|
@@ -21,26 +21,27 @@ class Sequential(Module): |
|
|
.. testcode:: |
|
|
.. testcode:: |
|
|
from collections import OrderedDict |
|
|
from collections import OrderedDict |
|
|
import numpy as np |
|
|
import numpy as np |
|
|
import megengine.nn as nn |
|
|
|
|
|
import megengine.nn.functional as F |
|
|
|
|
|
|
|
|
import megengine.functional as F |
|
|
|
|
|
from megengine.module import Sequential, Linear |
|
|
|
|
|
from megengine import tensor |
|
|
|
|
|
|
|
|
batch_size = 64 |
|
|
batch_size = 64 |
|
|
data = nn.Input("data", shape=(batch_size, 1, 28, 28), dtype=np.float32, value=np.zeros((batch_size, 1, 28, 28))) |
|
|
|
|
|
label = nn.Input("label", shape=(batch_size,), dtype=np.int32, value=np.zeros(batch_size,)) |
|
|
|
|
|
|
|
|
data = tensor(np.zeros((batch_size, 1, 28, 28)), dtype=np.float32) |
|
|
|
|
|
label = tensor(np.zeros(batch_size,), dtype=np.int32) |
|
|
|
|
|
|
|
|
data = data.reshape(batch_size, -1) |
|
|
data = data.reshape(batch_size, -1) |
|
|
|
|
|
|
|
|
net0 = nn.Sequential( |
|
|
|
|
|
nn.Linear(28 * 28, 320), |
|
|
|
|
|
nn.Linear(320, 10) |
|
|
|
|
|
|
|
|
net0 = Sequential( |
|
|
|
|
|
Linear(28 * 28, 320), |
|
|
|
|
|
Linear(320, 10) |
|
|
) |
|
|
) |
|
|
|
|
|
|
|
|
pred0 = net0(data) |
|
|
pred0 = net0(data) |
|
|
|
|
|
|
|
|
modules = OrderedDict() |
|
|
modules = OrderedDict() |
|
|
modules["fc0"] = nn.Linear(28 * 28, 320) |
|
|
|
|
|
modules["fc1"] = nn.Linear(320, 10) |
|
|
|
|
|
net1 = nn.Sequential(modules) |
|
|
|
|
|
|
|
|
modules["fc0"] = Linear(28 * 28, 320) |
|
|
|
|
|
modules["fc1"] = Linear(320, 10) |
|
|
|
|
|
net1 = Sequential(modules) |
|
|
|
|
|
|
|
|
pred1 = net1(data) |
|
|
pred1 = net1(data) |
|
|
""" |
|
|
""" |
|
|