Browse Source

docs(mge/bn): fix docs and tests of batchnorm

GitOrigin-RevId: 8a96aa5fc2
tags/v0.3.2
Megvii Engine Team 5 years ago
parent
commit
48822557b8
1 changed files with 9 additions and 3 deletions
  1. +9
    -3
      python_module/megengine/module/batchnorm.py

+ 9
- 3
python_module/megengine/module/batchnorm.py View File

@@ -126,7 +126,7 @@ class BatchNorm2d(_BatchNorm):
By default, during training this layer keeps running estimates of its
computed mean and variance, which are then used for normalization during
evaluation. The running estimates are kept with a default :attr:`momentum`
of 0.1.
of 0.9.

If :attr:`track_running_stats` is set to ``False``, this layer will not
keep running estimates, and batch statistics are instead used during
@@ -154,7 +154,7 @@ class BatchNorm2d(_BatchNorm):
:type momentum: float
:param momentum: the value used for the `running_mean` and `running_var`
computation.
Default: 0.1
Default: 0.9
:type affine: bool
:param affine: a boolean value that when set to ``True``, this module has
learnable affine parameters. Default: ``True``
@@ -174,12 +174,18 @@ class BatchNorm2d(_BatchNorm):

# With Learnable Parameters
m = M.BatchNorm2d(4)
inp = mge.tensor(np.random.rand(64, 4, 32, 32))
inp = mge.tensor(np.random.rand(1, 4, 3, 3).astype("float32"))
oup = m(inp)
print(m.weight, m.bias)
# Without Learnable Parameters
m = M.BatchNorm2d(4, affine=False)
oup = m(inp)
print(m.weight, m.bias)

.. testoutput::

Tensor([1. 1. 1. 1.]) Tensor([0. 0. 0. 0.])
None None
"""

def _check_input_ndim(self, inp):


Loading…
Cancel
Save