@@ -104,20 +104,19 @@ ConvBiasForwardImpl::AlgoPack::AlgoPack() { | |||
ConvBiasForwardImpl::AlgoPack ConvBiasForwardImpl::sm_algo_pack; | |||
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs(ConvBiasForwardImpl* o, | |||
const TensorLayout& src, | |||
const TensorLayout& filter, | |||
const TensorLayout& bias, | |||
const TensorLayout& z, | |||
const TensorLayout& dst) | |||
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
ConvBiasForwardImpl* o, const TensorLayout& src, | |||
const TensorLayout& filter, const TensorLayout& bias, | |||
const TensorLayout& z, const TensorLayout& dst, | |||
const PreprocessedFilter* preprocessed_filter) | |||
: SizeArgs(o, src, filter, o->check_layout_fwd(src, filter, dst), bias, | |||
z, dst) {} | |||
z, dst, preprocessed_filter) {} | |||
ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
ConvBiasForwardImpl* o, const TensorLayout& src, | |||
const TensorLayout& filter, const CanonizedFilterMeta& filter_meta, | |||
const TensorLayout& bias, const TensorLayout& z, | |||
const TensorLayout& dst) | |||
const TensorLayout& dst, const PreprocessedFilter* preprocessed_filter) | |||
: BiasForwardSizeArgs{concrete_handle(o->handle()), | |||
&src, | |||
&filter, | |||
@@ -126,14 +125,16 @@ ConvBiasForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
filter_meta, | |||
&dst, | |||
o->param().nonlineMode}, | |||
opr{o} {} | |||
opr{o}, | |||
preprocessed_filter{preprocessed_filter} {} | |||
ConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs( | |||
ConvBiasForwardImpl* opr, _megdnn_tensor_in src, | |||
_megdnn_tensor_in filter, _megdnn_tensor_in bias, _megdnn_tensor_in z, | |||
_megdnn_tensor_out dst, _megdnn_workspace workspace) | |||
_megdnn_tensor_out dst, _megdnn_workspace workspace, | |||
const PreprocessedFilter* preprocessed_filter) | |||
: SizeArgs(opr, src.layout, filter.layout, bias.layout, z.layout, | |||
dst.layout), | |||
dst.layout, preprocessed_filter), | |||
src_tensor{&src}, | |||
filter_tensor{&filter}, | |||
bias_tensor{&bias}, | |||
@@ -41,16 +41,19 @@ public: | |||
AlgoBase() : Algorithm() { m_handle_type = Handle::HandleType::CUDA; } | |||
struct SizeArgs : public conv_bias::BiasForwardSizeArgs { | |||
ConvBiasForwardImpl* opr; | |||
const PreprocessedFilter* preprocessed_filter; | |||
std::string to_string() const; | |||
SizeArgs(ConvBiasForwardImpl* opr, const TensorLayout& src, | |||
const TensorLayout& filter, const TensorLayout& bias, | |||
const TensorLayout& z, const TensorLayout& dst); | |||
const TensorLayout& z, const TensorLayout& dst, | |||
const PreprocessedFilter* preprocessed_filter = nullptr); | |||
SizeArgs(ConvBiasForwardImpl* opr, const TensorLayout& src, | |||
const TensorLayout& filter, | |||
const CanonizedFilterMeta& filter_meta, | |||
const TensorLayout& bias, const TensorLayout& z, | |||
const TensorLayout& dst); | |||
const TensorLayout& dst, | |||
const PreprocessedFilter* preprocessed_filter = nullptr); | |||
void init_conv_bias_desc(conv_bias::CUDNNForwardDescs& desc) const { | |||
desc.set_conv_bias(*src_layout, filter_meta, *dst_layout, | |||
@@ -69,11 +72,21 @@ public: | |||
ExecArgs(ConvBiasForwardImpl* opr, _megdnn_tensor_in src, | |||
_megdnn_tensor_in filter, _megdnn_tensor_in bias, | |||
_megdnn_tensor_in z, _megdnn_tensor_out dst, | |||
_megdnn_workspace workspace); | |||
_megdnn_workspace workspace, | |||
const PreprocessedFilter* preprocessed_filter = nullptr); | |||
}; | |||
virtual bool is_available(const SizeArgs& args) const = 0; | |||
virtual size_t get_workspace_in_bytes(const SizeArgs& args) const = 0; | |||
virtual void exec(const ExecArgs& args) const = 0; | |||
virtual size_t get_preprocess_workspace_in_bytes( | |||
const SizeArgs& args) const { | |||
return 0; | |||
} | |||
virtual SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
const SizeArgs& args) const { | |||
return {}; | |||
} | |||
virtual void exec_preprocess(const ExecArgs& args) const {} | |||
bool is_available_wk(const SizeArgs& args, size_t limit) { | |||
return is_available(args) && get_workspace_in_bytes(args) <= limit; | |||
@@ -29,7 +29,8 @@ void ConvBiasForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in filter, | |||
_megdnn_workspace workspace) { | |||
check_exec(src.layout, filter.layout, bias.layout, z.layout, dst.layout, | |||
workspace.size, preprocessed_filter); | |||
AlgoBase::ExecArgs args(this, src, filter, bias, z, dst, workspace); | |||
AlgoBase::ExecArgs args(this, src, filter, bias, z, dst, workspace, | |||
preprocessed_filter); | |||
auto algo = get_algorithm(this, src.layout, filter.layout, bias.layout, | |||
z.layout, dst.layout); | |||
algo->check_workspace(args, workspace).exec(args); | |||
@@ -205,17 +206,50 @@ const char* ConvBiasForwardImpl::get_algorithm_set_name() const { | |||
return "CONV_BIAS_CUDA"; | |||
} | |||
size_t ConvBiasForwardImpl::get_workspace_in_bytes(const TensorLayout& src, | |||
const TensorLayout& filter, | |||
const TensorLayout& bias, | |||
const TensorLayout& z, | |||
const TensorLayout& dst, | |||
const PreprocessedFilter*) { | |||
AlgoBase::SizeArgs args{this, src, filter, bias, z, dst}; | |||
size_t ConvBiasForwardImpl::get_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& filter, | |||
const TensorLayout& bias, const TensorLayout& z, | |||
const TensorLayout& dst, | |||
const PreprocessedFilter* preprocessed_filter) { | |||
AlgoBase::SizeArgs args{ | |||
this, src, filter, bias, z, dst, preprocessed_filter}; | |||
return get_algorithm(this, src, filter, bias, z, dst) | |||
->get_workspace_in_bytes(args); | |||
}; | |||
size_t ConvBiasForwardImpl::get_preprocess_workspace_in_bytes( | |||
const TensorLayout& src, const TensorLayout& filter, | |||
const TensorLayout& bias, const TensorLayout& z, | |||
const TensorLayout& dst) { | |||
AlgoBase::SizeArgs args{this, src, filter, bias, z, dst}; | |||
return get_algorithm(this, src, filter, bias, z, dst) | |||
->get_preprocess_workspace_in_bytes(args); | |||
} | |||
SmallVector<TensorLayout> | |||
ConvBiasForwardImpl::deduce_preprocessed_filter_layout( | |||
const TensorLayout& src, const TensorLayout& filter, | |||
const TensorLayout& bias, const TensorLayout& z, | |||
const TensorLayout& dst) { | |||
AlgoBase::SizeArgs args{this, src, filter, bias, z, dst}; | |||
return get_algorithm(this, src, filter, bias, z, dst) | |||
->deduce_preprocessed_filter_layout(args); | |||
} | |||
void ConvBiasForwardImpl::exec_preprocess( | |||
const TensorLayout& src_layout, _megdnn_tensor_in filter, | |||
const TensorLayout& bias_layout, const TensorLayout& z_layout, | |||
const TensorLayout& dst_layout, PreprocessedFilter* preprocessed_filter, | |||
_megdnn_workspace workspace) { | |||
TensorND src{nullptr, src_layout}, dst{nullptr, dst_layout}, | |||
z{nullptr, z_layout}, bias{nullptr, bias_layout}; | |||
AlgoBase::ExecArgs args(this, src, filter, bias, z, dst, workspace, | |||
preprocessed_filter); | |||
auto algo = get_algorithm(this, src.layout, filter.layout, bias.layout, | |||
z.layout, dst.layout); | |||
return algo->exec_preprocess(args); | |||
} | |||
} // namespace cuda | |||
} // namespace megdnn | |||
@@ -44,21 +44,14 @@ public: | |||
const TensorLayout&, | |||
const TensorLayout&, | |||
const TensorLayout&, | |||
const TensorLayout&) override { | |||
return 0; | |||
}; | |||
const TensorLayout&) override; | |||
SmallVector<TensorLayout> deduce_preprocessed_filter_layout( | |||
const TensorLayout&, const TensorLayout&, const TensorLayout&, | |||
const TensorLayout&, const TensorLayout&) override { | |||
return {}; | |||
} | |||
const TensorLayout&, const TensorLayout&) override; | |||
void exec_preprocess(const TensorLayout&, _megdnn_tensor_in, | |||
const TensorLayout&, const TensorLayout&, | |||
const TensorLayout&, PreprocessedFilter*, | |||
_megdnn_workspace) override { | |||
megdnn_throw("cuda conv_bias exec_preprocess has not implemeted yet"); | |||
} | |||
_megdnn_workspace) override; | |||
const char* get_algorithm_set_name() const override; | |||
class AlgoBase; | |||
@@ -32,6 +32,22 @@ class DefaultComparator<dt_float32> { | |||
} | |||
}; | |||
template <> | |||
class DefaultComparator<dt_qint8> { | |||
public: | |||
bool is_same(dt_qint8 expected, dt_qint8 actual) const { | |||
return expected.as_int8() == actual.as_int8(); | |||
} | |||
}; | |||
template <> | |||
class DefaultComparator<dt_qint32> { | |||
public: | |||
bool is_same(dt_qint32 expected, dt_qint32 actual) const { | |||
return expected.as_int32() == actual.as_int32(); | |||
} | |||
}; | |||
} // namespace test | |||
} // namespace megdnn | |||
@@ -741,10 +741,12 @@ void check_conv_bias(DType src_dtype, DType filter_dtype, DType bias_dtype, | |||
std::unique_ptr<RNG> rng; | |||
std::unique_ptr<RNG> bias_rng; | |||
std::unique_ptr<RNG> const_rng; | |||
std::unique_ptr<RNG> zero_rng; | |||
// TODO: check range of rng | |||
if (src_dtype.enumv() == DTypeEnum::QuantizedS8) { | |||
rng = std::make_unique<UniformIntRNG>(-3, 3); | |||
const_rng = std::make_unique<UniformIntRNG>(1, 1); | |||
zero_rng = std::make_unique<UniformIntRNG>(0, 0); | |||
megdnn_assert(bias_dtype.enumv() == DTypeEnum::QuantizedS32); | |||
bias_rng = std::make_unique<UniformIntRNG>(-50, 50); | |||
checker.set_epsilon(1 + 1e-3) | |||
@@ -775,6 +777,12 @@ void check_conv_bias(DType src_dtype, DType filter_dtype, DType bias_dtype, | |||
fh = arg.filter[2]; | |||
fw = arg.filter[3]; | |||
z[1] = arg.filter[0] / 4; | |||
} else if (format == Format::NCHW32) { | |||
hi = arg.src[2]; | |||
wi = arg.src[3]; | |||
fh = arg.filter[2]; | |||
fw = arg.filter[3]; | |||
z[1] = arg.filter[0] / 32; | |||
} else { | |||
megdnn_assert(format == Format::CHWN4); | |||
hi = arg.src[1]; | |||
@@ -798,7 +806,7 @@ void check_conv_bias(DType src_dtype, DType filter_dtype, DType bias_dtype, | |||
megdnn_assert(rng != nullptr && bias_rng != nullptr); | |||
checker.set_rng(0, rng.get()) | |||
.set_rng(1, rng.get()) | |||
.set_rng(2, rng.get()) | |||
.set_rng(2, bias_rng.get()) | |||
.set_rng(3, rng.get()); | |||
if (args.empty()) { | |||
std::vector<TestArg> default_args; | |||
@@ -24,7 +24,8 @@ Tensor<T, C>::Tensor(Handle *handle, TensorLayout layout): | |||
m_handle(handle), | |||
m_comparator(C()) | |||
{ | |||
layout.dtype = get_dtype_from_static_type<T>(); | |||
if (!layout.dtype.valid()) | |||
layout.dtype = get_dtype_from_static_type<T>(); | |||
m_tensornd.raw_ptr = megdnn_malloc(m_handle, layout.span().dist_byte()); | |||
m_tensornd.layout = layout; | |||
} | |||
@@ -67,10 +68,10 @@ void Tensor<T, C>::check_with(const Tensor<T, C_> &rhs) const | |||
auto index = Index(m_tensornd.layout, linear_idx); | |||
auto offset = index.positive_offset(); | |||
ASSERT_TRUE(m_comparator.is_same(p0[offset], p1[offset])) | |||
<< "Index is " << index.to_string() | |||
<< "; layout is " << m_tensornd.layout.to_string() | |||
<< "; this->ptr()[offset] is " << this->ptr()[offset] | |||
<< "; rhs.ptr()[offset] is " << rhs.ptr()[offset]; | |||
<< "Index is " << index.to_string() << "; layout is " | |||
<< m_tensornd.layout.to_string() << "; this->ptr()[offset] is " | |||
<< this->ptr()[offset] << "; rhs.ptr()[offset] is " | |||
<< rhs.ptr()[offset]; | |||
} | |||
} | |||
@@ -18,6 +18,8 @@ | |||
#include "test/cuda/benchmark.h" | |||
#include "test/cuda/fixture.h" | |||
#include "test/cuda/utils.h" | |||
#include "test/common/tensor.h" | |||
#include "test/common/workspace_wrapper.h" | |||
#define V1(x) #x | |||
#define V(x) V1(x) | |||
@@ -34,7 +36,6 @@ struct BenchArgs { | |||
std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) { | |||
std::vector<BenchArgs> args; | |||
args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1}); | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 1}); | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 32, 3, 2}); | |||
args.emplace_back(BenchArgs{batch, 4, 256, 256, 32, 7, 2}); | |||
@@ -44,7 +45,6 @@ std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) { | |||
args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 1}); | |||
args.emplace_back(BenchArgs{batch, 64, 56, 56, 64, 3, 2}); | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 64, 3, 2}); | |||
args.emplace_back(BenchArgs{batch, 64, 56, 56, 256, 1, 1}); | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 512, 1, 2}); | |||
args.emplace_back(BenchArgs{batch, 256, 56, 56, 128, 1, 2}); | |||
@@ -57,6 +57,7 @@ std::vector<BenchArgs> get_resnet50_bench_args(size_t batch = 64) { | |||
args.emplace_back(BenchArgs{batch, 1024, 14, 14, 256, 1, 1}); | |||
args.emplace_back(BenchArgs{batch, 256, 14, 14, 256, 3, 1}); | |||
args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 1}); | |||
args.emplace_back(BenchArgs{batch, 256, 14, 14, 1024, 1, 2}); | |||
args.emplace_back(BenchArgs{batch, 1024, 14, 14, 2048, 1, 2}); | |||
args.emplace_back(BenchArgs{batch, 1024, 14, 14, 512, 1, 2}); | |||
@@ -331,6 +332,12 @@ void benchmark_target_algo_with_cudnn_tsc( | |||
if ((format == Format::CHWN4 || format == Format::NCHW4) && | |||
(arg.ci % 16 != 0)) | |||
continue; | |||
Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | |||
? Format::NCHW32 | |||
: Format::NCHW4; | |||
param.format = format_cudnn; | |||
benchmarker_cudnn.set_param(param); | |||
float time_in_ms = 0.f; | |||
if (algo) { | |||
time_in_ms = | |||
@@ -351,18 +358,14 @@ void benchmark_target_algo_with_cudnn_tsc( | |||
{}}) / | |||
RUNS; | |||
} | |||
Format format_cudnn = arg.ci % 32 == 0 && arg.co % 32 == 0 | |||
? Format::NCHW32 | |||
: Format::NCHW4; | |||
param.format = format_cudnn; | |||
benchmarker_cudnn.set_param(param); | |||
auto time_in_ms_cudnn = | |||
float time_in_ms_cudnn = | |||
benchmarker_cudnn.execs({get_tensor_shape(src, format_cudnn), | |||
get_tensor_shape(filter, format_cudnn), | |||
get_tensor_shape(bias, format_cudnn), | |||
{}, | |||
{}}) / | |||
RUNS; | |||
float flo = 2.0 * arg.n * arg.co * ho * wo * arg.ci * arg.f * arg.f / | |||
(1e12); | |||
printf("src=%s, filter=%s, dst=%s, time(algo=%s)=%.2f %.2fTops, " | |||
@@ -1075,8 +1078,8 @@ TEST_F(CUDA, CONV_BIAS_INT8_CHWN4_UNROLL_WIDTH_TENSORCORE_1x1_ALGO_2) { | |||
#if CUDA_VERSION >= 10020 | |||
/// \note: we only check several cases and block sizes in megdnn_test, the full | |||
/// testcases are written in cutlass repository | |||
/// \note: we only check several cases and block sizes in megdnn_test, the | |||
/// full testcases are written in cutlass repository | |||
TEST_F(CUDA, CUTLASS_CONV_BIAS_INT8_NCHW32_IMMA) { | |||
require_compute_capability_eq(7, 5); | |||
Checker<ConvBiasForward> checker(handle_cuda()); | |||