GitOrigin-RevId: 92389341be
release-0.5
@@ -37,15 +37,14 @@ class QATModule(Module): | |||||
Set quantization related configs with ``qconfig``, including | Set quantization related configs with ``qconfig``, including | ||||
observer and fake_quant for weight and activation. | observer and fake_quant for weight and activation. | ||||
""" | """ | ||||
self.weight_observer = qconfig.weight_observer() | |||||
self.act_observer = qconfig.act_observer() | |||||
if qconfig.fake_quant is None: | |||||
self.weight_fake_quant = None | |||||
self.act_fake_quant = None | |||||
else: | |||||
self.weight_fake_quant = qconfig.fake_quant(self.weight_observer.dtype) | |||||
self.act_fake_quant = qconfig.fake_quant(self.act_observer.dtype) | |||||
def safe_call(func): | |||||
return func() if func is not None else None | |||||
self.weight_observer = safe_call(qconfig.weight_observer) | |||||
self.act_observer = safe_call(qconfig.act_observer) | |||||
self.weight_fake_quant = safe_call(qconfig.weight_fake_quant) | |||||
self.act_fake_quant = safe_call(qconfig.act_fake_quant) | |||||
def _apply_fakequant_with_observer( | def _apply_fakequant_with_observer( | ||||
self, target: Tensor, fake_quant: FakeQuantize, observer: Observer | self, target: Tensor, fake_quant: FakeQuantize, observer: Observer | ||||
@@ -19,7 +19,7 @@ from .observer import ObserverMode, Round | |||||
class _FakeQuantize(Module): | class _FakeQuantize(Module): | ||||
def __init__(self, dtype: str, enable: bool = True): | |||||
def __init__(self, dtype: str, narrow_range: bool = False, enable: bool = True): | |||||
super().__init__() | super().__init__() | ||||
if not dtype in _metadata_dict.keys(): | if not dtype in _metadata_dict.keys(): | ||||
raise ValueError( | raise ValueError( | ||||
@@ -28,7 +28,10 @@ class _FakeQuantize(Module): | |||||
) | ) | ||||
) | ) | ||||
self.dtype = dtype | self.dtype = dtype | ||||
self.qmin = _metadata_dict[dtype].qmin | |||||
self.narrow_range = narrow_range | |||||
self.qmin = ( | |||||
-_metadata_dict[dtype].qmax if narrow_range else _metadata_dict[dtype].qmin | |||||
) | |||||
self.qmax = _metadata_dict[dtype].qmax | self.qmax = _metadata_dict[dtype].qmax | ||||
self.enabled = enable | self.enabled = enable | ||||
@@ -90,12 +93,12 @@ class TQT_Function(Function): | |||||
class TQT(_FakeQuantize): | class TQT(_FakeQuantize): | ||||
""" | """ | ||||
TQT: https://arxiv.org/abs/1903.08066 Trained Quantization Thresholds | |||||
TQT: https://arxiv.org/abs/1903.08066 Trained Quantization Thresholds | |||||
for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks | for Accurate and Efficient Fixed-Point Inference of Deep Neural Networks | ||||
""" | """ | ||||
def __init__(self, dtype: str, enable: bool = True): | |||||
super().__init__(dtype, enable) | |||||
def __init__(self, dtype: str, narrow_range: bool = False, enable: bool = True): | |||||
super().__init__(dtype, narrow_range, enable) | |||||
self.scale = Parameter(0.0, dtype=np.float32) | self.scale = Parameter(0.0, dtype=np.float32) | ||||
def fake_quant_forward(self, inp, q_dict): | def fake_quant_forward(self, inp, q_dict): | ||||
@@ -116,6 +119,11 @@ class TQT(_FakeQuantize): | |||||
class FakeQuantize(_FakeQuantize): | class FakeQuantize(_FakeQuantize): | ||||
r""" | r""" | ||||
A module to do quant and dequant according to observer's scale and zero_point. | A module to do quant and dequant according to observer's scale and zero_point. | ||||
:param dtype: A string indicating the target quantization type of input. | |||||
:param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``, | |||||
instead of 1 greater. Usually True for weight and False for activation. | |||||
:param enable: Whether do ``normal_forward`` or ``fake_quant_forward``. | |||||
""" | """ | ||||
def fake_quant_forward(self, inp, q_dict): | def fake_quant_forward(self, inp, q_dict): | ||||
@@ -31,9 +31,11 @@ class Observer(Module): | |||||
A base class for Observer Module. | A base class for Observer Module. | ||||
:param dtype: a string indicating to collect scale and zero_point of which dtype | :param dtype: a string indicating to collect scale and zero_point of which dtype | ||||
:param narrow_range: Whether the absolute value of ``qmin`` is the same as ``qmax``, | |||||
instead of 1 greater. Usually True for weight and False for activation. | |||||
""" | """ | ||||
def __init__(self, dtype="qint8"): | |||||
def __init__(self, dtype: str, narrow_range: bool = False): | |||||
super().__init__() | super().__init__() | ||||
if dtype not in _metadata_dict.keys(): | if dtype not in _metadata_dict.keys(): | ||||
raise ValueError( | raise ValueError( | ||||
@@ -42,7 +44,10 @@ class Observer(Module): | |||||
) | ) | ||||
) | ) | ||||
self.dtype = dtype | self.dtype = dtype | ||||
self.qmin = _metadata_dict[dtype].qmin | |||||
self.narrow_range = narrow_range | |||||
self.qmin = ( | |||||
-_metadata_dict[dtype].qmax if narrow_range else _metadata_dict[dtype].qmin | |||||
) | |||||
self.qmax = _metadata_dict[dtype].qmax | self.qmax = _metadata_dict[dtype].qmax | ||||
self.enabled = True | self.enabled = True | ||||
@@ -96,8 +101,14 @@ def create_observer_dict(mode): | |||||
class MinMaxObserver(Observer): | class MinMaxObserver(Observer): | ||||
def __init__(self, mode=ObserverMode.SYMMERTIC, eps=0.00001, dtype="qint8"): | |||||
super().__init__(dtype) | |||||
def __init__( | |||||
self, | |||||
mode=ObserverMode.SYMMERTIC, | |||||
eps=0.00001, | |||||
dtype="qint8", | |||||
narrow_range: bool = False, | |||||
): | |||||
super().__init__(dtype, narrow_range) | |||||
self.mode = mode | self.mode = mode | ||||
self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32) | self.min_val = Buffer(np.finfo(np.float32).max, dtype=np.float32) | ||||
self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32) | self.max_val = Buffer(np.finfo(np.float32).min, dtype=np.float32) | ||||
@@ -153,9 +164,14 @@ class MinMaxObserver(Observer): | |||||
class ExponentialMovingAverageObserver(MinMaxObserver): | class ExponentialMovingAverageObserver(MinMaxObserver): | ||||
def __init__( | def __init__( | ||||
self, momentum=0.9, mode=ObserverMode.SYMMERTIC, eps=0.00001, dtype="qint8" | |||||
self, | |||||
momentum=0.9, | |||||
mode=ObserverMode.SYMMERTIC, | |||||
eps=0.00001, | |||||
dtype="qint8", | |||||
narrow_range: bool = False, | |||||
): | ): | ||||
super().__init__(mode, eps, dtype) | |||||
super().__init__(mode, eps, dtype, narrow_range) | |||||
self.momentum = Buffer(momentum) | self.momentum = Buffer(momentum) | ||||
self.runtime_momentum = Buffer(0.0) | self.runtime_momentum = Buffer(0.0) | ||||
@@ -188,11 +204,12 @@ class HistogramObserver(MinMaxObserver): | |||||
self, | self, | ||||
bins=2048, | bins=2048, | ||||
upsample_rate=128, | upsample_rate=128, | ||||
dtype="qint8", | |||||
mode=ObserverMode.SYMMERTIC, | mode=ObserverMode.SYMMERTIC, | ||||
eps=0.00001, | eps=0.00001, | ||||
dtype="qint8", | |||||
narrow_range: bool = False, | |||||
): | ): | ||||
super().__init__(mode, eps, dtype) | |||||
super().__init__(mode, eps, dtype, narrow_range) | |||||
self.bins = bins | self.bins = bins | ||||
self.upsample_rate = upsample_rate | self.upsample_rate = upsample_rate | ||||
self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1 | self.dst_nbins = _metadata_dict[dtype].qmax - _metadata_dict[dtype].qmin + 1 | ||||
@@ -5,6 +5,8 @@ | |||||
# Unless required by applicable law or agreed to in writing, | # Unless required by applicable law or agreed to in writing, | ||||
# software distributed under the License is distributed on an | # software distributed under the License is distributed on an | ||||
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | # "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
from functools import partial | |||||
from ..module import Module | from ..module import Module | ||||
from .fake_quant import TQT, FakeQuantize | from .fake_quant import TQT, FakeQuantize | ||||
from .observer import ( | from .observer import ( | ||||
@@ -22,9 +24,9 @@ class QConfig: | |||||
:param weight_observer: interface to instantiate an :class:`~.Observer` indicating | :param weight_observer: interface to instantiate an :class:`~.Observer` indicating | ||||
how to collect scales and zero_point of wegiht. | how to collect scales and zero_point of wegiht. | ||||
:param act_observer: similar to ``weight_observer`` but toward activation. | :param act_observer: similar to ``weight_observer`` but toward activation. | ||||
:param fake_quant: interface to instantiate a :class:`~.FakeQuantize` indicating | |||||
how to do fake_quant calculation. can be invoked multi times to get different | |||||
instance for each target tensor, for better control on enable and disable. | |||||
:param weight_fake_quant: interface to instantiate a :class:`~.FakeQuantize` indicating | |||||
how to do fake_quant calculation. | |||||
:param act_observer: similar to ``weight_fake_quant`` but toward activation. | |||||
Examples: | Examples: | ||||
@@ -32,14 +34,24 @@ class QConfig: | |||||
# Default EMA QConfig for QAT. | # Default EMA QConfig for QAT. | ||||
ema_fakequant_qconfig = QConfig( | ema_fakequant_qconfig = QConfig( | ||||
weight_observer=MinMaxObserver, | |||||
act_observer=ExponentialMovingAverageObserver, | |||||
fake_quant=FakeQuantize, | |||||
weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||||
act_observer=partial(ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False), | |||||
weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True), | |||||
act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False), | |||||
) | ) | ||||
Each parameter is a ``class`` rather than an instance. And we recommand using ``functools.partial`` | |||||
to add initialization parameters of the ``class``, so that don't need to provide parameters in | |||||
:meth:`~.QATModule.set_qconfig`. | |||||
Usually we set ``narrow_range`` of weight related paramters to ``True`` and of activation related | |||||
parameters to ``False``. For the result of multiplication and addition as ``a * b + c * d``, if | |||||
four variables are all -128 of dtype ``qint8``, then the result will be ``2^15`` and cause overflow. | |||||
Weights are commonly calculated in this way, so needed to narrow the range. | |||||
""" | """ | ||||
def __init__( | def __init__( | ||||
self, act_observer, weight_observer, fake_quant, | |||||
self, weight_observer, act_observer, weight_fake_quant, act_fake_quant | |||||
): | ): | ||||
if isinstance(act_observer, Module) or isinstance(weight_observer, Module): | if isinstance(act_observer, Module) or isinstance(weight_observer, Module): | ||||
raise ValueError( | raise ValueError( | ||||
@@ -47,30 +59,42 @@ class QConfig: | |||||
" class generator using `partial(Observer, ...)` instead. Use" | " class generator using `partial(Observer, ...)` instead. Use" | ||||
" partial(MyObserver, x=1) to override arguments to constructor if needed" | " partial(MyObserver, x=1) to override arguments to constructor if needed" | ||||
) | ) | ||||
self.act_observer = act_observer | |||||
self.weight_observer = weight_observer | self.weight_observer = weight_observer | ||||
self.fake_quant = fake_quant | |||||
self.act_observer = act_observer | |||||
self.weight_fake_quant = weight_fake_quant | |||||
self.act_fake_quant = act_fake_quant | |||||
tqt_quant_qconfig = QConfig( | tqt_quant_qconfig = QConfig( | ||||
weight_observer=ExponentialMovingAverageObserver, | |||||
act_observer=ExponentialMovingAverageObserver, | |||||
fake_quant=TQT, | |||||
weight_observer=partial( | |||||
ExponentialMovingAverageObserver, dtype="qint8", narrow_range=True | |||||
), | |||||
act_observer=partial( | |||||
ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False | |||||
), | |||||
weight_fake_quant=partial(TQT, dtype="qint8", narrow_range=True), | |||||
act_fake_quant=partial(TQT, dtype="qint8", narrow_range=False), | |||||
) | ) | ||||
# Default QAT QConfigs | |||||
min_max_fakequant_qconfig = QConfig( | min_max_fakequant_qconfig = QConfig( | ||||
weight_observer=MinMaxObserver, | |||||
act_observer=MinMaxObserver, | |||||
fake_quant=FakeQuantize, | |||||
weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||||
act_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=False), | |||||
weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True), | |||||
act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False), | |||||
) | ) | ||||
ema_fakequant_qconfig = QConfig( | ema_fakequant_qconfig = QConfig( | ||||
weight_observer=MinMaxObserver, | |||||
act_observer=ExponentialMovingAverageObserver, | |||||
fake_quant=FakeQuantize, | |||||
weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||||
act_observer=partial( | |||||
ExponentialMovingAverageObserver, dtype="qint8", narrow_range=False | |||||
), | |||||
weight_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=True), | |||||
act_fake_quant=partial(FakeQuantize, dtype="qint8", narrow_range=False), | |||||
) | ) | ||||
calibration_qconfig = QConfig( | calibration_qconfig = QConfig( | ||||
weight_observer=MinMaxObserver, act_observer=HistogramObserver, fake_quant=None, | |||||
weight_observer=partial(MinMaxObserver, dtype="qint8", narrow_range=True), | |||||
act_observer=partial(HistogramObserver, dtype="qint8", narrow_range=False), | |||||
weight_fake_quant=None, | |||||
act_fake_quant=None, | |||||
) | ) |