GitOrigin-RevId: 77ff909f23
release-1.10
@@ -156,6 +156,7 @@ _atexit(_persistent_cache.flush) | |||||
# subpackages | # subpackages | ||||
import megengine.amp | import megengine.amp | ||||
import megengine.autodiff | import megengine.autodiff | ||||
import megengine.config | |||||
import megengine.data | import megengine.data | ||||
import megengine.distributed | import megengine.distributed | ||||
import megengine.dtr | import megengine.dtr | ||||
@@ -2,7 +2,13 @@ | |||||
import os | import os | ||||
from contextlib import contextmanager | from contextlib import contextmanager | ||||
from ._imperative_rt.core2 import _clear_algorithm_cache, get_option, set_option | |||||
from ._imperative_rt.core2 import ( | |||||
_clear_algorithm_cache, | |||||
get_auto_format_convert, | |||||
get_option, | |||||
set_auto_format_convert, | |||||
set_option, | |||||
) | |||||
__compute_mode = "default" | __compute_mode = "default" | ||||
__conv_format = "default" | __conv_format = "default" | ||||
@@ -24,8 +30,8 @@ __all__ = [ | |||||
def benchmark_kernel(mod): | def benchmark_kernel(mod): | ||||
r"""Whether or not run possible algorithms on real device to find the best one. The default option is false, | r"""Whether or not run possible algorithms on real device to find the best one. The default option is false, | ||||
which means use heuristic to choose the fastest algorithm. | which means use heuristic to choose the fastest algorithm. | ||||
Examples: | |||||
Examples: | |||||
.. code-block:: | .. code-block:: | ||||
import megengine as mge | import megengine as mge | ||||
@@ -47,8 +53,8 @@ def benchmark_kernel(mod, option: bool): | |||||
def deterministic_kernel(mod): | def deterministic_kernel(mod): | ||||
r"""Whether or not the fastest algorithm choosed is reproducible. The default option is false, | r"""Whether or not the fastest algorithm choosed is reproducible. The default option is false, | ||||
which means the algorithm is not reproducible. | which means the algorithm is not reproducible. | ||||
Examples: | |||||
Examples: | |||||
.. code-block:: | .. code-block:: | ||||
import megengine as mge | import megengine as mge | ||||
@@ -67,8 +73,8 @@ def deterministic_kernel(mod, option: bool): | |||||
def async_level(mod) -> int: | def async_level(mod) -> int: | ||||
r"""Get or set config whether raise error exactly when invoking op. The default level is 2, | r"""Get or set config whether raise error exactly when invoking op. The default level is 2, | ||||
which means both device and user side errors are async. | which means both device and user side errors are async. | ||||
Examples: | |||||
Examples: | |||||
.. code-block:: | .. code-block:: | ||||
import megengine as mge | import megengine as mge | ||||
@@ -108,8 +114,8 @@ def _compute_mode(mod): | |||||
which means that no special requirements will be placed on. When set to 'float32', it | which means that no special requirements will be placed on. When set to 'float32', it | ||||
would be used for accumulator and intermediate result, but only effective when input and | would be used for accumulator and intermediate result, but only effective when input and | ||||
output are of float16 dtype. | output are of float16 dtype. | ||||
Examples: | |||||
Examples: | |||||
.. code-block:: | .. code-block:: | ||||
import megengine as mge | import megengine as mge | ||||
@@ -137,8 +143,8 @@ def _conv_format(mod): | |||||
``NCHW88`` layout: ``{N, C/8, H, W, 8}`` | ``NCHW88`` layout: ``{N, C/8, H, W, 8}`` | ||||
``CHWN4`` layout: ``{C/4, H, W, N, 4}`` | ``CHWN4`` layout: ``{C/4, H, W, N, 4}`` | ||||
``NCHW64`` layout: ``{N, C/64, H, W, 64}`` | ``NCHW64`` layout: ``{N, C/64, H, W, 64}`` | ||||
Examples: | |||||
Examples: | |||||
.. code-block:: | .. code-block:: | ||||
import megengine as mge | import megengine as mge | ||||
@@ -153,20 +159,41 @@ def _conv_format(mod, format: str): | |||||
__conv_format = format | __conv_format = format | ||||
@property | |||||
def _auto_format_convert(mod): | |||||
r"""Automatically convert indexing params' order for NCHW Tensor to NHWC order. | |||||
The default value is False, which means no convert. | |||||
Examples: | |||||
.. code-block:: | |||||
import megengine as mge | |||||
mge.config._auto_format_convert = True | |||||
""" | |||||
return get_auto_format_convert() | |||||
@_auto_format_convert.setter | |||||
def _auto_format_convert(mod, option: bool): | |||||
set_auto_format_convert(option) | |||||
def _reset_execution_config( | def _reset_execution_config( | ||||
benchmark_kernel=None, | benchmark_kernel=None, | ||||
deterministic_kernel=None, | deterministic_kernel=None, | ||||
async_level=None, | async_level=None, | ||||
compute_mode=None, | compute_mode=None, | ||||
conv_format=None, | conv_format=None, | ||||
auto_format_convert=None, | |||||
): | ): | ||||
global _benchmark_kernel, _deterministic_kernel, _async_level, __compute_mode, __conv_format | |||||
global _benchmark_kernel, _deterministic_kernel, __compute_mode, __conv_format | |||||
orig_flags = ( | orig_flags = ( | ||||
_benchmark_kernel, | _benchmark_kernel, | ||||
_deterministic_kernel, | _deterministic_kernel, | ||||
get_option("async_level"), | get_option("async_level"), | ||||
__compute_mode, | __compute_mode, | ||||
__conv_format, | __conv_format, | ||||
get_auto_format_convert(), | |||||
) | ) | ||||
if benchmark_kernel is not None: | if benchmark_kernel is not None: | ||||
_benchmark_kernel = benchmark_kernel | _benchmark_kernel = benchmark_kernel | ||||
@@ -178,6 +205,8 @@ def _reset_execution_config( | |||||
__compute_mode = compute_mode | __compute_mode = compute_mode | ||||
if conv_format is not None: | if conv_format is not None: | ||||
__conv_format = conv_format | __conv_format = conv_format | ||||
if auto_format_convert is not None: | |||||
set_auto_format_convert(auto_format_convert) | |||||
return orig_flags | return orig_flags | ||||
@@ -189,26 +218,33 @@ def _override( | |||||
async_level=None, | async_level=None, | ||||
compute_mode=None, | compute_mode=None, | ||||
conv_format=None, | conv_format=None, | ||||
auto_format_convert=None, | |||||
): | ): | ||||
r"""A context manager that users can opt in by attaching the decorator to set | r"""A context manager that users can opt in by attaching the decorator to set | ||||
the config of the global variable. | the config of the global variable. | ||||
Examples: | |||||
Examples: | |||||
.. code-block:: | .. code-block:: | ||||
import megengine as mge | import megengine as mge | ||||
@mge.config._override( | @mge.config._override( | ||||
benchmark_kernel = True, | benchmark_kernel = True, | ||||
deterministic_kernel = Fasle, | deterministic_kernel = Fasle, | ||||
async_level=2, | async_level=2, | ||||
compute_mode="float32", | compute_mode="float32", | ||||
conv_format="NHWC", | conv_format="NHWC", | ||||
auto_format_convert=True, | |||||
) | ) | ||||
def train(): | def train(): | ||||
""" | """ | ||||
orig_flags = _reset_execution_config( | orig_flags = _reset_execution_config( | ||||
benchmark_kernel, deterministic_kernel, async_level, compute_mode, conv_format, | |||||
benchmark_kernel, | |||||
deterministic_kernel, | |||||
async_level, | |||||
compute_mode, | |||||
conv_format, | |||||
auto_format_convert, | |||||
) | ) | ||||
try: | try: | ||||
yield | yield | ||||
@@ -564,7 +564,6 @@ def interpolate( | |||||
if inp.dtype == np.float16: | if inp.dtype == np.float16: | ||||
inp = inp.astype("float32") | inp = inp.astype("float32") | ||||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | ||||
assert conv_format == "NCHW", "Currently resize only support NCHW mode" | |||||
op = builtin.Resize(imode=mode_map[mode], format=conv_format) | op = builtin.Resize(imode=mode_map[mode], format=conv_format) | ||||
shape = astensor1d(dsize, inp, dtype="int32", device=inp.device) | shape = astensor1d(dsize, inp, dtype="int32", device=inp.device) | ||||
(ret,) = apply(op, inp, shape) | (ret,) = apply(op, inp, shape) | ||||
@@ -4,6 +4,7 @@ from typing import Union | |||||
import numpy as np | import numpy as np | ||||
from .core._imperative_rt import CompNode | from .core._imperative_rt import CompNode | ||||
from .core._imperative_rt.core2 import FormatType | |||||
from .core._imperative_rt.core2 import Tensor as _Tensor | from .core._imperative_rt.core2 import Tensor as _Tensor | ||||
from .core._imperative_rt.core2 import apply, set_py_tensor_type | from .core._imperative_rt.core2 import apply, set_py_tensor_type | ||||
from .core._trace_option import use_symbolic_shape | from .core._trace_option import use_symbolic_shape | ||||
@@ -45,6 +46,8 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||||
is_const: Whether make it a ``ImutableTensor`` in tracing mode, refer to :class:`.jit.trace`. | is_const: Whether make it a ``ImutableTensor`` in tracing mode, refer to :class:`.jit.trace`. | ||||
no_cache: Whether cache it for memory sharing. | no_cache: Whether cache it for memory sharing. | ||||
name: Used to improve convenience in graph operation on dumped model. | name: Used to improve convenience in graph operation on dumped model. | ||||
format: Used to indicate which memory format Tensor uses. It will not affect actual memory order or stride, | |||||
but may affect some operators related to indexing and dimension. Only support "default", "nchw" and "nhwc". | |||||
.. note:: | .. note:: | ||||
@@ -73,6 +76,7 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||||
is_const: bool = False, | is_const: bool = False, | ||||
no_cache: bool = False, | no_cache: bool = False, | ||||
name: str = None, | name: str = None, | ||||
format: str = "default", | |||||
): | ): | ||||
if name is None: | if name is None: | ||||
name = "" | name = "" | ||||
@@ -117,6 +121,10 @@ class Tensor(_Tensor, ArrayMethodMixin): | |||||
return super().dtype | return super().dtype | ||||
@property | @property | ||||
def format(self) -> str: | |||||
return super().format | |||||
@property | |||||
def qparams(self): | def qparams(self): | ||||
r"""Returns a :class:`~.QParams` object containing quantization params of a :class:`~.Tensor`.""" | r"""Returns a :class:`~.QParams` object containing quantization params of a :class:`~.Tensor`.""" | ||||
from .quantization.utils import create_qparams # pylint: disable=all | from .quantization.utils import create_qparams # pylint: disable=all | ||||
@@ -8,6 +8,7 @@ | |||||
#include "megbrain/imperative/transformations/dim_expansion.h" | #include "megbrain/imperative/transformations/dim_expansion.h" | ||||
#include "megbrain/imperative/transformations/dtype_promote.h" | #include "megbrain/imperative/transformations/dtype_promote.h" | ||||
#include "megbrain/imperative/transformations/eval.h" | #include "megbrain/imperative/transformations/eval.h" | ||||
#include "megbrain/imperative/transformations/format.h" | |||||
#include "megbrain/imperative/transformations/lazy.h" | #include "megbrain/imperative/transformations/lazy.h" | ||||
#include "megbrain/imperative/transformations/scalar.h" | #include "megbrain/imperative/transformations/scalar.h" | ||||
#include "megbrain/imperative/transformations/symbol.h" | #include "megbrain/imperative/transformations/symbol.h" | ||||
@@ -492,6 +493,9 @@ ssize_t name2idx(const char* name) { | |||||
// name | // name | ||||
case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1; | case 'a': return compare_cstr<'m', 'e'>(ch) ? 5 : -1; | ||||
} | } | ||||
case 'f': | |||||
// format | |||||
return compare_cstr<'o', 'r', 'm', 'a', 't'>(ch) ? 6 : -1; | |||||
} | } | ||||
// clang-format on | // clang-format on | ||||
return -1; | return -1; | ||||
@@ -508,6 +512,7 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||||
{"is_const", []() -> py::object { return py::bool_(false); }}, | {"is_const", []() -> py::object { return py::bool_(false); }}, | ||||
{"no_cache", []() -> py::object { return py::bool_(false); }}, | {"no_cache", []() -> py::object { return py::bool_(false); }}, | ||||
{"name", []() -> py::object { return py::none(); }}, | {"name", []() -> py::object { return py::none(); }}, | ||||
{"format", []() -> py::object { return py::none(); }}, | |||||
}, | }, | ||||
name2idx}; | name2idx}; | ||||
py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType | py::detail::loader_life_support life_sup; // FIXME!!!required to cast DType | ||||
@@ -518,19 +523,23 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||||
} else { | } else { | ||||
tup = parse_args(tup, descs); | tup = parse_args(tup, descs); | ||||
} | } | ||||
mgb_assert(tup.size() == 6); | |||||
mgb_assert(tup.size() == 7); | |||||
if (auto* t = try_cast(tup[0].ptr())) { | if (auto* t = try_cast(tup[0].ptr())) { | ||||
m_tensor = t->m_tensor->copy(); | m_tensor = t->m_tensor->copy(); | ||||
} else { | } else { | ||||
auto data = tup[0]; | auto data = tup[0]; | ||||
DType dtype = tup[1].cast<DType>(); | DType dtype = tup[1].cast<DType>(); | ||||
CompNode cn = as_comp_node(tup[2]); | |||||
bool is_const = tup[3].cast<bool>(); | bool is_const = tup[3].cast<bool>(); | ||||
bool no_cache = tup[4].cast<bool>(); | bool no_cache = tup[4].cast<bool>(); | ||||
std::string name; | std::string name; | ||||
if (!tup[5].is_none()) { | if (!tup[5].is_none()) { | ||||
name = tup[5].cast<std::string>(); | name = tup[5].cast<std::string>(); | ||||
} | } | ||||
CompNode cn = as_comp_node(tup[2]); | |||||
Format format; | |||||
if (!tup[6].is_none()) { | |||||
format = tup[6].cast<std::string>(); | |||||
} | |||||
{ | { | ||||
CreateTensor::Kind kind = is_const ? CreateTensor::Const | CreateTensor::Kind kind = is_const ? CreateTensor::Const | ||||
@@ -544,7 +553,7 @@ TensorWrapper::TensorWrapper(PyObject* args, PyObject* kwargs) { | |||||
} else { | } else { | ||||
auto&& hval = pyobj2hval(data, cn, dtype); | auto&& hval = pyobj2hval(data, cn, dtype); | ||||
val = imperative::apply( | val = imperative::apply( | ||||
CreateTensor(kind, cn, hval.dtype, hval.shape), | |||||
CreateTensor(kind, cn, hval.dtype, hval.shape, format), | |||||
hval.storage)[0]; | hval.storage)[0]; | ||||
} | } | ||||
m_tensor.emplace(val); | m_tensor.emplace(val); | ||||
@@ -610,6 +619,10 @@ PyObject* TensorWrapper::device() { | |||||
return py::cast(m_tensor->comp_node()).release().ptr(); | return py::cast(m_tensor->comp_node()).release().ptr(); | ||||
} | } | ||||
PyObject* TensorWrapper::format() { | |||||
return py::cast(m_tensor->format().to_string()).release().ptr(); | |||||
} | |||||
PyObject* TensorWrapper::numpy() { | PyObject* TensorWrapper::numpy() { | ||||
auto hv = m_tensor->numpy(); | auto hv = m_tensor->numpy(); | ||||
if (!hv) { | if (!hv) { | ||||
@@ -722,6 +735,7 @@ WRAP_FUNC_PY35(pixel_shuffle_cpp); | |||||
void init_tensor(py::module m) { | void init_tensor(py::module m) { | ||||
imperative::Tensor::static_initialize(); | imperative::Tensor::static_initialize(); | ||||
// Transformations | |||||
static auto& transformations = TransformationManager::get_instance(); | static auto& transformations = TransformationManager::get_instance(); | ||||
using Segment = TransformationManager::Segment; | using Segment = TransformationManager::Segment; | ||||
@@ -755,6 +769,9 @@ void init_tensor(py::module m) { | |||||
.register_at<Segment::DimExpansion>( | .register_at<Segment::DimExpansion>( | ||||
std::make_shared<DimExpansionTransformation>()) | std::make_shared<DimExpansionTransformation>()) | ||||
.release()); | .release()); | ||||
auto format_trans = std::make_shared<FormatTransformation>(); | |||||
MGB_MARK_USED_VAR( | |||||
transformations.register_at<Segment::Format>(format_trans).release()); | |||||
static py::exception<interpreter::AsyncError> py_async_error( | static py::exception<interpreter::AsyncError> py_async_error( | ||||
m, "AsyncError", PyExc_RuntimeError); | m, "AsyncError", PyExc_RuntimeError); | ||||
@@ -788,12 +805,14 @@ void init_tensor(py::module m) { | |||||
} | } | ||||
}); | }); | ||||
// Tensor | |||||
auto* tensor_type = | auto* tensor_type = | ||||
TensorWrapper::wrap_t::type() | TensorWrapper::wrap_t::type() | ||||
.def<&TensorWrapper::numpy>("numpy") | .def<&TensorWrapper::numpy>("numpy") | ||||
.def_getset<&TensorWrapper::shape>("shape") | .def_getset<&TensorWrapper::shape>("shape") | ||||
.def_getset<&TensorWrapper::dtype>("dtype") | .def_getset<&TensorWrapper::dtype>("dtype") | ||||
.def_getset<&TensorWrapper::device>("device") | .def_getset<&TensorWrapper::device>("device") | ||||
.def_getset<&TensorWrapper::format>("format") | |||||
.def<&TensorWrapper::reset>("_reset") | .def<&TensorWrapper::reset>("_reset") | ||||
.def<&TensorWrapper::isscalar>("_isscalar") | .def<&TensorWrapper::isscalar>("_isscalar") | ||||
.def<&TensorWrapper::detach>("detach") | .def<&TensorWrapper::detach>("detach") | ||||
@@ -812,6 +831,11 @@ void init_tensor(py::module m) { | |||||
if (!tensor_type) | if (!tensor_type) | ||||
throw py::error_already_set(); | throw py::error_already_set(); | ||||
py::setattr(m, "Tensor", tensor_type); | py::setattr(m, "Tensor", tensor_type); | ||||
py::enum_<Format::Type>(m, "FormatType") | |||||
.value("DEFAULT", Format::Type::DEFAULT) | |||||
.value("NCHW", Format::Type::NCHW) | |||||
.value("NHWC", Format::Type::NHWC) | |||||
.export_values(); | |||||
py::class_<TensorWeakRef>(m, "TensorWeakRef") | py::class_<TensorWeakRef>(m, "TensorWeakRef") | ||||
.def(py::init<const TensorWrapper&>()) | .def(py::init<const TensorWrapper&>()) | ||||
@@ -911,6 +935,7 @@ void init_tensor(py::module m) { | |||||
sync_py_task_q(); | sync_py_task_q(); | ||||
}); | }); | ||||
// GradTransformation | |||||
py::handle grad_key_type = | py::handle grad_key_type = | ||||
GradKeyWrapper::wrap_t::type() | GradKeyWrapper::wrap_t::type() | ||||
.def<&GradKeyWrapper::attach>("attach") | .def<&GradKeyWrapper::attach>("attach") | ||||
@@ -1203,6 +1228,7 @@ void init_tensor(py::module m) { | |||||
return wrapped_outputs; | return wrapped_outputs; | ||||
}); | }); | ||||
// ModuleTraceTransformation | |||||
static py::function module_trace_hook; | static py::function module_trace_hook; | ||||
static auto get_module_trace = [] { | static auto get_module_trace = [] { | ||||
@@ -1309,6 +1335,12 @@ void init_tensor(py::module m) { | |||||
m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); }); | m.def("_clear_algorithm_cache", [] { megdnn::AlgorithmCache::instance().clear(); }); | ||||
// FormatTransformation | |||||
m.def("set_auto_format_convert", | |||||
[format_trans](bool enabled) { format_trans->set_auto_convert(enabled); }); | |||||
m.def("get_auto_format_convert", | |||||
[format_trans]() { return format_trans->get_auto_convert(); }); | |||||
py::register_exception<TraceError>(m, "TraceError"); | py::register_exception<TraceError>(m, "TraceError"); | ||||
} | } | ||||
@@ -1,10 +1,11 @@ | |||||
#pragma once | #pragma once | ||||
#pragma GCC diagnostic ignored "-Wmissing-field-initializers" | #pragma GCC diagnostic ignored "-Wmissing-field-initializers" | ||||
#include <variant> | |||||
#include <string> | #include <string> | ||||
#include <unordered_map> | #include <unordered_map> | ||||
#include <variant> | |||||
#include "megbrain/imperative/dispatch.h" | |||||
#include "megbrain/imperative/interpreter.h" | #include "megbrain/imperative/interpreter.h" | ||||
#include "pybind11/pybind11.h" | #include "pybind11/pybind11.h" | ||||
@@ -57,6 +58,7 @@ public: | |||||
} | } | ||||
return *shape; | return *shape; | ||||
} | } | ||||
inline Format format() { return *data().format(); } | |||||
inline HostValue::ref_t numpy() { return data().numpy(); } | inline HostValue::ref_t numpy() { return data().numpy(); } | ||||
inline void reset(ValueRef value) { | inline void reset(ValueRef value) { | ||||
m_data = value; | m_data = value; | ||||
@@ -116,6 +118,7 @@ public: | |||||
PyObject* shape(); | PyObject* shape(); | ||||
PyObject* dtype(); | PyObject* dtype(); | ||||
PyObject* device(); | PyObject* device(); | ||||
PyObject* format(); | |||||
PyObject* numpy(); | PyObject* numpy(); | ||||
void reset(PyObject*); | void reset(PyObject*); | ||||
PyObject* detach(); | PyObject* detach(); | ||||
@@ -19,6 +19,7 @@ public: | |||||
DTypePromote, | DTypePromote, | ||||
DimExpansion, | DimExpansion, | ||||
Grad, | Grad, | ||||
Format, | |||||
Scalar, | Scalar, | ||||
Symbol, | Symbol, | ||||
Trace, | Trace, | ||||
@@ -2,7 +2,7 @@ from megengine import amp | |||||
from megengine.core.tensor import amp as origin_amp | from megengine.core.tensor import amp as origin_amp | ||||
def test_grad_scaler(): | |||||
def test_autocast(): | |||||
def check(enabled, low, high): | def check(enabled, low, high): | ||||
assert amp.enabled == enabled | assert amp.enabled == enabled | ||||
assert origin_amp._enabled == enabled | assert origin_amp._enabled == enabled | ||||
@@ -0,0 +1,307 @@ | |||||
import numpy as np | |||||
import pytest | |||||
import megengine as mge | |||||
import megengine.functional as F | |||||
from megengine import tensor | |||||
from megengine.autodiff import GradManager | |||||
def test_basic(): | |||||
a = tensor(np.arange(0, 24).reshape((1, 2, 3, 4)), dtype="float32", format="nhwc") | |||||
assert a.format == "nhwc" | |||||
b = tensor(a) | |||||
assert b.format == "nhwc" | |||||
# TODO: fix Tensor init bug for another Tensor | |||||
# c = tensor(a, format="nchw") | |||||
# assert c.format == "nchw" | |||||
def _compare_nchw_nhwc(data, func): | |||||
x1 = tensor(data, format="nchw") | |||||
x2 = tensor(data.transpose(0, 2, 3, 1), format="nhwc") | |||||
out1 = func(x1) | |||||
with mge.config._override(auto_format_convert=True): | |||||
out2 = func(x2) | |||||
np.testing.assert_equal(out1, out2) | |||||
def test_dimshuffle(): | |||||
def func(x): | |||||
out = F.transpose(x, [2, 3, 0, 1]) | |||||
assert out.format == "default" | |||||
return out.numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
def test_reshape(): | |||||
# maintain NHWC format | |||||
def func(x): | |||||
out = F.reshape(x, (1, 2, 6, 2)) | |||||
if x.format == "nhwc": | |||||
assert out.format == "nhwc" | |||||
return out.numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
# not maintain NHWC format | |||||
def func2(x): | |||||
out = F.reshape(x, (1, 24)) | |||||
assert out.format == "default" | |||||
return out.numpy() | |||||
_compare_nchw_nhwc(data, func2) | |||||
def test_flatten(): | |||||
def func(x): | |||||
return F.flatten(x).numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
def test_broadcast(): | |||||
# maintain NHWC format | |||||
def func(x): | |||||
out = F.broadcast_to(x, (4, 3, 2, 3)) | |||||
if x.format == "nhwc": | |||||
assert out.format == "nhwc" | |||||
return out.numpy() | |||||
data = np.arange(0, 24).reshape((4, 3, 2, 1)) | |||||
_compare_nchw_nhwc(data, func) | |||||
# not maintain NHWC format | |||||
def func2(x): | |||||
out = F.broadcast_to(x, (3, 4, 3, 2, 1)) | |||||
assert out.format == "default" | |||||
return out.numpy() | |||||
_compare_nchw_nhwc(data, func2) | |||||
@pytest.mark.skip("repeat cannot maintain format yet") | |||||
def test_repeat(): | |||||
def func(x): | |||||
rst = F.repeat(x, 3, axis=1) | |||||
assert rst.format == x.format | |||||
return rst.numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
def test_getshape(): | |||||
def func(x): | |||||
return x.shape | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
@pytest.mark.skip("symbolic shape is not supported yet") | |||||
def test_get_symbolic_shape(): | |||||
from megengine.core._trace_option import set_symbolic_shape | |||||
origin_opt = set_symbolic_shape(True) | |||||
def func(x): | |||||
return x.shape.numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
set_symbolic_shape(origin_opt) | |||||
def test_getvalue(): | |||||
def func(x): | |||||
return x.numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
def test_get_set_subtensor(): | |||||
def get_subtensor(x): | |||||
return x[:, :1, :2, :3].numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, get_subtensor) | |||||
def set_subtensor(x): | |||||
x[:, :1, :2, :3] = 0 | |||||
return x.numpy() | |||||
_compare_nchw_nhwc(data, set_subtensor) | |||||
def test_get_set_advanced_indexing(): | |||||
def get_advanced_indexing(x): | |||||
x = x[:, : mge.tensor(2), : mge.tensor(2), [1, 2]].numpy() | |||||
return x | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, get_advanced_indexing) | |||||
def set_advanced_indexing(x): | |||||
x[:, : mge.tensor(2), : mge.tensor([2]), [1,]] = 0 | |||||
return x.numpy() | |||||
_compare_nchw_nhwc(data, set_advanced_indexing) | |||||
def test_typecvt(): | |||||
def typecvt(x): | |||||
return x.astype("float16").numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, typecvt) | |||||
def test_elemwise(): | |||||
def elemwise(x): | |||||
return (x * 2 + x / 2).numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, elemwise) | |||||
def test_concat(): | |||||
def func(x): | |||||
rst = F.concat([x / 2, x * 2], axis=1) | |||||
assert rst.format == x.format | |||||
return rst.numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
@pytest.mark.parametrize( | |||||
"mode", ["bilinear", "nearest"], | |||||
) | |||||
def test_interpolate(mode): | |||||
def func(x): | |||||
if x.format == "nhwc": | |||||
with mge.config._override(conv_format="NHWC"): | |||||
rst = F.vision.interpolate(x, scale_factor=3, mode=mode) | |||||
assert rst.format == "nhwc" | |||||
return rst.numpy() | |||||
else: | |||||
return F.vision.interpolate(x, scale_factor=3, mode=mode).numpy() | |||||
# NHWC interpolate only suppoted channel is 1 or 3 | |||||
data = np.arange(0, 48).reshape((1, 3, 4, 4)).astype("float32") | |||||
_compare_nchw_nhwc(data, func) | |||||
def test_conv2d(): | |||||
def conv2d(x): | |||||
if x.format == "nhwc": | |||||
with mge.config._override(conv_format="NHWC"): | |||||
x = F.conv2d( | |||||
x, | |||||
weight=mge.tensor(np.ones((3, 1, 1, 2)), format="nhwc"), | |||||
bias=mge.tensor(np.ones((1, 1, 1, 3)), format="nhwc"), | |||||
) | |||||
assert x.format == "nhwc" | |||||
return x.numpy() | |||||
else: | |||||
return F.conv2d(x, F.ones((3, 2, 1, 1)), F.ones((1, 3, 1, 1))).numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, conv2d) | |||||
def test_group_conv2d(): | |||||
def conv2d(x): | |||||
if x.format == "nhwc": | |||||
with mge.config._override(conv_format="NHWC"): | |||||
x = F.conv2d( | |||||
x, | |||||
weight=mge.tensor(np.ones((2, 2, 1, 1, 2)), format="nhwc"), | |||||
bias=mge.tensor(np.ones((1, 1, 1, 4)), format="nhwc"), | |||||
groups=2, | |||||
) | |||||
assert x.format == "nhwc" | |||||
return x.numpy() | |||||
else: | |||||
return F.conv2d( | |||||
x, F.ones((2, 2, 2, 1, 1)), F.ones((1, 4, 1, 1)), groups=2 | |||||
).numpy() | |||||
data = np.arange(0, 48).reshape((1, 4, 3, 4)) | |||||
_compare_nchw_nhwc(data, conv2d) | |||||
def test_bn(): | |||||
def func(x): | |||||
if x.format == "nhwc": | |||||
with mge.config._override(bn_format="dim_111c"): | |||||
oups = F.batch_norm( | |||||
x.astype("float32"), | |||||
running_mean=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||||
running_var=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||||
weight=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||||
bias=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||||
training=True, | |||||
inplace=False, | |||||
) | |||||
assert oups[0].format == "nhwc", "y's format is wrong" | |||||
assert oups[1].format == "nhwc", "running_mean's format is wrong" | |||||
assert oups[2].format == "nhwc", "running_var's format is wrong" | |||||
return oups[0].numpy() | |||||
else: | |||||
return F.batch_norm( | |||||
x.astype("float32"), | |||||
running_mean=mge.tensor(np.ones((1, 2, 1, 1))), | |||||
running_var=mge.tensor(np.ones((1, 2, 1, 1))), | |||||
weight=mge.tensor(np.ones((1, 2, 1, 1))), | |||||
bias=mge.tensor(np.ones((1, 2, 1, 1))), | |||||
training=True, | |||||
inplace=False, | |||||
)[0].numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
@pytest.mark.parametrize( | |||||
"pooling", | |||||
[F.max_pool2d, F.avg_pool2d, F.adaptive_avg_pool2d, F.adaptive_max_pool2d], | |||||
) | |||||
def test_pooling2d(pooling): | |||||
def func(x): | |||||
if x.format == "nhwc": | |||||
with mge.config._override(conv_format="NHWC"): | |||||
x = pooling(x.astype("float32"), 2) | |||||
assert x.format == "nhwc" | |||||
return x.numpy() | |||||
else: | |||||
return pooling(x.astype("float32"), 2).numpy() | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
_compare_nchw_nhwc(data, func) | |||||
def test_backward(): | |||||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||||
x = tensor(data.transpose(0, 2, 3, 1), format="nhwc") | |||||
w = mge.tensor(np.ones((3, 1, 1, 2)), format="nhwc") | |||||
b = mge.tensor(np.ones((1, 1, 1, 3)), format="nhwc") | |||||
gm = GradManager().attach([w, b]) | |||||
with gm: | |||||
with mge.config._override(auto_format_convert=True, conv_format="NHWC"): | |||||
x = F.conv2d(x, w, b) | |||||
gm.backward(x) | |||||
# TODO: backward grad has no format yet | |||||
np.testing.assert_equal( | |||||
w.grad.numpy(), | |||||
np.array([66, 210, 66, 210, 66, 210]).reshape((3, 1, 1, 2)), | |||||
) | |||||
np.testing.assert_equal( | |||||
b.grad.numpy(), np.array([12, 12, 12]).reshape((1, 1, 1, 3)) | |||||
) |
@@ -33,14 +33,20 @@ std::string GetAttr::to_string() const { | |||||
return ssprintf("GetAttr{attr=%s}", attr_name); | return ssprintf("GetAttr{attr=%s}", attr_name); | ||||
} | } | ||||
CreateTensor::CreateTensor(Kind kind, CompNode device, DType dtype, ValueShape shape) | |||||
: m_kind(kind), m_device(device), m_dtype(dtype), m_shape(shape) {} | |||||
CreateTensor::CreateTensor( | |||||
Kind kind, CompNode device, DType dtype, ValueShape shape, Format format) | |||||
: m_kind(kind), | |||||
m_device(device), | |||||
m_dtype(dtype), | |||||
m_shape(shape), | |||||
m_format(format) {} | |||||
CreateTensor::CreateTensor(Kind kind, CompNode device, TensorLayout layout) | CreateTensor::CreateTensor(Kind kind, CompNode device, TensorLayout layout) | ||||
: m_kind(kind), | : m_kind(kind), | ||||
m_device(device), | m_device(device), | ||||
m_dtype(layout.dtype), | m_dtype(layout.dtype), | ||||
m_shape(ValueShape::from(layout)) { | |||||
m_shape(ValueShape::from(layout)), | |||||
m_format(Format::Type::DEFAULT) { | |||||
mgb_assert( | mgb_assert( | ||||
layout.is_contiguous() || layout.is_empty(), "layout should be contiguous"); | layout.is_contiguous() || layout.is_empty(), "layout should be contiguous"); | ||||
} | } | ||||
@@ -74,8 +80,9 @@ auto CreateTensor::parse(Span<ValueRef> inputs) const -> Args { | |||||
std::string CreateTensor::to_string() const { | std::string CreateTensor::to_string() const { | ||||
return ssprintf( | return ssprintf( | ||||
"CreateTensor{kind=%d, device=%s, dtype=%s, shape=%s}", (int)m_kind, | |||||
m_device.to_string().c_str(), m_dtype.name(), m_shape.to_string().c_str()); | |||||
"CreateTensor{kind=%d, device=%s, dtype=%s, shape=%s, format=%s}", | |||||
(int)m_kind, m_device.to_string().c_str(), m_dtype.name(), | |||||
m_shape.to_string().c_str(), m_format.to_string().c_str()); | |||||
} | } | ||||
std::string DTRCommand::to_string() const { | std::string DTRCommand::to_string() const { | ||||
@@ -0,0 +1,406 @@ | |||||
#include "megbrain/imperative/transformations/format.h" | |||||
#include "megbrain/imperative/ops/autogen.h" | |||||
namespace mgb { | |||||
namespace imperative { | |||||
using FT = Format::Type; | |||||
TypedValueRef<FormattedTensorValue> FormattedTensorValue::as(const FT& target) const { | |||||
return FormattedTensorValue::make(m_value, target); | |||||
} | |||||
TypedValueRef<FormattedTensorValue> FormattedTensorValue::to( | |||||
const FT& target, const std::string& scope) const { | |||||
std::vector<int32_t> pattern; | |||||
if (m_format == FT::NHWC && target == FT::NCHW) { | |||||
pattern = {0, 3, 1, 2}; | |||||
} else if (m_format == FT::NCHW && target == FT::NHWC) { | |||||
pattern = {0, 2, 3, 1}; | |||||
} else { | |||||
mgb_throw( | |||||
MegBrainError, "Unsupport format conversion from %s to %s", | |||||
m_format.to_string().c_str(), Format(target).to_string().c_str()); | |||||
} | |||||
auto output = imperative::apply( | |||||
*Dimshuffle::make(pattern, scope), std::vector<ValueRef>{m_value})[0]; | |||||
return FormattedTensorValue::make(output, target); | |||||
} | |||||
namespace { | |||||
ValueRef unwrap_input(const ValueRef& input) { | |||||
if (auto format_input = input.as_ref<FormattedTensorValue>()) { | |||||
return format_input->value(); | |||||
} else { | |||||
return input; | |||||
} | |||||
} | |||||
std::vector<ValueRef> unwrap_inputs(const Span<ValueRef>& inputs) { | |||||
std::vector<ValueRef> unwrapped_inputs; | |||||
for (auto&& input : inputs) { | |||||
unwrapped_inputs.push_back(unwrap_input(input)); | |||||
} | |||||
return unwrapped_inputs; | |||||
} | |||||
std::vector<ValueRef> wrap_outputs( | |||||
const std::vector<ValueRef>& outputs, FT type = FT::DEFAULT) { | |||||
std::vector<ValueRef> wrapped_outputs; | |||||
for (auto&& output : outputs) { | |||||
wrapped_outputs.push_back(FormattedTensorValue::make(output, type)); | |||||
} | |||||
return wrapped_outputs; | |||||
} | |||||
ValueShape convert_nhwc2nchw_shape(const ValueShape& shape) { | |||||
mgb_assert(shape.ndim == 4); | |||||
auto out = ValueShape(shape); | |||||
out[3] = shape[2]; | |||||
out[2] = shape[1]; | |||||
out[1] = shape[3]; | |||||
return out; | |||||
} | |||||
using FormatRule = std::function<std::vector<ValueRef>( | |||||
const OpDef&, Span<ValueRef>&, const bool&)>; | |||||
static std::unordered_map<Typeinfo*, FormatRule> format_rules; | |||||
template <typename T> | |||||
void register_format_rule( | |||||
std::vector<ValueRef> (*rule)(const T&, Span<ValueRef>&, const bool&)) { | |||||
format_rules[T::typeinfo()] = [rule](const OpDef& def, Span<ValueRef>& inputs, | |||||
const bool& auto_convert) { | |||||
return (*rule)(def.cast_final_safe<T>(), inputs, auto_convert); | |||||
}; | |||||
} | |||||
auto convert_nchw2nhwc_pattern(const std::vector<int32_t>& pattern) { | |||||
mgb_assert(pattern.size() == 4); | |||||
auto nhwc_pattern = pattern; | |||||
for (size_t idx = 0; idx < 4; ++idx) { | |||||
auto dim = pattern[idx]; | |||||
if (dim == 1) { | |||||
nhwc_pattern[idx] = 3; | |||||
} else if (dim == 2) { | |||||
nhwc_pattern[idx] = 1; | |||||
} else if (dim == 3) { | |||||
nhwc_pattern[idx] = 2; | |||||
} | |||||
} | |||||
return nhwc_pattern; | |||||
} | |||||
std::vector<ValueRef> dimshuffle_rule( | |||||
const Dimshuffle& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||||
mgb_assert(inputs.size() == 1); | |||||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||||
// Only support converting pattern from NCHW to NHWC currently. | |||||
if (auto_convert && src.format() == FT::NHWC) { | |||||
auto pattern = convert_nchw2nhwc_pattern(op.pattern); | |||||
// dimshuffle will not maintain NHWC Format | |||||
return wrap_outputs(imperative::apply( | |||||
*Dimshuffle::make(std::move(pattern), op.scope()), | |||||
unwrap_inputs(inputs))); | |||||
} | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||||
} | |||||
ValueRef convert_nchw2nhwc_tensornd(const HostTensorND& shape) { | |||||
mgb_assert(shape.layout().total_nr_elems() == 4); | |||||
auto* old_ptr = shape.ptr<dt_int32>(); | |||||
auto cn = shape.comp_node(); | |||||
auto layout = shape.layout(); | |||||
auto nhwc_shape = HostTensorND(cn, layout); | |||||
auto* new_ptr = nhwc_shape.ptr<dt_int32>(); | |||||
new_ptr[0] = old_ptr[0]; | |||||
new_ptr[1] = old_ptr[2]; | |||||
new_ptr[2] = old_ptr[3]; | |||||
new_ptr[3] = old_ptr[1]; | |||||
auto hv = HostStorage::make(nhwc_shape.storage()); | |||||
auto nhwc_shape_input = | |||||
imperative::apply(CreateTensor(CreateTensor::Const, cn, layout), hv)[0]; | |||||
return nhwc_shape_input; | |||||
} | |||||
std::vector<ValueRef> reshape_rule( | |||||
const Reshape& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||||
mgb_assert(inputs.size() == 2); | |||||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||||
if (auto_convert && src.format() == FT::NHWC) { | |||||
auto shape = unwrap_input(inputs[1]).numpy().cast<HostValue>().as_nd(); | |||||
if (shape.layout().total_nr_elems() == 4) { | |||||
// output is still NHWC format | |||||
auto nhwc_shape = convert_nchw2nhwc_tensornd(shape); | |||||
auto outputs = imperative::apply( | |||||
op, std::vector<ValueRef>{unwrap_input(inputs[0]), nhwc_shape}); | |||||
return wrap_outputs(outputs, FT::NHWC); | |||||
} else { | |||||
// will not maintain src's format | |||||
auto nchw_src = src.to(FT::NCHW, op.scope())->value(); | |||||
auto outputs = imperative::apply( | |||||
op, std::vector<ValueRef>{nchw_src, unwrap_input(inputs[1])}); | |||||
return wrap_outputs(outputs); | |||||
} | |||||
} | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||||
} | |||||
std::vector<ValueRef> broadcast_rule( | |||||
const Broadcast& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||||
mgb_assert(inputs.size() == 2); | |||||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||||
if (auto_convert && src.format() == FT::NHWC) { | |||||
auto shape = unwrap_input(inputs[1]).numpy().cast<HostValue>().as_nd(); | |||||
if (shape.layout().total_nr_elems() == 4) { | |||||
// output is still NHWC format | |||||
auto nhwc_shape = convert_nchw2nhwc_tensornd(shape); | |||||
auto outputs = imperative::apply( | |||||
op, std::vector<ValueRef>{unwrap_input(inputs[0]), nhwc_shape}); | |||||
return wrap_outputs(outputs, FT::NHWC); | |||||
} else { | |||||
// will not maintain src's format | |||||
auto nchw_src = src.to(FT::NCHW, op.scope())->value(); | |||||
auto outputs = imperative::apply( | |||||
op, std::vector<ValueRef>{nchw_src, unwrap_input(inputs[1])}); | |||||
return wrap_outputs(outputs); | |||||
} | |||||
} | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||||
} | |||||
bool is_reduce_ndim_idx_items( | |||||
const std::vector<std::tuple<int8_t, bool, bool, bool, bool>>& items, | |||||
const Span<ValueRef>& inputs) { | |||||
for (auto i = 0; i < items.size(); ++i) { | |||||
auto&& [axis, begin, end, step, idx] = items[i]; | |||||
if (idx) { | |||||
// if inputs[i] contains more than one value, ndim will not be reduced. | |||||
return inputs[i].is_scalar(); | |||||
} | |||||
} | |||||
return false; | |||||
} | |||||
auto convert_nchw2nhwc_idx_items( | |||||
const std::vector<std::tuple<int8_t, bool, bool, bool, bool>>& items) { | |||||
auto nhwc_items = items; | |||||
for (auto i = 0; i < nhwc_items.size(); ++i) { | |||||
auto&& [axis, begin, end, step, idx] = nhwc_items[i]; | |||||
if (axis == 2 || axis == 3) { | |||||
nhwc_items[i] = {axis - 1, begin, end, step, idx}; | |||||
} else if (axis == 1) { | |||||
nhwc_items[i] = {3, begin, end, step, idx}; | |||||
} | |||||
} | |||||
return nhwc_items; | |||||
} | |||||
template <typename T> | |||||
std::vector<ValueRef> subtensor_rule( | |||||
const T& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||||
mgb_assert(inputs.size() >= 1); | |||||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||||
bool is_reduce_ndim = is_reduce_ndim_idx_items( | |||||
op.items, {&inputs[1], &inputs[inputs.size() - 1]}); | |||||
if (!is_reduce_ndim) { | |||||
// only support NHWC2NCHW convert, otherwise maintain src's format | |||||
if (!(auto_convert && src.format() == FT::NHWC)) { | |||||
return {FormattedTensorValue::make( | |||||
imperative::apply(op, unwrap_inputs(inputs))[0], src.format())}; | |||||
} | |||||
auto nhwc_items = convert_nchw2nhwc_idx_items(op.items); | |||||
auto outputs = imperative::apply( | |||||
*T::make(std::move(nhwc_items), op.scope()), unwrap_inputs(inputs)); | |||||
return wrap_outputs(outputs, FT::NHWC); | |||||
} | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||||
} | |||||
template <typename T> | |||||
std::vector<ValueRef> setsubtensor_rule( | |||||
const T& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||||
mgb_assert(inputs.size() >= 2); | |||||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||||
bool is_reduce_ndim = is_reduce_ndim_idx_items( | |||||
op.items, {&inputs[2], &inputs[inputs.size() - 1]}); | |||||
if (!is_reduce_ndim) { | |||||
// only support NHWC2NCHW convert, otherwise maintain src's format | |||||
if (!(auto_convert && src.format() == FT::NHWC)) { | |||||
return {FormattedTensorValue::make( | |||||
imperative::apply(op, unwrap_inputs(inputs))[0], src.format())}; | |||||
} | |||||
// value has been broadcasted to src's fake NCHW shape. | |||||
auto& value = inputs[1].cast<FormattedTensorValue>(); | |||||
auto& format = value.format(); | |||||
auto nhwc_inputs = std::vector<ValueRef>(inputs.size()); | |||||
if (format == FT::DEFAULT || format == FT::NCHW) { | |||||
// value for setsubtensor should transpose to match shape. | |||||
auto nhwc_value = value.as(FT::NCHW)->to(FT::NHWC); | |||||
// make new inputs for setsubtensor | |||||
nhwc_inputs[0] = src.value(); | |||||
nhwc_inputs[1] = nhwc_value->value(); | |||||
for (auto i = 2; i < inputs.size(); ++i) { | |||||
nhwc_inputs[i] = inputs[i].as_ref<FormattedTensorValue>()->value(); | |||||
} | |||||
} else if (format != FT::NHWC) { | |||||
mgb_throw( | |||||
MegBrainError, "Unsupported format(%s) of value for setsubtensor.", | |||||
format.to_string().c_str()); | |||||
} | |||||
auto nhwc_items = convert_nchw2nhwc_idx_items(op.items); | |||||
auto outputs = imperative::apply( | |||||
*T::make(std::move(nhwc_items), op.scope()), nhwc_inputs); | |||||
return wrap_outputs(outputs, FT::NHWC); | |||||
} | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||||
} | |||||
FT get_inputs_format(Span<ValueRef>& inputs) { | |||||
FT format(FT::DEFAULT); | |||||
for (auto& inp : inputs) { | |||||
auto& inp_format = inp.cast<FormattedTensorValue>().format(); | |||||
if (inp_format != FT::DEFAULT) { | |||||
mgb_assert(format == FT::DEFAULT || inp_format == format); | |||||
format = inp_format.type(); | |||||
} | |||||
} | |||||
return format; | |||||
} | |||||
std::vector<ValueRef> concat_rule( | |||||
const Concat& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||||
FT format = get_inputs_format(inputs); | |||||
if (!(format == FT::NHWC && auto_convert)) { | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs)), format); | |||||
} | |||||
// TODO: handle 5D NHWC Tensor from group conv | |||||
auto axis = op.axis; | |||||
if (axis == 2 || axis == 3) { | |||||
axis = axis - 1; | |||||
} else if (axis == 1) { | |||||
axis = 3; | |||||
} | |||||
return wrap_outputs( | |||||
imperative::apply( | |||||
*Concat::make(axis, op.comp_node, op.scope()), | |||||
unwrap_inputs(inputs)), | |||||
format); | |||||
} | |||||
std::vector<ValueRef> elemwise_rule( | |||||
const Elemwise& op, Span<ValueRef>& inputs, const bool& auto_convert) { | |||||
FT format = get_inputs_format(inputs); | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs)), format); | |||||
} | |||||
std::vector<ValueRef> identity_rule_helper( | |||||
const OpDef& op, const Span<ValueRef>& inputs) { | |||||
// mgb_assert(inputs.size() == 1); | |||||
auto& src = inputs[0].cast<FormattedTensorValue>(); | |||||
return wrap_outputs( | |||||
imperative::apply(op, unwrap_inputs(inputs)), src.format().type()); | |||||
} | |||||
// clang-format off | |||||
#define FOREACH_IDENTITY_OP(cb) \ | |||||
cb(Copy) \ | |||||
cb(FastpathCopy) \ | |||||
cb(TypeCvt) \ | |||||
cb(Pooling) \ | |||||
cb(AdaptivePooling) \ | |||||
cb(Dropout) \ | |||||
cb(Convolution) \ | |||||
cb(BatchNorm) \ | |||||
cb(Resize) \ | |||||
cb(Identity) | |||||
// clang-format on | |||||
#define CREATE_IDENTITY_OP_RULE(op) \ | |||||
std::vector<ValueRef> op##_rule( \ | |||||
const op& _op, Span<ValueRef>& inputs, const bool& auto_convert) { \ | |||||
return identity_rule_helper(_op, inputs); \ | |||||
} | |||||
FOREACH_IDENTITY_OP(CREATE_IDENTITY_OP_RULE) | |||||
#undef CREATE_IDENTITY_OP_RULE | |||||
#define REGISTER_IDENTITY_OP_RULE(op) register_format_rule(op##_rule); | |||||
struct FormatRuleRegistry { | |||||
FormatRuleRegistry() { | |||||
register_format_rule(dimshuffle_rule); | |||||
register_format_rule(reshape_rule); | |||||
register_format_rule(broadcast_rule); | |||||
register_format_rule(subtensor_rule<Subtensor>); | |||||
register_format_rule(subtensor_rule<IndexingMultiAxisVec>); | |||||
register_format_rule(setsubtensor_rule<SetSubtensor>); | |||||
register_format_rule(setsubtensor_rule<IndexingSetMultiAxisVec>); | |||||
register_format_rule(concat_rule); | |||||
register_format_rule(elemwise_rule); | |||||
FOREACH_IDENTITY_OP(REGISTER_IDENTITY_OP_RULE) | |||||
} | |||||
} _; | |||||
#undef REGISTER_IDENTITY_OP_RULE | |||||
} // namespace | |||||
std::vector<ValueRef> FormatTransformation::apply_transformation( | |||||
const Operator& op, Span<ValueRef> inputs) { | |||||
if (auto* apply_op = op.as<ApplyOp>()) { | |||||
// all inputs should be FormattedTensorValue | |||||
auto iter = format_rules.find(apply_op->op().dyn_typeinfo()); | |||||
if (iter != format_rules.end()) { | |||||
return iter->second(apply_op->op(), inputs, m_auto_convert); | |||||
} else { | |||||
return wrap_outputs(imperative::apply(op, unwrap_inputs(inputs))); | |||||
} | |||||
} else if (auto* create_tensor = op.as<CreateTensor>()) { | |||||
auto format = create_tensor->format(); | |||||
return {FormattedTensorValue::make(imperative::apply(op, inputs)[0], format)}; | |||||
} else if (auto* get_attr = op.as<GetAttr>()) { | |||||
auto* src = inputs.as_array<1>()[0].as<FormattedTensorValue>(); | |||||
if (!m_auto_convert || !src || src->format() != FT::NHWC) { | |||||
return imperative::apply(op, unwrap_inputs(inputs)); | |||||
} | |||||
switch (get_attr->attr()) { | |||||
case GetAttr::Shape: { | |||||
auto output = imperative::apply(op, unwrap_inputs(inputs))[0]; | |||||
auto shape = convert_nhwc2nchw_shape(output.cast<ShapeValue>()); | |||||
return {ShapeValue::make(shape)}; | |||||
} | |||||
case GetAttr::Value: { | |||||
auto nchw_src = unwrap_input(src->to(FT::NCHW, "")); | |||||
return imperative::apply(op, std::vector<ValueRef>{nchw_src}); | |||||
} | |||||
default: | |||||
return imperative::apply(op, unwrap_inputs(inputs)); | |||||
} | |||||
} else if (op.is<GetFormat>()) { | |||||
bool is_formatted_tensor = inputs.as_array<1>()[0].is<FormattedTensorValue>(); | |||||
if (is_formatted_tensor) { | |||||
return {FormatValue::make(inputs[0].cast<FormattedTensorValue>().format())}; | |||||
} else { | |||||
mgb_log_warn( | |||||
"Not FormattedTensorValue input for GetFormat op: %s", | |||||
inputs[0].to_string().c_str()); | |||||
return {FormatValue::make(FT::DEFAULT)}; | |||||
} | |||||
} else if (op.is<Operator::IdentityLike>()) { | |||||
bool is_formatted_tensor = inputs.as_array<1>()[0].is<FormattedTensorValue>(); | |||||
if (is_formatted_tensor) { | |||||
auto& format = inputs[0].cast<FormattedTensorValue>().format(); | |||||
return wrap_outputs( | |||||
imperative::apply(op, unwrap_inputs(inputs)), format.type()); | |||||
} else { | |||||
mgb_log_warn( | |||||
"Not FormattedTensorValue input for IdentityLike op: %s", | |||||
inputs[0].to_string().c_str()); | |||||
return imperative::apply(op, inputs); | |||||
} | |||||
} else { | |||||
return imperative::apply(op, unwrap_inputs(inputs)); | |||||
} | |||||
}; | |||||
} // namespace imperative | |||||
} // namespace mgb |
@@ -58,6 +58,10 @@ TypedValueRef<DTypeValue> ValueRef::dtype() const { | |||||
return imperative::apply(GetAttr(GetAttr::DType), *this)[0].cast_ref<DTypeValue>(); | return imperative::apply(GetAttr(GetAttr::DType), *this)[0].cast_ref<DTypeValue>(); | ||||
} | } | ||||
TypedValueRef<FormatValue> ValueRef::format() const { | |||||
return imperative::apply(GetFormat(), *this)[0].as_ref<FormatValue>(); | |||||
} | |||||
TypedValueRef<StringValue> ValueRef::name() const { | TypedValueRef<StringValue> ValueRef::name() const { | ||||
return imperative::apply(GetName(), *this)[0].cast_ref<StringValue>(); | return imperative::apply(GetName(), *this)[0].cast_ref<StringValue>(); | ||||
} | } | ||||
@@ -5,6 +5,7 @@ | |||||
#include "megbrain/imperative/op_def.h" | #include "megbrain/imperative/op_def.h" | ||||
#include "megbrain/imperative/operator.h" | #include "megbrain/imperative/operator.h" | ||||
#include "megbrain/imperative/utils/data_format.h" | |||||
#include "megbrain/imperative/utils/helper.h" | #include "megbrain/imperative/utils/helper.h" | ||||
#include "megbrain/imperative/utils/value_shape.h" | #include "megbrain/imperative/utils/value_shape.h" | ||||
@@ -82,9 +83,12 @@ private: | |||||
CompNode m_device; | CompNode m_device; | ||||
DType m_dtype; | DType m_dtype; | ||||
ValueShape m_shape; | ValueShape m_shape; | ||||
Format m_format; | |||||
public: | public: | ||||
CreateTensor(Kind kind, CompNode device, DType dtype, ValueShape shape); | |||||
CreateTensor( | |||||
Kind kind, CompNode device, DType dtype, ValueShape shape, | |||||
Format format = Format::Type::DEFAULT); | |||||
CreateTensor(Kind kind, CompNode device, TensorLayout layout); | CreateTensor(Kind kind, CompNode device, TensorLayout layout); | ||||
/** | /** | ||||
@@ -99,6 +103,7 @@ public: | |||||
CompNode device() const { return m_device; } | CompNode device() const { return m_device; } | ||||
DType dtype() const { return m_dtype; } | DType dtype() const { return m_dtype; } | ||||
ValueShape shape() const { return m_shape; } | ValueShape shape() const { return m_shape; } | ||||
Format format() const { return m_format; } | |||||
std::string to_string() const override; | std::string to_string() const override; | ||||
}; | }; | ||||
@@ -157,6 +162,11 @@ public: | |||||
std::string to_string() const override; | std::string to_string() const override; | ||||
}; | }; | ||||
class GetFormat final : public OperatorImpl<GetFormat, Operator::GetAttrLike> { | |||||
public: | |||||
std::string to_string() const override { return "GetFormat{}"; } | |||||
}; | |||||
class GetVarVal final : public OperatorImpl<GetVarVal, Operator::GetAttrLike> { | class GetVarVal final : public OperatorImpl<GetVarVal, Operator::GetAttrLike> { | ||||
public: | public: | ||||
std::string to_string() const override; | std::string to_string() const override; | ||||
@@ -3,6 +3,7 @@ | |||||
#include <future> | #include <future> | ||||
#include <iomanip> | #include <iomanip> | ||||
#include "megbrain/imperative/utils/data_format.h" | |||||
#include "megbrain/imperative/utils/helper.h" | #include "megbrain/imperative/utils/helper.h" | ||||
#include "megbrain/imperative/utils/value_shape.h" | #include "megbrain/imperative/utils/value_shape.h" | ||||
#include "megbrain/imperative/value.h" | #include "megbrain/imperative/value.h" | ||||
@@ -148,6 +149,13 @@ public: | |||||
std::string to_string() const override; | std::string to_string() const override; | ||||
}; | }; | ||||
class FormatValue final : public PrimitiveValue<FormatValue, Format> { | |||||
public: | |||||
using PrimitiveValue::PrimitiveValue; | |||||
std::string to_string() const override { return Format::to_string(); } | |||||
}; | |||||
class StringValue final : public PrimitiveValue<StringValue, std::string> { | class StringValue final : public PrimitiveValue<StringValue, std::string> { | ||||
public: | public: | ||||
using PrimitiveValue::PrimitiveValue; | using PrimitiveValue::PrimitiveValue; | ||||
@@ -0,0 +1,70 @@ | |||||
#pragma once | |||||
#include "megbrain/imperative/basic_values.h" | |||||
#include "megbrain/imperative/dispatch.h" | |||||
#include "megbrain/imperative/ops/autogen.h" | |||||
#include "megbrain/imperative/utils/data_format.h" | |||||
namespace mgb::imperative { | |||||
class FormattedTensorValue final : public ValueImpl<FormattedTensorValue> { | |||||
private: | |||||
ValueRef m_value; | |||||
Format m_format; | |||||
public: | |||||
FormattedTensorValue(ValueRef value, Format format) | |||||
: m_value(value), m_format(format) {} | |||||
std::string to_string() const override { | |||||
return ssprintf( | |||||
"FormattedTensorValue{value=%s, format=%s}", | |||||
m_value.to_string().c_str(), m_format.to_string().c_str()); | |||||
} | |||||
ValueRef value() const { return m_value; } | |||||
const Format& format() const { return m_format; } | |||||
TypedValueRef<FormattedTensorValue> as(const Format::Type& target) const; | |||||
TypedValueRef<FormattedTensorValue> to( | |||||
const Format::Type& target, const std::string& scope = "") const; | |||||
void clear() override { | |||||
m_value = {}; | |||||
m_format = {}; | |||||
} | |||||
void on_watch() override { m_value.watch(); } | |||||
void on_unwatch() override { m_value.unwatch(); } | |||||
}; | |||||
/** | |||||
* \brief simulates scalar because megbrain graph system don't support scalar | |||||
* | |||||
* Assume that we has 'a = ScalarValue(b)', thus 'a.shape == []', 'b.shape == [1]'. | |||||
* This transformation simulates scalars with a flag. If a value is ScalarValue, it is | |||||
* scalar, vice versa. So there is not scalar down this layer. | |||||
*/ | |||||
class FormatTransformation final : public Transformation { | |||||
private: | |||||
bool m_auto_convert = false; | |||||
public: | |||||
std::vector<ValueRef> apply_transformation( | |||||
const Operator& op, Span<ValueRef> inputs) override; | |||||
ValueRef unwrap(ValueRef value) override { | |||||
mgb_assert(!value.is<FormattedTensorValue>()); | |||||
return value; | |||||
} | |||||
std::string name() const override { | |||||
return ssprintf("FormatTransformation{auto_convert=%d}", m_auto_convert); | |||||
} | |||||
void set_auto_convert(bool enabled) { m_auto_convert = enabled; } | |||||
bool get_auto_convert() const { return m_auto_convert; } | |||||
}; | |||||
} // namespace mgb::imperative |
@@ -0,0 +1,56 @@ | |||||
#pragma once | |||||
#include "megbrain/tensor.h" | |||||
namespace mgb::imperative { | |||||
/** | |||||
* \brief like TensorFormats, but only including common formats and DEFAULT. | |||||
* | |||||
*/ | |||||
class Format { | |||||
public: | |||||
enum class Type { | |||||
DEFAULT = 0, | |||||
NCHW = 1, ///< [N, C, H, W] | |||||
NHWC = 2, ///< [N, H, W, C] | |||||
}; | |||||
std::string to_string() const { | |||||
switch (m_type) { | |||||
case Type::DEFAULT: | |||||
return "default"; | |||||
case Type::NCHW: | |||||
return "nchw"; | |||||
case Type::NHWC: | |||||
return "nhwc"; | |||||
default: | |||||
mgb_throw(MegBrainError, "bad format type"); | |||||
} | |||||
} | |||||
Format() : m_type(Type::DEFAULT) {} | |||||
Format(std::string str) { | |||||
if (str == "default") { | |||||
m_type = Type::DEFAULT; | |||||
} else if (str == "nchw") { | |||||
m_type = Type::NCHW; | |||||
} else if (str == "nhwc") { | |||||
m_type = Type::NHWC; | |||||
} else { | |||||
mgb_throw( | |||||
MegBrainError, | |||||
"Invalid format type." | |||||
" Only support \"default\", \"nchw\" and \"nhwc\""); | |||||
} | |||||
} | |||||
Format(Type type) : m_type(type) {} | |||||
Type type() const { return m_type; } | |||||
bool operator==(const Format& b) const { return m_type == b.type(); } | |||||
bool operator==(const Format::Type& b) const { return m_type == b; } | |||||
bool operator!=(const Format& b) const { return m_type != b.type(); } | |||||
bool operator!=(const Format::Type& b) const { return m_type != b; } | |||||
private: | |||||
Type m_type = Type::DEFAULT; | |||||
}; | |||||
} // namespace mgb::imperative |
@@ -31,6 +31,7 @@ class HostValue; | |||||
class DeviceValue; | class DeviceValue; | ||||
class ShapeValue; | class ShapeValue; | ||||
class DTypeValue; | class DTypeValue; | ||||
class FormatValue; | |||||
class CompNodeValue; | class CompNodeValue; | ||||
class StringValue; | class StringValue; | ||||
class NodeValue; | class NodeValue; | ||||
@@ -219,6 +220,7 @@ public: | |||||
TypedValueRef<CompNodeValue> device() const; | TypedValueRef<CompNodeValue> device() const; | ||||
TypedValueRef<ShapeValue> shape() const; | TypedValueRef<ShapeValue> shape() const; | ||||
TypedValueRef<DTypeValue> dtype() const; | TypedValueRef<DTypeValue> dtype() const; | ||||
TypedValueRef<FormatValue> format() const; | |||||
TypedValueRef<StringValue> name() const; | TypedValueRef<StringValue> name() const; | ||||
bool is_scalar() const; | bool is_scalar() const; | ||||
@@ -431,9 +433,11 @@ inline const TypedValueRef<TValue>& ValueRef::cast_ref(const Type<TValue>& type) | |||||
inline void ValueRef::on_cast_failure(const IType& type) const { | inline void ValueRef::on_cast_failure(const IType& type) const { | ||||
// if this is ErrorValue, rethrow directly | // if this is ErrorValue, rethrow directly | ||||
storage()->try_rethrow(); | storage()->try_rethrow(); | ||||
mgb_assert( | |||||
storage()->type() != type, "expect type %s, got %s", type.name().c_str(), | |||||
to_string().c_str()); | |||||
if (storage()->type() != type) { | |||||
mgb_throw( | |||||
MegBrainError, "Unable to cast ValueRef: expect type %s, got %s", | |||||
type.name().c_str(), to_string().c_str()); | |||||
} | |||||
} | } | ||||
/** | /** | ||||
@@ -200,7 +200,7 @@ void BatchNormForward::get_output_var_shape( | |||||
bias_c = inp_shape[2][channel_idx]; | bias_c = inp_shape[2][channel_idx]; | ||||
mgb_assert( | mgb_assert( | ||||
inp_c == scale_c && inp_c == bias_c, | inp_c == scale_c && inp_c == bias_c, | ||||
"inconsistent channel size, input chennel: %zu, scale channel: %zu, bias " | |||||
"inconsistent channel size, input channel: %zu, scale channel: %zu, bias " | |||||
"channel: %zu", | "channel: %zu", | ||||
inp_c, scale_c, bias_c); | inp_c, scale_c, bias_c); | ||||