Browse Source

docs(mge/module): refine the docstring of several apis

GitOrigin-RevId: ea04e05be4
tags/v0.4.0
Megvii Engine Team Xinran Xu 5 years ago
parent
commit
4997270156
5 changed files with 16 additions and 14 deletions
  1. +3
    -3
      python_module/megengine/module/activation.py
  2. +1
    -1
      python_module/megengine/module/conv.py
  3. +2
    -2
      python_module/megengine/module/dropout.py
  4. +2
    -0
      python_module/megengine/module/identity.py
  5. +8
    -8
      python_module/megengine/module/init.py

+ 3
- 3
python_module/megengine/module/activation.py View File

@@ -191,7 +191,7 @@ class LeakyReLU(Module):
Applies the element-wise function: Applies the element-wise function:


.. math:: .. math::
\text{LeakyReLU}(x) = \max(0,x) + 0.01 * \min(0,x)
\text{LeakyReLU}(x) = \max(0,x) + negative\_slope \times \min(0,x)


or or


@@ -199,7 +199,7 @@ class LeakyReLU(Module):
\text{LeakyReLU}(x) = \text{LeakyReLU}(x) =
\begin{cases} \begin{cases}
x, & \text{ if } x \geq 0 \\ x, & \text{ if } x \geq 0 \\
0.01x, & \text{ otherwise }
negative\_slope \times x, & \text{ otherwise }
\end{cases} \end{cases}


Examples: Examples:
@@ -211,7 +211,7 @@ class LeakyReLU(Module):
import megengine.module as M import megengine.module as M
data = mge.tensor(np.array([-8, -12, 6, 10]).astype(np.float32)) data = mge.tensor(np.array([-8, -12, 6, 10]).astype(np.float32))


leakyrelu = M.LeakyReLU()
leakyrelu = M.LeakyReLU(0.01)
output = leakyrelu(data) output = leakyrelu(data)
print(output.numpy()) print(output.numpy())




+ 1
- 1
python_module/megengine/module/conv.py View File

@@ -204,7 +204,7 @@ class ConvTranspose2d(_ConvNd):
with respect to its input. with respect to its input.


Convolution usually reduces the size of input, while transposed convolution works Convolution usually reduces the size of input, while transposed convolution works
the other way, transforming a smaller input to a larger output while preserving the
the opposite way, transforming a smaller input to a larger output while preserving the
connectivity pattern. connectivity pattern.


:param in_channels: number of input channels. :param in_channels: number of input channels.


+ 2
- 2
python_module/megengine/module/dropout.py View File

@@ -11,9 +11,9 @@ from .module import Module




class Dropout(Module): class Dropout(Module):
r"""Randomly set input elements to zeros. Commonly used in large networks to prevent overfitting.
r"""Randomly set input elements to zeros with the probability :math:`drop\_prob` during training. Commonly used in large networks to prevent overfitting.
Note that we perform dropout only during training, we also rescale(multiply) the output tensor Note that we perform dropout only during training, we also rescale(multiply) the output tensor
by :math:`\frac{1}{1 - p}`. During inference :class:`~.Dropout` is equal to :class:`~.Identity`.
by :math:`\frac{1}{1 - drop\_prob}`. During inference :class:`~.Dropout` is equal to :class:`~.Identity`.


:param drop_prob: The probability to drop (set to zero) each single element :param drop_prob: The probability to drop (set to zero) each single element
""" """


+ 2
- 0
python_module/megengine/module/identity.py View File

@@ -11,5 +11,7 @@ from .module import Module




class Identity(Module): class Identity(Module):
r"""A placeholder identity operator that will ignore any argument."""

def forward(self, x): def forward(self, x):
return identity(x) return identity(x)

+ 8
- 8
python_module/megengine/module/init.py View File

@@ -176,8 +176,8 @@ def xavier_uniform_(tensor: Tensor, gain: float = 1.0) -> None:
a = \text{gain} \times \sqrt{\frac{6}{\text{fan_in} + \text{fan_out}}} a = \text{gain} \times \sqrt{\frac{6}{\text{fan_in} + \text{fan_out}}}


Also known as Glorot initialization. Detailed information can be retrieved from Also known as Glorot initialization. Detailed information can be retrieved from
`Understanding the difficulty of training deep feedforward neural networks` -
Glorot, X. & Bengio, Y. (2010).
`"Understanding the difficulty of training deep feedforward neural networks" <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_.


:param tensor: An n-dimentional tensor to be initialized :param tensor: An n-dimentional tensor to be initialized
:param gain: Scaling factor for :math:`a`. :param gain: Scaling factor for :math:`a`.
@@ -196,8 +196,7 @@ def xavier_normal_(tensor: Tensor, gain: float = 1.0) -> None:
\text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan_in} + \text{fan_out}}} \text{std} = \text{gain} \times \sqrt{\frac{2}{\text{fan_in} + \text{fan_out}}}


Also known as Glorot initialization. Detailed information can be retrieved from Also known as Glorot initialization. Detailed information can be retrieved from
`Understanding the difficulty of training deep feedforward neural networks` -
Glorot, X. & Bengio, Y. (2010).
`"Understanding the difficulty of training deep feedforward neural networks" <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_.


:param tensor: An n-dimentional tensor to be initialized :param tensor: An n-dimentional tensor to be initialized
:param gain: Scaling factor for :math:`std`. :param gain: Scaling factor for :math:`std`.
@@ -217,8 +216,9 @@ def msra_uniform_(
\text{bound} = \sqrt{\frac{6}{(1 + a^2) \times \text{fan_in}}} \text{bound} = \sqrt{\frac{6}{(1 + a^2) \times \text{fan_in}}}


Detailed information can be retrieved from Detailed information can be retrieved from
`Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification`
`"Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification" <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf>`_.



:param tensor: An n-dimentional tensor to be initialized :param tensor: An n-dimentional tensor to be initialized
:param a: Optional parameter for calculating gain for leaky_relu. See :param a: Optional parameter for calculating gain for leaky_relu. See
@@ -246,8 +246,8 @@ def msra_normal_(
\text{std} = \sqrt{\frac{2}{(1 + a^2) \times \text{fan_in}}} \text{std} = \sqrt{\frac{2}{(1 + a^2) \times \text{fan_in}}}


Detailed information can be retrieved from Detailed information can be retrieved from
`Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification`
`"Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification" <https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf>`_.


:param tensor: An n-dimentional tensor to be initialized :param tensor: An n-dimentional tensor to be initialized
:param a: Optional parameter for calculating gain for leaky_relu. See :param a: Optional parameter for calculating gain for leaky_relu. See


Loading…
Cancel
Save