GitOrigin-RevId: 4a14f53738
tags/v1.9.0
@@ -91,7 +91,7 @@ class ResNet(M.Module): | |||
def run_dtr_resnet1202(): | |||
batch_size = 7 | |||
batch_size = 6 | |||
resnet1202 = ResNet(BasicBlock, [200, 200, 200]) | |||
opt = optim.SGD(resnet1202.parameters(), lr=0.05, momentum=0.9, weight_decay=1e-4) | |||
gm = GradManager().attach(resnet1202.parameters()) | |||
@@ -12,6 +12,7 @@ | |||
#include "megbrain/comp_node.h" | |||
#include "megbrain/comp_node_env.h" | |||
#include "megbrain/imperative/physical_tensor.h" | |||
#include "megbrain/rdnn/management.h" | |||
using namespace megdnn; | |||
@@ -28,13 +29,12 @@ struct DnnOprCaller { | |||
CompNode cn; | |||
DeviceTensorND dev_tensor; | |||
Workspace workspace; | |||
std::unique_ptr<Opr> op; | |||
mgb::opr::intl::UniqPtrWithCN<Opr> op; | |||
DnnOprCaller(CompNode cn) : cn(cn), op(create_operator(cn)) {} | |||
DnnOprCaller(CompNode cn) : cn(cn), op(std::move(create_operator(cn))) {} | |||
static std::unique_ptr<Opr> create_operator(CompNode cn) { | |||
auto&& handle = MegDNNHandle::get(CompNodeEnv::from_comp_node(cn)).handle(); | |||
return handle->create_operator<Opr>(); | |||
static mgb::opr::intl::UniqPtrWithCN<Opr> create_operator(CompNode cn) { | |||
return mgb::opr::intl::create_megdnn_opr<Opr>(cn); | |||
} | |||
megdnn::Workspace create_workspace(TensorLayout layout) { | |||
@@ -171,7 +171,7 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
bool empty_input = src_layout.is_empty(); | |||
size_t nr_inp = inputs.size(); | |||
DeviceTensorND ws, reserve; | |||
DeviceTensorND reserve; | |||
size_t sz = 0, rsz = 0; | |||
TensorLayout w_layout({sz}, dtype::Byte()); | |||
@@ -186,9 +186,7 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
w_layout = TensorLayout({sz}, dtype::Byte()); | |||
r_layout = TensorLayout({rsz}, dtype::Byte()); | |||
} | |||
auto wk = Blob::make(comp_node, sz); | |||
auto ptr = wk->storage().get(); | |||
megdnn::Workspace dnn_wk(ptr, sz); | |||
auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
reserve = BlobManager::inst()->alloc_workspace_with_defrag(comp_node, r_layout); | |||
// alloc memory | |||
@@ -123,8 +123,6 @@ TensorLayout do_shape_infer( | |||
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) { | |||
auto&& conv = static_cast<const Convolution&>(def); | |||
using Param = ::megdnn::param::Convolution; | |||
SmallVector<LogicalTensorDesc> dests(1); | |||
@@ -167,34 +165,33 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
inp_shapes[i] = inputs[i]->layout(); | |||
} | |||
oup_shapes[0] = out_layout; | |||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::ConvBiasForward>(cn); | |||
dnn_opr->param().pad_h = conv.pad_h; | |||
dnn_opr->param().pad_w = conv.pad_w; | |||
dnn_opr->param().stride_h = conv.stride_h; | |||
dnn_opr->param().stride_w = conv.stride_w; | |||
dnn_opr->param().dilate_h = conv.dilate_h; | |||
dnn_opr->param().dilate_w = conv.dilate_w; | |||
dnn_opr->param().sparse = conv.sparse; | |||
dnn_opr->param().compute_mode = conv.compute_mode; | |||
dnn_opr->param().format = conv.format; | |||
DnnOprCaller<megdnn::ConvBiasForward> dnn_opr(cn); | |||
dnn_opr.op->param().pad_h = conv.pad_h; | |||
dnn_opr.op->param().pad_w = conv.pad_w; | |||
dnn_opr.op->param().stride_h = conv.stride_h; | |||
dnn_opr.op->param().stride_w = conv.stride_w; | |||
dnn_opr.op->param().dilate_h = conv.dilate_h; | |||
dnn_opr.op->param().dilate_w = conv.dilate_w; | |||
dnn_opr.op->param().sparse = conv.sparse; | |||
dnn_opr.op->param().compute_mode = conv.compute_mode; | |||
dnn_opr.op->param().format = conv.format; | |||
// shape infer | |||
TensorLayout shp({0}, inputs[0]->dtype()); | |||
shp.ndim = 0; | |||
size_t sz = setup_algo<megdnn::ConvBiasForward>( | |||
{inp_shapes[0], inp_shapes[1], shp, shp, oup_shapes[0]}, dnn_opr.get(), 0, | |||
false, false, cn, conv.policy(), false); | |||
{inp_shapes[0], inp_shapes[1], shp, shp, oup_shapes[0]}, dnn_opr.op.get(), | |||
0, false, false, cn, conv.policy(), false); | |||
// alloc memory | |||
DeviceTensorND bias = BlobManager::inst()->alloc_workspace_with_defrag(cn, shp); | |||
auto wk = Blob::make(cn, sz); | |||
auto ptr = wk->storage().get(); | |||
megdnn::Workspace dnn_wk(ptr, sz); | |||
TensorLayout w_layout({sz}, dtype::Byte()); | |||
auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
// exeucte | |||
dnn_opr->exec( | |||
dnn_opr.op->exec( | |||
inp_tensornds[0], inp_tensornds[1], bias.as_megdnn(), bias.as_megdnn(), | |||
out.as_megdnn(), nullptr, dnn_wk); | |||
return {Tensor::make(out)}; | |||
@@ -359,7 +356,6 @@ TensorLayout do_shape_infer( | |||
std::tuple<SmallVector<LogicalTensorDesc>, bool> infer_output_attrs_fallible( | |||
const OpDef& def, const SmallVector<LogicalTensorDesc>& inputs) { | |||
auto&& conv = static_cast<const Convolution3D&>(def); | |||
using Param = ::megdnn::param::Convolution3D; | |||
SmallVector<LogicalTensorDesc> dests(1); | |||
@@ -398,24 +394,23 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
inp_shapes[i] = inputs[i]->layout(); | |||
} | |||
oup_shapes[0] = out_layout; | |||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::Convolution3D>(cn); | |||
dnn_opr->param() = conv.param(); | |||
DnnOprCaller<megdnn::Convolution3D> dnn_opr(cn); | |||
dnn_opr.op->param() = conv.param(); | |||
// shape infer | |||
size_t sz = setup_algo<megdnn::Convolution3D>( | |||
{inp_shapes[0], inp_shapes[1], oup_shapes[0]}, dnn_opr.get(), 0, false, | |||
{inp_shapes[0], inp_shapes[1], oup_shapes[0]}, dnn_opr.op.get(), 0, false, | |||
false, cn, conv.policy(), false); | |||
// alloc memory | |||
DeviceTensorND out = | |||
BlobManager::inst()->alloc_workspace_with_defrag(cn, out_layout); | |||
auto wk = Blob::make(cn, sz); | |||
auto ptr = wk->storage().get(); | |||
megdnn::Workspace dnn_wk(ptr, sz); | |||
TensorLayout w_layout({sz}, dtype::Byte()); | |||
auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
// exeucte | |||
dnn_opr->exec(inp_tensornds[0], inp_tensornds[1], out.as_megdnn(), dnn_wk); | |||
dnn_opr.op->exec(inp_tensornds[0], inp_tensornds[1], out.as_megdnn(), dnn_wk); | |||
return {Tensor::make(out)}; | |||
} | |||
@@ -29,7 +29,7 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
using TensorND = megdnn::TensorND; | |||
SmallVector<TensorND> inp_tensornds; | |||
inp_tensornds.reserve(inputs.size()); | |||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::Dot>(comp_node); | |||
DnnOprCaller<megdnn::Dot> dnn_opr(comp_node); | |||
for (unsigned i = 0; i < inputs.size(); ++i) { | |||
auto dnn_ten = inputs[i]->dnn_tensor(); | |||
inp_tensornds.push_back(dnn_ten); | |||
@@ -37,28 +37,27 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
TensorLayout oup_layout{inputs[0]->dtype()}; | |||
auto inp1_tensor = inputs[0]->dnn_tensor(); | |||
auto inp2_tensor = inputs[1]->dnn_tensor(); | |||
dnn_opr->deduce_layout(inp1_tensor.layout, inp2_tensor.layout, oup_layout); | |||
dnn_opr.op->deduce_layout(inp1_tensor.layout, inp2_tensor.layout, oup_layout); | |||
if (inputs[0]->layout().is_empty() || inputs[1]->layout().is_empty()) { | |||
auto fill_opr = opr::intl::create_megdnn_opr<megdnn::Fill>(comp_node); | |||
DnnOprCaller<megdnn::Fill> fill_opr(comp_node); | |||
DeviceTensorND out = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
fill_opr->param() = 0; | |||
fill_opr->exec(out.as_megdnn(), {}); | |||
fill_opr.op->param() = 0; | |||
fill_opr.op->exec(out.as_megdnn(), {}); | |||
return {Tensor::make(out)}; | |||
} | |||
auto wk_size = dnn_opr->get_workspace_in_bytes( | |||
auto sz = dnn_opr.op->get_workspace_in_bytes( | |||
inp_tensornds[0].layout, inp_tensornds[1].layout, output_descs[0].layout); | |||
DeviceTensorND out_devtensor = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, oup_layout); | |||
TensorLayout wk_layout{TensorShape{wk_size}, inputs[0]->dtype()}; | |||
DeviceTensorND workspace = | |||
BlobManager::inst()->alloc_workspace_with_defrag(comp_node, wk_layout); | |||
megdnn::Workspace dnn_wk(workspace.raw_ptr(), wk_size); | |||
dnn_opr->exec( | |||
TensorLayout w_layout({sz}, dtype::Byte()); | |||
auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
dnn_opr.op->exec( | |||
inp_tensornds[0], inp_tensornds[1], out_devtensor.as_megdnn(), dnn_wk); | |||
return {Tensor::make(out_devtensor)}; | |||
@@ -106,9 +106,8 @@ void apply_on_device_tensornd( | |||
mgb_assert( | |||
inputs.size() == trait.arity, "%s expects %u inputs; got %zu actually", | |||
trait.name, trait.arity, inputs.size()); | |||
auto&& dnn_opr = | |||
opr::intl::create_megdnn_opr<megdnn::Elemwise>(inputs[0].comp_node()); | |||
opr::Elemwise::perform(op_def.mode, (*outputs)[0], inputs, dnn_opr); | |||
DnnOprCaller<megdnn::Elemwise> dnn_opr(inputs[0].comp_node()); | |||
opr::Elemwise::perform(op_def.mode, (*outputs)[0], inputs, dnn_opr.op); | |||
} | |||
SmallVector<TensorPtr> apply_on_physical_tensor( | |||
@@ -139,16 +138,16 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
if (is_empty) { | |||
return {Tensor::make(out)}; | |||
} | |||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::Elemwise>(comp_node); | |||
DnnOprCaller<megdnn::Elemwise> dnn_opr(comp_node); | |||
dnn_opr->param() = op_def.param(); | |||
if (dnn_opr->param().mode == Mode::FUSE_MUL_ADD3 || | |||
dnn_opr->param().mode == Mode::FUSE_MUL_ADD4 || | |||
dnn_opr.op->param() = op_def.param(); | |||
if (dnn_opr.op->param().mode == Mode::FUSE_MUL_ADD3 || | |||
dnn_opr.op->param().mode == Mode::FUSE_MUL_ADD4 || | |||
(inp_tensornds.size() && | |||
inp_tensornds[0].layout.dtype.category() == DTypeCategory::QUANTIZED)) { | |||
opr::Elemwise::perform_dnn(comp_node, out, inp_tensornds, dnn_opr); | |||
opr::Elemwise::perform_dnn(comp_node, out, inp_tensornds, dnn_opr.op); | |||
} else { | |||
dnn_opr->exec(inp_tensornds, out.as_megdnn()); | |||
dnn_opr.op->exec(inp_tensornds, out.as_megdnn()); | |||
} | |||
return {Tensor::make(out)}; | |||
@@ -8,6 +8,7 @@ | |||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | |||
* ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "../dnn_op_helper.h" | |||
#include "../op_trait.h" | |||
#include "megbrain/imperative/ops/autogen.h" | |||
@@ -34,8 +35,7 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
auto dest = outputs[size]; | |||
auto cn = dest->comp_node(); | |||
auto&& dnn_opr = opr::intl::create_megdnn_opr<megdnn::CheckNonFinite>(cn); | |||
size_t wk_size = 0; | |||
DnnOprCaller<megdnn::CheckNonFinite> dnn_opr(cn); | |||
SmallVector<megdnn::TensorND> srcs(size); | |||
// copy an outputs to the dnn for inplace | |||
for (size_t i = 0; i < size; ++i) { | |||
@@ -44,11 +44,11 @@ SmallVector<TensorPtr> apply_on_physical_tensor( | |||
srcs[i] = outputs[i]->dev_tensor().as_megdnn(); | |||
} | |||
megdnn::CheckNonFinite::Param param({op.scale}); | |||
dnn_opr->param() = param; | |||
wk_size = dnn_opr->get_workspace_in_bytes(srcs, dest->layout()); | |||
auto wk = Blob::make(cn, wk_size); | |||
megdnn::Workspace dnn_wk(wk->storage().get(), wk_size); | |||
dnn_opr->exec(srcs, dest->dev_tensor().as_megdnn(), dnn_wk); | |||
dnn_opr.op->param() = param; | |||
size_t sz = dnn_opr.op->get_workspace_in_bytes(srcs, dest->layout()); | |||
TensorLayout w_layout({sz}, dtype::Byte()); | |||
auto dnn_wk = dnn_opr.create_workspace(w_layout); | |||
dnn_opr.op->exec(srcs, dest->dev_tensor().as_megdnn(), dnn_wk); | |||
return outputs; | |||
} | |||