GitOrigin-RevId: 77ff909f23
release-1.10
@@ -156,6 +156,7 @@ _atexit(_persistent_cache.flush) | |||
# subpackages | |||
import megengine.amp | |||
import megengine.autodiff | |||
import megengine.config | |||
import megengine.data | |||
import megengine.distributed | |||
import megengine.dtr | |||
@@ -2,7 +2,13 @@ | |||
import os | |||
from contextlib import contextmanager | |||
from ._imperative_rt.core2 import _clear_algorithm_cache, get_option, set_option | |||
from ._imperative_rt.core2 import ( | |||
_clear_algorithm_cache, | |||
get_auto_format_convert, | |||
get_option, | |||
set_auto_format_convert, | |||
set_option, | |||
) | |||
__compute_mode = "default" | |||
__conv_format = "default" | |||
@@ -24,8 +30,8 @@ __all__ = [ | |||
def benchmark_kernel(mod): | |||
r"""Whether or not run possible algorithms on real device to find the best one. The default option is false, | |||
which means use heuristic to choose the fastest algorithm. | |||
Examples: | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
@@ -47,8 +53,8 @@ def benchmark_kernel(mod, option: bool): | |||
def deterministic_kernel(mod): | |||
r"""Whether or not the fastest algorithm choosed is reproducible. The default option is false, | |||
which means the algorithm is not reproducible. | |||
Examples: | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
@@ -67,8 +73,8 @@ def deterministic_kernel(mod, option: bool): | |||
def async_level(mod) -> int: | |||
r"""Get or set config whether raise error exactly when invoking op. The default level is 2, | |||
which means both device and user side errors are async. | |||
Examples: | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
@@ -108,8 +114,8 @@ def _compute_mode(mod): | |||
which means that no special requirements will be placed on. When set to 'float32', it | |||
would be used for accumulator and intermediate result, but only effective when input and | |||
output are of float16 dtype. | |||
Examples: | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
@@ -137,8 +143,8 @@ def _conv_format(mod): | |||
``NCHW88`` layout: ``{N, C/8, H, W, 8}`` | |||
``CHWN4`` layout: ``{C/4, H, W, N, 4}`` | |||
``NCHW64`` layout: ``{N, C/64, H, W, 64}`` | |||
Examples: | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
@@ -153,20 +159,41 @@ def _conv_format(mod, format: str): | |||
__conv_format = format | |||
@property | |||
def _auto_format_convert(mod): | |||
r"""Automatically convert indexing params' order for NCHW Tensor to NHWC order. | |||
The default value is False, which means no convert. | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
mge.config._auto_format_convert = True | |||
""" | |||
return get_auto_format_convert() | |||
@_auto_format_convert.setter | |||
def _auto_format_convert(mod, option: bool): | |||
set_auto_format_convert(option) | |||
def _reset_execution_config( | |||
benchmark_kernel=None, | |||
deterministic_kernel=None, | |||
async_level=None, | |||
compute_mode=None, | |||
conv_format=None, | |||
auto_format_convert=None, | |||
): | |||
global _benchmark_kernel, _deterministic_kernel, _async_level, __compute_mode, __conv_format | |||
global _benchmark_kernel, _deterministic_kernel, __compute_mode, __conv_format | |||
orig_flags = ( | |||
_benchmark_kernel, | |||
_deterministic_kernel, | |||
get_option("async_level"), | |||
__compute_mode, | |||
__conv_format, | |||
get_auto_format_convert(), | |||
) | |||
if benchmark_kernel is not None: | |||
_benchmark_kernel = benchmark_kernel | |||
@@ -178,6 +205,8 @@ def _reset_execution_config( | |||
__compute_mode = compute_mode | |||
if conv_format is not None: | |||
__conv_format = conv_format | |||
if auto_format_convert is not None: | |||
set_auto_format_convert(auto_format_convert) | |||
return orig_flags | |||
@@ -189,26 +218,33 @@ def _override( | |||
async_level=None, | |||
compute_mode=None, | |||
conv_format=None, | |||
auto_format_convert=None, | |||
): | |||
r"""A context manager that users can opt in by attaching the decorator to set | |||
the config of the global variable. | |||
Examples: | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
@mge.config._override( | |||
benchmark_kernel = True, | |||
deterministic_kernel = Fasle, | |||
async_level=2, | |||
compute_mode="float32", | |||
conv_format="NHWC", | |||
auto_format_convert=True, | |||
) | |||
def train(): | |||
""" | |||
orig_flags = _reset_execution_config( | |||
benchmark_kernel, deterministic_kernel, async_level, compute_mode, conv_format, | |||
benchmark_kernel, | |||
deterministic_kernel, | |||
async_level, | |||
compute_mode, | |||
conv_format, | |||
auto_format_convert, | |||
) | |||
try: | |||
yield | |||
@@ -564,7 +564,6 @@ def interpolate( | |||
if inp.dtype == np.float16: | |||
inp = inp.astype("float32") | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
assert conv_format == "NCHW", "Currently resize only support NCHW mode" | |||
op = builtin.Resize(imode=mode_map[mode], format=conv_format) | |||
shape = astensor1d(dsize, inp, dtype="int32", device=inp.device) | |||
(ret,) = apply(op, inp, shape) | |||
@@ -4,6 +4,7 @@ from typing import Union | |||
import numpy as np | |||
from .core._imperative_rt import CompNode | |||
from .core._imperative_rt.core2 import FormatType | |||
from .core._imperative_rt.core2 import Tensor as _Tensor | |||
from .core._imperative_rt.core2 import apply, set_py_tensor_type | |||
from .core._trace_option import use_symbolic_shape | |||
@@ -45,6 +46,8 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||
is_const: Whether make it a ``ImutableTensor`` in tracing mode, refer to :class:`.jit.trace`. | |||
no_cache: Whether cache it for memory sharing. | |||
name: Used to improve convenience in graph operation on dumped model. | |||
format: Used to indicate which memory format Tensor uses. It will not affect actual memory order or stride, | |||
but may affect some operators related to indexing and dimension. Only support "default", "nchw" and "nhwc". | |||
.. note:: | |||
@@ -73,6 +76,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||
is_const: bool = False, | |||
no_cache: bool = False, | |||
name: str = None, | |||
format: str = "default", | |||
): | |||
if name is None: | |||
name = "" | |||
@@ -117,6 +121,10 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||
return super().dtype | |||
@property | |||
def format(self) -> str: | |||
return super().format | |||
@property | |||
def qparams(self): | |||
r"""Returns a :class:`~.QParams` object containing quantization params of a :class:`~.Tensor`.""" | |||
from .quantization.utils import create_qparams # pylint: disable=all | |||
@@ -8,6 +8,7 @@ | |||
#include "megbrain/imperative/transformations/dim_expansion.h" | |||
#include "megbrain/imperative/transformations/dtype_promote.h" | |||
#include "megbrain/imperative/transformations/eval.h" | |||
#include "megbrain/imperative/transformations/format.h" | |||
#include "megbrain/imperative/transformations/lazy.h" | |||
#include "megbrain/imperative/transformations/scalar.h" | |||
#include "megbrain/imperative/transformations/symbol.h" | |||
@@ -492,6 +493,9 @@ ssize_t name2idx(const char* name) { | |||
// name | |||
case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1; | |||
} | |||
case 'f': | |||
// format | |||
return compare_cstr<'o', 'r', 'm', 'a', 't'>(ch) ? 6 : -1; | |||
} | |||
// clang-format on | |||
return -1; | |||
@@ -508,6 +512,7 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||
{"is_const", []() -> py::object { return py::bool_(false); }}, | |||
{"no_cache", []() -> py::object { return py::bool_(false); }}, | |||
{"name", []() -> py::object { return py::none(); }}, | |||
{"format", []() -> py::object { return py::none(); }}, | |||
}, | |||
name2idx}; | |||
py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType | |||
@@ -518,19 +523,23 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||
} else { | |||
tup = parse_args(tup, descs); | |||
} | |||
mgb_assert(tup.size() == 6); | |||
mgb_assert(tup.size() == 7); | |||
if (auto* t = try_cast(tup[0].ptr())) { | |||
m_tensor = t->m_tensor->copy(); | |||
} else { | |||
auto data = tup[0]; | |||
DType dtype = tup[1].cast<DType>(); | |||
CompNode cn = as_comp_node(tup[2]); | |||
bool is_const = tup[3].cast<bool>(); | |||
bool no_cache = tup[4].cast<bool>(); | |||
std::string name; | |||
if (!tup[5].is_none()) { | |||
name = tup[5].cast<std::string>(); | |||
} | |||
CompNode cn = as_comp_node(tup[2]); | |||
Format format; | |||
if (!tup[6].is_none()) { | |||
format = tup[6].cast<std::string>(); | |||
} | |||
{ | |||
CreateTensor::Kind kind = is_const ? CreateTensor::Const | |||
@@ -544,7 +553,7 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||
} else { | |||
auto&& hval = pyobj2hval(data, cn, dtype); | |||
val = imperative::apply( | |||
CreateTensor(kind, cn, hval.dtype, hval.shape), | |||
CreateTensor(kind, cn, hval.dtype, hval.shape, format), | |||
hval.storage)[0]; | |||
} | |||
m_tensor.emplace(val); | |||
@@ -610,6 +619,10 @@ PyObject* TensorWrapper::device() { | |||
return py::cast(m_tensor->comp_node()).release().ptr(); | |||
} | |||
PyObject* TensorWrapper::format() { | |||
return py::cast(m_tensor->format().to_string()).release().ptr(); | |||
} | |||
PyObject* TensorWrapper::numpy() { | |||
auto hv = m_tensor->numpy(); | |||
if (!hv) { | |||
@@ -722,6 +735,7 @@ WRAP_FUNC_PY35(pixel_shuffle_cpp); | |||
void init_tensor(py::module m) { | |||
imperative::Tensor::static_initialize(); | |||
// Transformations | |||
static auto& transformations = TransformationManager::get_instance(); | |||
using Segment = TransformationManager::Segment; | |||
@@ -755,6 +769,9 @@ void init_tensor(py::module m) { | |||
.register_at<Segment::DimExpansion>( | |||
std::make_shared<DimExpansionTransformation>()) | |||
.release()); | |||
auto format_trans = std::make_shared<FormatTransformation>(); | |||
MGB_MARK_USED_VAR( | |||
transformations.register_at<Segment::Format>(format_trans).release()); | |||
static py::exception<interpreter::AsyncError> py_async_error( | |||
m, "AsyncError", PyExc_RuntimeError); | |||
@@ -788,12 +805,14 @@ void init_tensor(py::module m) { | |||
} | |||
}); | |||
// Tensor | |||
auto* tensor_type = | |||
TensorWrapper::wrap_t::type() | |||
.def<&TensorWrapper::numpy>("numpy") | |||
.def_getset<&TensorWrapper::shape>("shape") | |||
.def_getset<&TensorWrapper::dtype>("dtype") | |||
.def_getset<&TensorWrapper::device>("device") | |||
.def_getset<&TensorWrapper::format>("format") | |||
.def<&TensorWrapper::reset>("_reset") | |||
.def<&TensorWrapper::isscalar>("_isscalar") | |||
.def<&TensorWrapper::detach>("detach") | |||
@@ -812,6 +831,11 @@ void init_tensor(py::module m) { | |||
if (!tensor_type) | |||
throw py::error_already_set(); | |||
py::setattr(m, "Tensor", tensor_type); | |||
py::enum_<Format::Type>(m, "FormatType") | |||
.value("DEFAULT", Format::Type::DEFAULT) | |||
.value("NCHW", Format::Type::NCHW) | |||
.value("NHWC", Format::Type::NHWC) | |||
.export_values(); | |||
py::class_<TensorWeakRef>(m, "TensorWeakRef") | |||
.def(py::init<const TensorWrapper&>()) | |||
@@ -911,6 +935,7 @@ void init_tensor(py::module m) { | |||
sync_py_task_q(); | |||
}); | |||
// GradTransformation | |||
py::handle grad_key_type = | |||
GradKeyWrapper::wrap_t::type() | |||
.def<&GradKeyWrapper::attach>("attach") | |||
@@ -1203,6 +1228,7 @@ void init_tensor(py::module m) { | |||
return wrapped_outputs; | |||
}); | |||
// ModuleTraceTransformation | |||
static py::function module_trace_hook; | |||
static auto get_module_trace = [] { | |||
@@ -1309,6 +1335,12 @@ void init_tensor(py::module m) { | |||
m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); }); | |||
// FormatTransformation | |||
m.def("set_auto_format_convert", | |||
[format_trans](bool enabled) { format_trans->set_auto_convert(enabled); }); | |||
m.def("get_auto_format_convert", | |||
[format_trans]() { return format_trans->get_auto_convert(); }); | |||
py::register_exception<TraceError>(m, "TraceError"); | |||
} | |||
@@ -1,10 +1,11 @@ | |||
#pragma once | |||
#pragma GCC diagnostic ignored "-Wmissing-field-initializers" | |||
#include <variant> | |||
#include <string> | |||
#include <unordered_map> | |||
#include <variant> | |||
#include "megbrain/imperative/dispatch.h" | |||
#include "megbrain/imperative/interpreter.h" | |||
#include "pybind11/pybind11.h" | |||
@@ -57,6 +58,7 @@ public: | |||
} | |||
return *shape; | |||
} | |||
inline Format format() { return *data().format(); } | |||
inline HostValue::ref_t numpy() { return data().numpy(); } | |||
inline void reset(ValueRef value) { | |||
m_data = value; | |||
@@ -116,6 +118,7 @@ public: | |||
PyObject* shape(); | |||
PyObject* dtype(); | |||
PyObject* device(); | |||
PyObject* format(); | |||
PyObject* numpy(); | |||
void reset(PyObject*); | |||
PyObject* detach(); | |||
@@ -19,6 +19,7 @@ public: | |||
DTypePromote, | |||
DimExpansion, | |||
Grad, | |||
Format, | |||
Scalar, | |||
Symbol, | |||
Trace, | |||
@@ -2,7 +2,7 @@ from megengine import amp | |||
from megengine.core.tensor import amp as origin_amp | |||
def test_grad_scaler(): | |||
def test_autocast(): | |||
def check(enabled, low, high): | |||
assert amp.enabled == enabled | |||
assert origin_amp._enabled == enabled | |||
@@ -0,0 +1,307 @@ | |||
import numpy as np | |||
import pytest | |||
import megengine as mge | |||
import megengine.functional as F | |||
from megengine import tensor | |||
from megengine.autodiff import GradManager | |||
def test_basic(): | |||
a = tensor(np.arange(0, 24).reshape((1, 2, 3, 4)), dtype="float32", format="nhwc") | |||
assert a.format == "nhwc" | |||
b = tensor(a) | |||
assert b.format == "nhwc" | |||
# TODO: fix Tensor init bug for another Tensor | |||
# c = tensor(a, format="nchw") | |||
# assert c.format == "nchw" | |||
def _compare_nchw_nhwc(data, func): | |||
x1 = tensor(data, format="nchw") | |||
x2 = tensor(data.transpose(0, 2, 3, 1), format="nhwc") | |||
out1 = func(x1) | |||
with mge.config._override(auto_format_convert=True): | |||
out2 = func(x2) | |||
np.testing.assert_equal(out1, out2) | |||
def test_dimshuffle(): | |||
def func(x): | |||
out = F.transpose(x, [2, 3, 0, 1]) | |||
assert out.format == "default" | |||
return out.numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
def test_reshape(): | |||
# maintain NHWC format | |||
def func(x): | |||
out = F.reshape(x, (1, 2, 6, 2)) | |||
if x.format == "nhwc": | |||
assert out.format == "nhwc" | |||
return out.numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
# not maintain NHWC format | |||
def func2(x): | |||
out = F.reshape(x, (1, 24)) | |||
assert out.format == "default" | |||
return out.numpy() | |||
_compare_nchw_nhwc(data, func2) | |||
def test_flatten(): | |||
def func(x): | |||
return F.flatten(x).numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
def test_broadcast(): | |||
# maintain NHWC format | |||
def func(x): | |||
out = F.broadcast_to(x, (4, 3, 2, 3)) | |||
if x.format == "nhwc": | |||
assert out.format == "nhwc" | |||
return out.numpy() | |||
data = np.arange(0, 24).reshape((4, 3, 2, 1)) | |||
_compare_nchw_nhwc(data, func) | |||
# not maintain NHWC format | |||
def func2(x): | |||
out = F.broadcast_to(x, (3, 4, 3, 2, 1)) | |||
assert out.format == "default" | |||
return out.numpy() | |||
_compare_nchw_nhwc(data, func2) | |||
@pytest.mark.skip("repeat cannot maintain format yet") | |||
def test_repeat(): | |||
def func(x): | |||
rst = F.repeat(x, 3, axis=1) | |||
assert rst.format == x.format | |||
return rst.numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
def test_getshape(): | |||
def func(x): | |||
return x.shape | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
@pytest.mark.skip("symbolic shape is not supported yet") | |||
def test_get_symbolic_shape(): | |||
from megengine.core._trace_option import set_symbolic_shape | |||
origin_opt = set_symbolic_shape(True) | |||
def func(x): | |||
return x.shape.numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
set_symbolic_shape(origin_opt) | |||
def test_getvalue(): | |||
def func(x): | |||
return x.numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
def test_get_set_subtensor(): | |||
def get_subtensor(x): | |||
return x[:, :1, :2, :3].numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, get_subtensor) | |||
def set_subtensor(x): | |||
x[:, :1, :2, :3] = 0 | |||
return x.numpy() | |||
_compare_nchw_nhwc(data, set_subtensor) | |||
def test_get_set_advanced_indexing(): | |||
def get_advanced_indexing(x): | |||
x = x[:, : mge.tensor(2), : mge.tensor(2), [1, 2]].numpy() | |||
return x | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, get_advanced_indexing) | |||
def set_advanced_indexing(x): | |||
x[:, : mge.tensor(2), : mge.tensor([2]), [1,]] = 0 | |||
return x.numpy() | |||
_compare_nchw_nhwc(data, set_advanced_indexing) | |||
def test_typecvt(): | |||
def typecvt(x): | |||
return x.astype("float16").numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, typecvt) | |||
def test_elemwise(): | |||
def elemwise(x): | |||
return (x * 2 + x / 2).numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, elemwise) | |||
def test_concat(): | |||
def func(x): | |||
rst = F.concat([x / 2, x * 2], axis=1) | |||
assert rst.format == x.format | |||
return rst.numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
@pytest.mark.parametrize( | |||
"mode", ["bilinear", "nearest"], | |||
) | |||
def test_interpolate(mode): | |||
def func(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
rst = F.vision.interpolate(x, scale_factor=3, mode=mode) | |||
assert rst.format == "nhwc" | |||
return rst.numpy() | |||
else: | |||
return F.vision.interpolate(x, scale_factor=3, mode=mode).numpy() | |||
# NHWC interpolate only suppoted channel is 1 or 3 | |||
data = np.arange(0, 48).reshape((1, 3, 4, 4)).astype("float32") | |||
_compare_nchw_nhwc(data, func) | |||
def test_conv2d(): | |||
def conv2d(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
x = F.conv2d( | |||
x, | |||
weight=mge.tensor(np.ones((3, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 3)), format="nhwc"), | |||
) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
else: | |||
return F.conv2d(x, F.ones((3, 2, 1, 1)), F.ones((1, 3, 1, 1))).numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, conv2d) | |||
def test_group_conv2d(): | |||
def conv2d(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
x = F.conv2d( | |||
x, | |||
weight=mge.tensor(np.ones((2, 2, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 4)), format="nhwc"), | |||
groups=2, | |||
) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
else: | |||
return F.conv2d( | |||
x, F.ones((2, 2, 2, 1, 1)), F.ones((1, 4, 1, 1)), groups=2 | |||
).numpy() | |||
data = np.arange(0, 48).reshape((1, 4, 3, 4)) | |||
_compare_nchw_nhwc(data, conv2d) | |||
def test_bn(): | |||
def func(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(bn_format="dim_111c"): | |||
oups = F.batch_norm( | |||
x.astype("float32"), | |||
running_mean=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
running_var=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
weight=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
training=True, | |||
inplace=False, | |||
) | |||
assert oups[0].format == "nhwc", "y's format is wrong" | |||
assert oups[1].format == "nhwc", "running_mean's format is wrong" | |||
assert oups[2].format == "nhwc", "running_var's format is wrong" | |||
return oups[0].numpy() | |||
else: | |||
return F.batch_norm( | |||
x.astype("float32"), | |||
running_mean=mge.tensor(np.ones((1, 2, 1, 1))), | |||
running_var=mge.tensor(np.ones((1, 2, 1, 1))), | |||
weight=mge.tensor(np.ones((1, 2, 1, 1))), | |||
bias=mge.tensor(np.ones((1, 2, 1, 1))), | |||
training=True, | |||
inplace=False, | |||
)[0].numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
@pytest.mark.parametrize( | |||
"pooling", | |||
[F.max_pool2d, F.avg_pool2d, F.adaptive_avg_pool2d, F.adaptive_max_pool2d], | |||
) | |||
def test_pooling2d(pooling): | |||
def func(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
x = pooling(x.astype("float32"), 2) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
else: | |||
return pooling(x.astype("float32"), 2).numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
_compare_nchw_nhwc(data, func) | |||
def test_backward(): | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
x = tensor(data.transpose(0, 2, 3, 1), format="nhwc") | |||
w = mge.tensor(np.ones((3, 1, 1, 2)), format="nhwc") | |||
b = mge.tensor(np.ones((1, 1, 1, 3)), format="nhwc") | |||
gm = GradManager().attach([w, b]) | |||
with gm: | |||
with mge.config._override(auto_format_convert=True, conv_format="NHWC"): | |||
x = F.conv2d(x, w, b) | |||
gm.backward(x) | |||
# TODO: backward grad has no format yet | |||
np.testing.assert_equal( | |||
w.grad.numpy(), | |||
np.array([66, 210, 66, 210, 66, 210]).reshape((3, 1, 1, 2)), | |||
) | |||
np.testing.assert_equal( | |||
b.grad.numpy(), np.array([12, 12, 12]).reshape((1, 1, 1, 3)) | |||
) |
@@ -33,14 +33,20 @@ std::string GetAttr::to_string() const { | |||
return ssprintf("GetAttr{attr=%s}", attr_name); | |||
} | |||
CreateTensor::CreateTensor(Kind kind, CompNode device, DType dtype, ValueShape shape) | |||
: m_kind(kind), m_device(device), m_dtype(dtype), m_shape(shape) {} | |||
CreateTensor::CreateTensor( | |||
Kind kind, CompNode device, DType dtype, ValueShape shape, Format format) | |||
: m_kind(kind), | |||
m_device(device), | |||
m_dtype(dtype), | |||
m_shape(shape), | |||
m_format(format) {} | |||
CreateTensor::CreateTensor(Kind kind, CompNode device, TensorLayout layout) | |||
: m_kind(kind), | |||
m_device(device), | |||
m_dtype(layout.dtype), | |||
m_shape(ValueShape::from(layout)) { | |||
m_shape(ValueShape::from(layout)), | |||
m_format(Format::Type::DEFAULT) { | |||
mgb_assert( | |||
layout.is_contiguous() || layout.is_empty(), "layout should be contiguous"); | |||
} | |||
@@ -74,8 +80,9 @@ auto CreateTensor::parse(Span<ValueRef> inputs) const -> Args { | |||
std::string CreateTensor::to_string() const { | |||
return ssprintf( | |||
"CreateTensor{kind=%d, device=%s, dtype=%s, shape=%s}", (int)m_kind, | |||
m_device.to_string().c_str(), m_dtype.name(), m_shape.to_string().c_str()); | |||
"CreateTensor{kind=%d, device=%s, dtype=%s, shape=%s, format=%s}", | |||
(int)m_kind, m_device.to_string().c_str(), m_dtype.name(), | |||
m_shape.to_string().c_str(), m_format.to_string().c_str()); | |||
} | |||
std::string DTRCommand::to_string() const { | |||
@@ -0,0 +1,406 @@ | |||
#include "megbrain/imperative/transformations/format.h" | |||
#include "megbrain/imperative/ops/autogen.h" | |||
namespace mgb { | |||
namespace imperative { | |||
using FT = Format::Type; | |||
TypedValueRef<FormattedTensorValue> FormattedTensorValue::as(const FT& target) const { | |||
return FormattedTensorValue::make(m_value, target); | |||
} | |||
TypedValueRef<FormattedTensorValue> FormattedTensorValue::to( | |||
const FT& target, const std::string& scope) const { | |||
std::vector<int32_t> pattern; | |||
if (m_format == FT::NHWC && target == FT::NCHW) { | |||
pattern = {0, 3, 1, 2}; | |||
} else if (m_format == FT::NCHW && target == FT::NHWC) { | |||
pattern = {0, 2, 3, 1}; | |||
} else { | |||
mgb_throw( | |||
MegBrainError, "Unsupport format conversion from %s to %s", | |||
m_format.to_string().c_str(), Format(target).to_string().c_str()); | |||
} | |||
auto output = imperative::apply( | |||
*Dimshuffle::make(pattern, scope), std::vector<ValueRef>{m_value})[0]; | |||
return FormattedTensorValue::make(output, target); | |||
} | |||
namespace { | |||
ValueRef unwrap_input(const ValueRef& input) { | |||
if (auto format_input = input.as_ref<FormattedTensorValue>()) { | |||
return format_input->value(); | |||
} else { | |||
return input; | |||
} | |||
} | |||
std::vector<ValueRef> unwrap_inputs(const Span<ValueRef>& inputs) { | |||
std::vector<ValueRef> unwrapped_inputs; | |||
for (auto&& input : inputs) { | |||
unwrapped_inputs.push_back(unwrap_input(input)); | |||
} | |||
return unwrapped_inputs; | |||
} | |||
std::vector<ValueRef> wrap_outputs( | |||
const std::vector<ValueRef>& outputs, FT type = FT::DEFAULT) { | |||
std::vector<ValueRef> wrapped_outputs; | |||
for (auto&& output : outputs) { | |||
wrapped_outputs.push_back(FormattedTensorValue::make(output, type)); | |||
} | |||
return wrapped_outputs; | |||
} | |||
ValueShape convert_nhwc2nchw_shape(const ValueShape& shape) { | |||
mgb_assert(shape.ndim == 4); | |||
auto out = ValueShape(shape); | |||
out[3] = shape[2]; | |||
out[2] = shape[1]; | |||
out[1] = shape[3]; | |||
return out; | |||
} | |||
using FormatRule = std::function<std::vector<ValueRef>( | |||
const OpDef&, Span<ValueRef>&, const bool&)>; | |||
static std::unordered_map<Typeinfo*, FormatRule> format_rules; | |||
template <typename T> | |||
void register_format_rule( | |||
std::vector<ValueRef> (*rule)(const T&, Span<ValueRef>&, const bool&)) { | |||
format_rules[T::typeinfo()] = [rule](const OpDef& def, Span<ValueRef>& inputs, | |||
const bool& auto_convert) { | |||
return (*rule)(def.cast_final_safe<T>(), inputs, auto_convert); | |||
}; | |||
} | |||
auto convert_nchw2nhwc_pattern(const std::vector<int32_t>& pattern) { | |||
mgb_assert(pattern.size() == 4); | |||
auto nhwc_pattern = pattern; | |||
for (size_t idx = 0; idx < 4; ++idx) { | |||
auto dim = pattern[idx]; | |||
if (dim == 1) { | |||
nhwc_pattern[idx] = 3; | |||
} else if (dim == 2) { | |||
nhwc_pattern[idx] = 1; | |||
} else if (dim == 3) { | |||
nhwc_pattern[idx] = 2; | |||
} | |||
} | |||
return nhwc_pattern; | |||
} | |||
std::vector<ValueRef> dimshuffle_rule( | |||
const Dimshuffle& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||
mgb_assert(inputs.size() == 1); | |||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||
// Only support converting pattern from NCHW to NHWC currently. | |||
if (auto_convert && src.format() == FT::NHWC) { | |||
auto pattern = convert_nchw2nhwc_pattern(op.pattern); | |||
// dimshuffle will not maintain NHWC Format | |||
return wrap_outputs(imperative::apply( | |||
*Dimshuffle::make(std::move(pattern), op.scope()), | |||
unwrap_inputs(inputs))); | |||
} | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||
} | |||
ValueRef convert_nchw2nhwc_tensornd(const HostTensorND& shape) { | |||
mgb_assert(shape.layout().total_nr_elems() == 4); | |||
auto* old_ptr = shape.ptr<dt_int32>(); | |||
auto cn = shape.comp_node(); | |||
auto layout = shape.layout(); | |||
auto nhwc_shape = HostTensorND(cn, layout); | |||
auto* new_ptr = nhwc_shape.ptr<dt_int32>(); | |||
new_ptr[0] = old_ptr[0]; | |||
new_ptr[1] = old_ptr[2]; | |||
new_ptr[2] = old_ptr[3]; | |||
new_ptr[3] = old_ptr[1]; | |||
auto hv = HostStorage::make(nhwc_shape.storage()); | |||
auto nhwc_shape_input = | |||
imperative::apply(CreateTensor(CreateTensor::Const, cn, layout), hv)[0]; | |||
return nhwc_shape_input; | |||
} | |||
std::vector<ValueRef> reshape_rule( | |||
const Reshape& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||
mgb_assert(inputs.size() == 2); | |||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||
if (auto_convert && src.format() == FT::NHWC) { | |||
auto shape = unwrap_input(inputs[1]).numpy().cast<HostValue>().as_nd(); | |||
if (shape.layout().total_nr_elems() == 4) { | |||
// output is still NHWC format | |||
auto nhwc_shape = convert_nchw2nhwc_tensornd(shape); | |||
auto outputs = imperative::apply( | |||
op, std::vector<ValueRef>{unwrap_input(inputs[0]), nhwc_shape}); | |||
return wrap_outputs(outputs, FT::NHWC); | |||
} else { | |||
// will not maintain src's format | |||
auto nchw_src = src.to(FT::NCHW, op.scope())->value(); | |||
auto outputs = imperative::apply( | |||
op, std::vector<ValueRef>{nchw_src, unwrap_input(inputs[1])}); | |||
return wrap_outputs(outputs); | |||
} | |||
} | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||
} | |||
std::vector<ValueRef> broadcast_rule( | |||
const Broadcast& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||
mgb_assert(inputs.size() == 2); | |||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||
if (auto_convert && src.format() == FT::NHWC) { | |||
auto shape = unwrap_input(inputs[1]).numpy().cast<HostValue>().as_nd(); | |||
if (shape.layout().total_nr_elems() == 4) { | |||
// output is still NHWC format | |||
auto nhwc_shape = convert_nchw2nhwc_tensornd(shape); | |||
auto outputs = imperative::apply( | |||
op, std::vector<ValueRef>{unwrap_input(inputs[0]), nhwc_shape}); | |||
return wrap_outputs(outputs, FT::NHWC); | |||
} else { | |||
// will not maintain src's format | |||
auto nchw_src = src.to(FT::NCHW, op.scope())->value(); | |||
auto outputs = imperative::apply( | |||
op, std::vector<ValueRef>{nchw_src, unwrap_input(inputs[1])}); | |||
return wrap_outputs(outputs); | |||
} | |||
} | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||
} | |||
bool is_reduce_ndim_idx_items( | |||
const std::vector<std::tuple<int8_t, bool, bool, bool, bool>>& items, | |||
const Span<ValueRef>& inputs) { | |||
for (auto i = 0; i < items.size(); ++i) { | |||
auto&& [axis, begin, end, step, idx] = items[i]; | |||
if (idx) { | |||
// if inputs[i] contains more than one value, ndim will not be reduced. | |||
return inputs[i].is_scalar(); | |||
} | |||
} | |||
return false; | |||
} | |||
auto convert_nchw2nhwc_idx_items( | |||
const std::vector<std::tuple<int8_t, bool, bool, bool, bool>>& items) { | |||
auto nhwc_items = items; | |||
for (auto i = 0; i < nhwc_items.size(); ++i) { | |||
auto&& [axis, begin, end, step, idx] = nhwc_items[i]; | |||
if (axis == 2 || axis == 3) { | |||
nhwc_items[i] = {axis - 1, begin, end, step, idx}; | |||
} else if (axis == 1) { | |||
nhwc_items[i] = {3, begin, end, step, idx}; | |||
} | |||
} | |||
return nhwc_items; | |||
} | |||
template <typename T> | |||
std::vector<ValueRef> subtensor_rule( | |||
const T& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||
mgb_assert(inputs.size() >= 1); | |||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||
bool is_reduce_ndim = is_reduce_ndim_idx_items( | |||
op.items, {&inputs[1], &inputs[inputs.size() - 1]}); | |||
if (!is_reduce_ndim) { | |||
// only support NHWC2NCHW convert, otherwise maintain src's format | |||
if (!(auto_convert && src.format() == FT::NHWC)) { | |||
return {FormattedTensorValue::make( | |||
imperative::apply(op, unwrap_inputs(inputs))[0], src.format())}; | |||
} | |||
auto nhwc_items = convert_nchw2nhwc_idx_items(op.items); | |||
auto outputs = imperative::apply( | |||
*T::make(std::move(nhwc_items), op.scope()), unwrap_inputs(inputs)); | |||
return wrap_outputs(outputs, FT::NHWC); | |||
} | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||
} | |||
template <typename T> | |||
std::vector<ValueRef> setsubtensor_rule( | |||
const T& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||
mgb_assert(inputs.size() >= 2); | |||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||
bool is_reduce_ndim = is_reduce_ndim_idx_items( | |||
op.items, {&inputs[2], &inputs[inputs.size() - 1]}); | |||
if (!is_reduce_ndim) { | |||
// only support NHWC2NCHW convert, otherwise maintain src's format | |||
if (!(auto_convert && src.format() == FT::NHWC)) { | |||
return {FormattedTensorValue::make( | |||
imperative::apply(op, unwrap_inputs(inputs))[0], src.format())}; | |||
} | |||
// value has been broadcasted to src's fake NCHW shape. | |||
auto& value = inputs[1].cast<FormattedTensorValue>(); | |||
auto& format = value.format(); | |||
auto nhwc_inputs = std::vector<ValueRef>(inputs.size()); | |||
if (format == FT::DEFAULT || format == FT::NCHW) { | |||
// value for setsubtensor should transpose to match shape. | |||
auto nhwc_value = value.as(FT::NCHW)->to(FT::NHWC); | |||
// make new inputs for setsubtensor | |||
nhwc_inputs[0] = src.value(); | |||
nhwc_inputs[1] = nhwc_value->value(); | |||
for (auto i = 2; i < inputs.size(); ++i) { | |||
nhwc_inputs[i] = inputs[i].as_ref<FormattedTensorValue>()->value(); | |||
} | |||
} else if (format != FT::NHWC) { | |||
mgb_throw( | |||
MegBrainError, "Unsupported format(%s) of value for setsubtensor.", | |||
format.to_string().c_str()); | |||
} | |||
auto nhwc_items = convert_nchw2nhwc_idx_items(op.items); | |||
auto outputs = imperative::apply( | |||
*T::make(std::move(nhwc_items), op.scope()), nhwc_inputs); | |||
return wrap_outputs(outputs, FT::NHWC); | |||
} | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||
} | |||
FT get_inputs_format(Span<ValueRef>& inputs) { | |||
FT format(FT::DEFAULT); | |||
for (auto& inp : inputs) { | |||
auto& inp_format = inp.cast<FormattedTensorValue>().format(); | |||
if (inp_format != FT::DEFAULT) { | |||
mgb_assert(format == FT::DEFAULT || inp_format == format); | |||
format = inp_format.type(); | |||
} | |||
} | |||
return format; | |||
} | |||
std::vector<ValueRef> concat_rule( | |||
const Concat& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||
FT format = get_inputs_format(inputs); | |||
if (!(format == FT::NHWC && auto_convert)) { | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs)), format); | |||
} | |||
// TODO: handle 5D NHWC Tensor from group conv | |||
auto axis = op.axis; | |||
if (axis == 2 || axis == 3) { | |||
axis = axis - 1; | |||
} else if (axis == 1) { | |||
axis = 3; | |||
} | |||
return wrap_outputs( | |||
imperative::apply( | |||
*Concat::make(axis, op.comp_node, op.scope()), | |||
unwrap_inputs(inputs)), | |||
format); | |||
} | |||
std::vector<ValueRef> elemwise_rule( | |||
const Elemwise& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||
FT format = get_inputs_format(inputs); | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs)), format); | |||
} | |||
std::vector<ValueRef> identity_rule_helper( | |||
const OpDef& op, const Span<ValueRef>& inputs) { | |||
// mgb_assert(inputs.size() == 1); | |||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||
return wrap_outputs( | |||
imperative::apply(op, unwrap_inputs(inputs)), src.format().type()); | |||
} | |||
// clang-format off | |||
#define FOREACH_IDENTITY_OP(cb) \ | |||
cb(Copy) \ | |||
cb(FastpathCopy) \ | |||
cb(TypeCvt) \ | |||
cb(Pooling) \ | |||
cb(AdaptivePooling) \ | |||
cb(Dropout) \ | |||
cb(Convolution) \ | |||
cb(BatchNorm) \ | |||
cb(Resize) \ | |||
cb(Identity) | |||
// clang-format on | |||
#define CREATE_IDENTITY_OP_RULE(op) \ | |||
std::vector<ValueRef> op##_rule( \ | |||
const op& _op, Span<ValueRef>& inputs, const bool& auto_convert) { \ | |||
return identity_rule_helper(_op, inputs); \ | |||
} | |||
FOREACH_IDENTITY_OP(CREATE_IDENTITY_OP_RULE) | |||
#undef CREATE_IDENTITY_OP_RULE | |||
#define REGISTER_IDENTITY_OP_RULE(op) register_format_rule(op##_rule); | |||
struct FormatRuleRegistry { | |||
FormatRuleRegistry() { | |||
register_format_rule(dimshuffle_rule); | |||
register_format_rule(reshape_rule); | |||
register_format_rule(broadcast_rule); | |||
register_format_rule(subtensor_rule<Subtensor>); | |||
register_format_rule(subtensor_rule<IndexingMultiAxisVec>); | |||
register_format_rule(setsubtensor_rule<SetSubtensor>); | |||
register_format_rule(setsubtensor_rule<IndexingSetMultiAxisVec>); | |||
register_format_rule(concat_rule); | |||
register_format_rule(elemwise_rule); | |||
FOREACH_IDENTITY_OP(REGISTER_IDENTITY_OP_RULE) | |||
} | |||
} _; | |||
#undef REGISTER_IDENTITY_OP_RULE | |||
} // namespace | |||
std::vector<ValueRef> FormatTransformation::apply_transformation( | |||
const Operator& op, Span<ValueRef> inputs) { | |||
if (auto* apply_op = op.as<ApplyOp>()) { | |||
// all inputs should be FormattedTensorValue | |||
auto iter = format_rules.find(apply_op->op().dyn_typeinfo()); | |||
if (iter != format_rules.end()) { | |||
return iter->second(apply_op->op(), inputs, m_auto_convert); | |||
} else { | |||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||
} | |||
} else if (auto* create_tensor = op.as<CreateTensor>()) { | |||
auto format = create_tensor->format(); | |||
return {FormattedTensorValue::make(imperative::apply(op, inputs)[0], format)}; | |||
} else if (auto* get_attr = op.as<GetAttr>()) { | |||
auto* src = inputs.as_array<1>()[0].as<FormattedTensorValue>(); | |||
if (!m_auto_convert || !src || src->format() != FT::NHWC) { | |||
return imperative::apply(op, unwrap_inputs(inputs)); | |||
} | |||
switch (get_attr->attr()) { | |||
case GetAttr::Shape: { | |||
auto output = imperative::apply(op, unwrap_inputs(inputs))[0]; | |||
auto shape = convert_nhwc2nchw_shape(output.cast<ShapeValue>()); | |||
return {ShapeValue::make(shape)}; | |||
} | |||
case GetAttr::Value: { | |||
auto nchw_src = unwrap_input(src->to(FT::NCHW, "")); | |||
return imperative::apply(op, std::vector<ValueRef>{nchw_src}); | |||
} | |||
default: | |||
return imperative::apply(op, unwrap_inputs(inputs)); | |||
} | |||
} else if (op.is<GetFormat>()) { | |||
bool is_formatted_tensor = inputs.as_array<1>()[0].is<FormattedTensorValue>(); | |||
if (is_formatted_tensor) { | |||
return {FormatValue::make(inputs[0].cast<FormattedTensorValue>().format())}; | |||
} else { | |||
mgb_log_warn( | |||
"Not FormattedTensorValue input for GetFormat op: %s", | |||
inputs[0].to_string().c_str()); | |||
return {FormatValue::make(FT::DEFAULT)}; | |||
} | |||
} else if (op.is<Operator::IdentityLike>()) { | |||
bool is_formatted_tensor = inputs.as_array<1>()[0].is<FormattedTensorValue>(); | |||
if (is_formatted_tensor) { | |||
auto& format = inputs[0].cast<FormattedTensorValue>().format(); | |||
return wrap_outputs( | |||
imperative::apply(op, unwrap_inputs(inputs)), format.type()); | |||
} else { | |||
mgb_log_warn( | |||
"Not FormattedTensorValue input for IdentityLike op: %s", | |||
inputs[0].to_string().c_str()); | |||
return imperative::apply(op, inputs); | |||
} | |||
} else { | |||
return imperative::apply(op, unwrap_inputs(inputs)); | |||
} | |||
}; | |||
} // namespace imperative | |||
} // namespace mgb |
@@ -58,6 +58,10 @@ TypedValueRef<DTypeValue> ValueRef::dtype() const { | |||
return imperative::apply(GetAttr(GetAttr::DType), *this)[0].cast_ref<DTypeValue>(); | |||
} | |||
TypedValueRef<FormatValue> ValueRef::format() const { | |||
return imperative::apply(GetFormat(), *this)[0].as_ref<FormatValue>(); | |||
} | |||
TypedValueRef<StringValue> ValueRef::name() const { | |||
return imperative::apply(GetName(), *this)[0].cast_ref<StringValue>(); | |||
} | |||
@@ -5,6 +5,7 @@ | |||
#include "megbrain/imperative/op_def.h" | |||
#include "megbrain/imperative/operator.h" | |||
#include "megbrain/imperative/utils/data_format.h" | |||
#include "megbrain/imperative/utils/helper.h" | |||
#include "megbrain/imperative/utils/value_shape.h" | |||
@@ -82,9 +83,12 @@ private: | |||
CompNode m_device; | |||
DType m_dtype; | |||
ValueShape m_shape; | |||
Format m_format; | |||
public: | |||
CreateTensor(Kind kind, CompNode device, DType dtype, ValueShape shape); | |||
CreateTensor( | |||
Kind kind, CompNode device, DType dtype, ValueShape shape, | |||
Format format = Format::Type::DEFAULT); | |||
CreateTensor(Kind kind, CompNode device, TensorLayout layout); | |||
/** | |||
@@ -99,6 +103,7 @@ public: | |||
CompNode device() const { return m_device; } | |||
DType dtype() const { return m_dtype; } | |||
ValueShape shape() const { return m_shape; } | |||
Format format() const { return m_format; } | |||
std::string to_string() const override; | |||
}; | |||
@@ -157,6 +162,11 @@ public: | |||
std::string to_string() const override; | |||
}; | |||
class GetFormat final : public OperatorImpl<GetFormat, Operator::GetAttrLike> { | |||
public: | |||
std::string to_string() const override { return "GetFormat{}"; } | |||
}; | |||
class GetVarVal final : public OperatorImpl<GetVarVal, Operator::GetAttrLike> { | |||
public: | |||
std::string to_string() const override; | |||
@@ -3,6 +3,7 @@ | |||
#include <future> | |||
#include <iomanip> | |||
#include "megbrain/imperative/utils/data_format.h" | |||
#include "megbrain/imperative/utils/helper.h" | |||
#include "megbrain/imperative/utils/value_shape.h" | |||
#include "megbrain/imperative/value.h" | |||
@@ -148,6 +149,13 @@ public: | |||
std::string to_string() const override; | |||
}; | |||
class FormatValue final : public PrimitiveValue<FormatValue, Format> { | |||
public: | |||
using PrimitiveValue::PrimitiveValue; | |||
std::string to_string() const override { return Format::to_string(); } | |||
}; | |||
class StringValue final : public PrimitiveValue<StringValue, std::string> { | |||
public: | |||
using PrimitiveValue::PrimitiveValue; | |||
@@ -0,0 +1,70 @@ | |||
#pragma once | |||
#include "megbrain/imperative/basic_values.h" | |||
#include "megbrain/imperative/dispatch.h" | |||
#include "megbrain/imperative/ops/autogen.h" | |||
#include "megbrain/imperative/utils/data_format.h" | |||
namespace mgb::imperative { | |||
class FormattedTensorValue final : public ValueImpl<FormattedTensorValue> { | |||
private: | |||
ValueRef m_value; | |||
Format m_format; | |||
public: | |||
FormattedTensorValue(ValueRef value, Format format) | |||
: m_value(value), m_format(format) {} | |||
std::string to_string() const override { | |||
return ssprintf( | |||
"FormattedTensorValue{value=%s, format=%s}", | |||
m_value.to_string().c_str(), m_format.to_string().c_str()); | |||
} | |||
ValueRef value() const { return m_value; } | |||
const Format& format() const { return m_format; } | |||
TypedValueRef<FormattedTensorValue> as(const Format::Type& target) const; | |||
TypedValueRef<FormattedTensorValue> to( | |||
const Format::Type& target, const std::string& scope = "") const; | |||
void clear() override { | |||
m_value = {}; | |||
m_format = {}; | |||
} | |||
void on_watch() override { m_value.watch(); } | |||
void on_unwatch() override { m_value.unwatch(); } | |||
}; | |||
/** | |||
* \brief simulates scalar because megbrain graph system don't support scalar | |||
* | |||
* Assume that we has 'a = ScalarValue(b)', thus 'a.shape == []', 'b.shape == [1]'. | |||
* This transformation simulates scalars with a flag. If a value is ScalarValue, it is | |||
* scalar, vice versa. So there is not scalar down this layer. | |||
*/ | |||
class FormatTransformation final : public Transformation { | |||
private: | |||
bool m_auto_convert = false; | |||
public: | |||
std::vector<ValueRef> apply_transformation( | |||
const Operator& op, Span<ValueRef> inputs) override; | |||
ValueRef unwrap(ValueRef value) override { | |||
mgb_assert(!value.is<FormattedTensorValue>()); | |||
return value; | |||
} | |||
std::string name() const override { | |||
return ssprintf("FormatTransformation{auto_convert=%d}", m_auto_convert); | |||
} | |||
void set_auto_convert(bool enabled) { m_auto_convert = enabled; } | |||
bool get_auto_convert() const { return m_auto_convert; } | |||
}; | |||
} // namespace mgb::imperative |
@@ -0,0 +1,56 @@ | |||
#pragma once | |||
#include "megbrain/tensor.h" | |||
namespace mgb::imperative { | |||
/** | |||
* \brief like TensorFormats, but only including common formats and DEFAULT. | |||
* | |||
*/ | |||
class Format { | |||
public: | |||
enum class Type { | |||
DEFAULT = 0, | |||
NCHW = 1, ///< [N, C, H, W] | |||
NHWC = 2, ///< [N, H, W, C] | |||
}; | |||
std::string to_string() const { | |||
switch (m_type) { | |||
case Type::DEFAULT: | |||
return "default"; | |||
case Type::NCHW: | |||
return "nchw"; | |||
case Type::NHWC: | |||
return "nhwc"; | |||
default: | |||
mgb_throw(MegBrainError, "bad format type"); | |||
} | |||
} | |||
Format() : m_type(Type::DEFAULT) {} | |||
Format(std::string str) { | |||
if (str == "default") { | |||
m_type = Type::DEFAULT; | |||
} else if (str == "nchw") { | |||
m_type = Type::NCHW; | |||
} else if (str == "nhwc") { | |||
m_type = Type::NHWC; | |||
} else { | |||
mgb_throw( | |||
MegBrainError, | |||
"Invalid format type." | |||
" Only support \"default\", \"nchw\" and \"nhwc\""); | |||
} | |||
} | |||
Format(Type type) : m_type(type) {} | |||
Type type() const { return m_type; } | |||
bool operator==(const Format& b) const { return m_type == b.type(); } | |||
bool operator==(const Format::Type& b) const { return m_type == b; } | |||
bool operator!=(const Format& b) const { return m_type != b.type(); } | |||
bool operator!=(const Format::Type& b) const { return m_type != b; } | |||
private: | |||
Type m_type = Type::DEFAULT; | |||
}; | |||
} // namespace mgb::imperative |
@@ -31,6 +31,7 @@ class HostValue; | |||
class DeviceValue; | |||
class ShapeValue; | |||
class DTypeValue; | |||
class FormatValue; | |||
class CompNodeValue; | |||
class StringValue; | |||
class NodeValue; | |||
@@ -219,6 +220,7 @@ public: | |||
TypedValueRef<CompNodeValue> device() const; | |||
TypedValueRef<ShapeValue> shape() const; | |||
TypedValueRef<DTypeValue> dtype() const; | |||
TypedValueRef<FormatValue> format() const; | |||
TypedValueRef<StringValue> name() const; | |||
bool is_scalar() const; | |||
@@ -431,9 +433,11 @@ inline const TypedValueRef<TValue>& ValueRef::cast_ref(const Type<TValue>& type) | |||
inline void ValueRef::on_cast_failure(const IType& type) const { | |||
// if this is ErrorValue, rethrow directly | |||
storage()->try_rethrow(); | |||
mgb_assert( | |||
storage()->type() != type, "expect type %s, got %s", type.name().c_str(), | |||
to_string().c_str()); | |||
if (storage()->type() != type) { | |||
mgb_throw( | |||
MegBrainError, "Unable to cast ValueRef: expect type %s, got %s", | |||
type.name().c_str(), to_string().c_str()); | |||
} | |||
} | |||
/** | |||
@@ -200,7 +200,7 @@ void BatchNormForward::get_output_var_shape( | |||
bias_c = inp_shape[2][channel_idx]; | |||
mgb_assert( | |||
inp_c == scale_c && inp_c == bias_c, | |||
"inconsistent channel size, input chennel: %zu, scale channel: %zu, bias " | |||
"inconsistent channel size, input channel: %zu, scale channel: %zu, bias " | |||
"channel: %zu", | |||
inp_c, scale_c, bias_c); | |||