, 29 / 3, 2); | |||||
run(4, 8, 64, 31, 31 / 3, 2); | |||||
run(1, 2, 128, 31, 31 / 3, 2); | |||||
run(1, 2, 256, 31, 31 / 3, 2); | |||||
} | } | ||||
} | } | ||||