* opt log at release mode
* add MGE_OVERRIDE_LOG_LEVEL for runtime debug
//! env to config LogLevel
//! DEBUG = 0, INFO = 1, WARN = 2, ERROR = 3, NO_LOG = 4
//! for example , export MGE_OVERRIDE_LOG_LEVEL=0, means set LogLevel to DEBUG
GitOrigin-RevId: 16cd674c56
tags/v1.3.1
@@ -25,13 +25,13 @@ | |||
#include "megdnn/internal/visibility_prologue.h" | |||
#if MEGDNN_DISABLE_FLOAT16 | |||
#define MEGDNN_INC_FLOAT16(_x) | |||
#define MEGDNN_FLOAT16_SELECT(_x, _y) _y | |||
#define DNN_INC_FLOAT16(_x) | |||
#define DNN_FLOAT16_SELECT(_x, _y) _y | |||
#else | |||
#include "megdnn/dtype/half.hpp" | |||
#include "megdnn/dtype/bfloat16.hpp" | |||
#define MEGDNN_INC_FLOAT16(_x) _x | |||
#define MEGDNN_FLOAT16_SELECT(_x, _y) _x | |||
#define DNN_INC_FLOAT16(_x) _x | |||
#define DNN_FLOAT16_SELECT(_x, _y) _x | |||
#endif | |||
namespace megdnn { | |||
@@ -49,8 +49,8 @@ namespace megdnn { | |||
cb(IntB2) \ | |||
cb(IntB4) \ | |||
cb(Byte) \ | |||
MEGDNN_INC_FLOAT16(cb(Float16)) \ | |||
MEGDNN_INC_FLOAT16(cb(BFloat16)) \ | |||
DNN_INC_FLOAT16(cb(Float16)) \ | |||
DNN_INC_FLOAT16(cb(BFloat16)) \ | |||
cb(UintB4) \ | |||
cb(Bool) \ | |||
cb(Uint16) \ | |||
@@ -65,8 +65,8 @@ namespace megdnn { | |||
cb(Int16) \ | |||
cb(Int32) \ | |||
cb(Byte) \ | |||
MEGDNN_INC_FLOAT16(cb(Float16)) \ | |||
MEGDNN_INC_FLOAT16(cb(BFloat16)) \ | |||
DNN_INC_FLOAT16(cb(Float16)) \ | |||
DNN_INC_FLOAT16(cb(BFloat16)) \ | |||
cb(Bool) \ | |||
cb(Uint16) \ | |||
@@ -108,8 +108,8 @@ namespace megdnn { | |||
#define MEGDNN_FOREACH_COMPUTING_DTYPE_FLOAT(cb) \ | |||
cb(::megdnn::dtype::Float32) \ | |||
MEGDNN_INC_FLOAT16(cb(::megdnn::dtype::Float16)) \ | |||
MEGDNN_INC_FLOAT16(cb(::megdnn::dtype::BFloat16)) | |||
DNN_INC_FLOAT16(cb(::megdnn::dtype::Float16)) \ | |||
DNN_INC_FLOAT16(cb(::megdnn::dtype::BFloat16)) | |||
/*! | |||
@@ -360,8 +360,8 @@ typedef int8_t dt_int8; | |||
typedef uint8_t dt_uint8; | |||
typedef bool dt_bool; | |||
typedef uint16_t dt_uint16; | |||
MEGDNN_INC_FLOAT16(typedef half_float::half dt_float16;) | |||
MEGDNN_INC_FLOAT16(typedef half_bfloat16::bfloat16 dt_bfloat16;) | |||
DNN_INC_FLOAT16(typedef half_float::half dt_float16;) | |||
DNN_INC_FLOAT16(typedef half_bfloat16::bfloat16 dt_bfloat16;) | |||
#define MEGDNN_PARAMETERIZED_DTYPE_ENUM_BASE 100000 | |||
#if MEGDNN_CC_HOST | |||
@@ -722,10 +722,10 @@ MEGDNN_DEF_DT(Int8, dt_int8, INT, SIGNED, INT8_MIN, INT8_MAX); | |||
MEGDNN_DEF_DT(Uint8, dt_uint8, INT, UNSIGNED, 0, UINT8_MAX); | |||
MEGDNN_DEF_DT(Bool, dt_bool, BOOL, UNSIGNED, false, true); | |||
MEGDNN_DEF_DT(Uint16, dt_uint16, INT, UNSIGNED, 0, UINT16_MAX); | |||
MEGDNN_INC_FLOAT16(MEGDNN_DEF_DT(Float16, dt_float16, FLOAT, SIGNED, | |||
DNN_INC_FLOAT16(MEGDNN_DEF_DT(Float16, dt_float16, FLOAT, SIGNED, | |||
std::numeric_limits<dt_float16>::lowest(), | |||
std::numeric_limits<dt_float16>::max())); | |||
MEGDNN_INC_FLOAT16(MEGDNN_DEF_DT(BFloat16, dt_bfloat16, FLOAT, SIGNED, | |||
DNN_INC_FLOAT16(MEGDNN_DEF_DT(BFloat16, dt_bfloat16, FLOAT, SIGNED, | |||
std::numeric_limits<dt_bfloat16>::lowest(), | |||
std::numeric_limits<dt_bfloat16>::max())); | |||
@@ -270,8 +270,7 @@ void megdnn::aarch64::warp_perspective_cv_exec( | |||
DISPATCH_IMODE(imode, bmode, ch, cb) | |||
#undef cb | |||
} else { | |||
megdnn_throw( | |||
megdnn_mangle("Unsupported datatype of WarpPerspective optr.")); | |||
megdnn_throw("Unsupported datatype of WarpPerspective optr."); | |||
} | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -152,8 +152,9 @@ struct PostProcess<ctype, dtype, megdnn::PostprocessMode::NO_PROCESS> { | |||
MEGDNN_MARK_USED_VAR(OH); | |||
MEGDNN_MARK_USED_VAR(OW); | |||
MEGDNN_MARK_USED_VAR(pack_oc_size); | |||
megdnn_assert(bias_mode == megdnn::BiasMode::NO_BIAS && | |||
nonlineMode == megdnn::NonlineMode::IDENTITY); | |||
megdnn_throw_if(bias_mode != megdnn::BiasMode::NO_BIAS || | |||
nonlineMode != megdnn::NonlineMode::IDENTITY, | |||
megdnn_error, "biasmode or nonlineMode do not support"); | |||
} | |||
}; | |||
@@ -310,7 +311,8 @@ struct PostProcess<ctype, dtype, megdnn::PostprocessMode::ADD_BIAS> { | |||
megdnn::BiasMode bias_mode, megdnn::NonlineMode nonlineMode, | |||
megdnn::DType bias_type, megdnn::DType dst_type, size_t N, | |||
size_t OC, size_t OH, size_t OW, size_t pack_oc_size = 1) { | |||
megdnn_assert(nonlineMode == megdnn::NonlineMode::IDENTITY); | |||
megdnn_throw_if(nonlineMode != megdnn::NonlineMode::IDENTITY, | |||
megdnn_error, "nonlineMode do not support"); | |||
FOR_BIAS(bias_mode, OH, OW); | |||
} | |||
}; | |||
@@ -115,7 +115,7 @@ bool ElemwiseImpl::AlgoBinaryVecBcast101x4::is_available( | |||
auto& elparam = kern_param.binary_elparam; | |||
auto& src0 = elparam[0]; | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
if (MEGDNN_FLOAT16_SELECT(src0.layout.dtype == dtype::Float16{}, false)) { | |||
if (DNN_FLOAT16_SELECT(src0.layout.dtype == dtype::Float16{}, false)) { | |||
return false; | |||
} | |||
#endif | |||
@@ -23,8 +23,7 @@ namespace arm_common { | |||
} \ | |||
const char* name() const override { \ | |||
if (m_name.empty()) { \ | |||
m_name = megdnn_mangle( \ | |||
ssprintf("Elemwise::AlgoBinaryCase" #case)); \ | |||
m_name = ssprintf("Elemwise::AlgoBinaryCase" #case); \ | |||
} \ | |||
return m_name.c_str(); \ | |||
} \ | |||
@@ -66,7 +66,7 @@ void ElemwiseImpl::exec(const TensorNDArray& srcs, _megdnn_tensor_out dst) { | |||
} | |||
if (m_dst->layout.dtype == dtype::Float32() || | |||
MEGDNN_FLOAT16_SELECT(m_dst->layout.dtype == dtype::Float16(), false) || | |||
DNN_FLOAT16_SELECT(m_dst->layout.dtype == dtype::Float16(), false) || | |||
m_dst->layout.dtype == dtype::Int32() || | |||
m_dst->layout.dtype == dtype::Int16() || | |||
m_dst->layout.dtype == dtype::Int8()) { | |||
@@ -63,18 +63,18 @@ public: | |||
}; | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
#define DISPATCH_TYPE(_case) \ | |||
if (src0.layout.dtype == dtype::Float32{}) { \ | |||
DISPATCH_MODE_FLOAT(_case, float, 0); \ | |||
} else if (MEGDNN_FLOAT16_SELECT(src0.layout.dtype == dtype::Float16{}, \ | |||
false)) { \ | |||
DISPATCH_MODE_FLOAT(_case, __fp16, 1); \ | |||
} else if (src0.layout.dtype == dtype::Int32{}) { \ | |||
DISPATCH_MODE_INT(_case, int, 2); \ | |||
} else if (src0.layout.dtype == dtype::Int16{}) { \ | |||
DISPATCH_MODE_INT(_case, dt_int16, 3); \ | |||
} else if (src0.layout.dtype == dtype::Int8{}) { \ | |||
DISPATCH_MODE_INT(_case, dt_int8, 4); \ | |||
#define DISPATCH_TYPE(_case) \ | |||
if (src0.layout.dtype == dtype::Float32{}) { \ | |||
DISPATCH_MODE_FLOAT(_case, float, 0); \ | |||
} else if (DNN_FLOAT16_SELECT(src0.layout.dtype == dtype::Float16{}, \ | |||
false)) { \ | |||
DISPATCH_MODE_FLOAT(_case, __fp16, 1); \ | |||
} else if (src0.layout.dtype == dtype::Int32{}) { \ | |||
DISPATCH_MODE_INT(_case, int, 2); \ | |||
} else if (src0.layout.dtype == dtype::Int16{}) { \ | |||
DISPATCH_MODE_INT(_case, dt_int16, 3); \ | |||
} else if (src0.layout.dtype == dtype::Int8{}) { \ | |||
DISPATCH_MODE_INT(_case, dt_int8, 4); \ | |||
} | |||
#else | |||
#define DISPATCH_TYPE(_case) \ | |||
@@ -23,8 +23,7 @@ namespace arm_common { | |||
} \ | |||
const char* name() const override { \ | |||
if (m_name.empty()) { \ | |||
m_name = megdnn_mangle( \ | |||
ssprintf("Elemwise::AlgoTernaryFma3" #case)); \ | |||
m_name = ssprintf("Elemwise::AlgoTernaryFma3" #case); \ | |||
} \ | |||
return m_name.c_str(); \ | |||
} \ | |||
@@ -21,7 +21,7 @@ class ElemwiseImpl::AlgoUnary final : public ElemwiseImpl::AlgoBase { | |||
} | |||
const char* name() const override { | |||
if (m_name.empty()) { | |||
m_name = megdnn_mangle(ssprintf("Elemwise::AlgoUnary")); | |||
m_name = ssprintf("Elemwise::AlgoUnary"); | |||
} | |||
return m_name.c_str(); | |||
} | |||
@@ -916,7 +916,7 @@ void ReduceImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
} | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
if (src.layout.dtype.enumv() == DTypeEnum::Float16) { | |||
MEGDNN_INC_FLOAT16(DISPATCH_MODE_FLOAT(__fp16, __fp16, __fp16)); | |||
DNN_INC_FLOAT16(DISPATCH_MODE_FLOAT(__fp16, __fp16, __fp16)); | |||
} | |||
#endif | |||
} | |||
@@ -2044,7 +2044,7 @@ void megdnn::arm_common::resize_cv_exec( | |||
} | |||
MIDOUT_END(); | |||
} else { | |||
megdnn_throw(megdnn_mangle("Unsupported datatype of resize optr.")); | |||
megdnn_throw("Unsupported datatype of resize optr."); | |||
} | |||
} | |||
} | |||
@@ -285,7 +285,7 @@ void megdnn::arm_common::warp_affine_cv_exec( | |||
DISPATCH_IMODE(imode, bmode, ch, cb) | |||
#undef cb | |||
} else { | |||
megdnn_throw(megdnn_mangle("Unsupported datatype of WarpAffine optr.")); | |||
megdnn_throw("Unsupported datatype of WarpAffine optr."); | |||
} | |||
} | |||
@@ -229,7 +229,7 @@ void megdnn::arm_common::warp_perspective_cv_exec( | |||
DISPATCH_IMODE(imode, bmode, ch, cb) | |||
#undef cb | |||
} else { | |||
megdnn_throw(megdnn_mangle("Unsupported datatype of WarpAffine optr.")); | |||
megdnn_throw("Unsupported datatype of WarpAffine optr."); | |||
} | |||
} | |||
@@ -53,7 +53,7 @@ void CambriconComputingContext::memcpy(void* dst, const void* src, | |||
dir = CNRT_MEM_TRANS_DIR_DEV2DEV; | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle("bad cnrt mem trans dir")); | |||
megdnn_throw("bad cnrt mem trans dir"); | |||
} | |||
if (kind == megcoreMemcpyDeviceToDevice) { | |||
cnrt_check(cnrtSyncQueue(context_.queue)); | |||
@@ -120,16 +120,15 @@ typename Opr::Algorithm* get_reproducible_algo( | |||
MEGDNN_MARK_USED_VAR(name); | |||
if (available_but_limited_by_workspace) { | |||
megdnn_throw(megdnn_mangle(ssprintf( | |||
megdnn_throw(ssprintf( | |||
"no reproducible %s algorithm: %s workspace limit %zu is " | |||
"less than mini workspace limit %zu", | |||
name, args.to_string().c_str(), workspace_limit_in_bytes, | |||
min_workspace_limit_in_bytes))); | |||
min_workspace_limit_in_bytes)); | |||
} else if (available_but_not_reproducible) { | |||
megdnn_throw( | |||
megdnn_mangle(ssprintf("no reproducible %s algorithm", name))); | |||
megdnn_throw(ssprintf("no reproducible %s algorithm", name)); | |||
} else { | |||
megdnn_throw(megdnn_mangle(ssprintf("no usable %s algorithm", name))); | |||
megdnn_throw(ssprintf("no usable %s algorithm", name)); | |||
} | |||
} | |||
@@ -154,13 +153,13 @@ typename Opr::Algorithm* get_usable_algo( | |||
MEGDNN_MARK_USED_VAR(name); | |||
if (available_but_limited_by_workspace) { | |||
megdnn_throw(megdnn_mangle(ssprintf( | |||
megdnn_throw(ssprintf( | |||
"no usable %s algorithm: %s workspace limit %zu is " | |||
"less than mini workspace limit %zu", | |||
name, args.to_string().c_str(), workspace_limit_in_bytes, | |||
min_workspace_limit_in_bytes))); | |||
min_workspace_limit_in_bytes)); | |||
} else { | |||
megdnn_throw(megdnn_mangle(ssprintf("no usable %s algorithm", name))); | |||
megdnn_throw(ssprintf("no usable %s algorithm", name)); | |||
} | |||
} | |||
@@ -413,7 +413,7 @@ TensorLayout::Span TensorLayout::span() const { | |||
TensorLayout TensorLayout::broadcast(const TensorShape& tshape) const { | |||
megdnn_throw_if(!ndim || !tshape.ndim, tensor_reshape_error, | |||
megdnn_mangle("broadcast involves empty tensor")); | |||
"broadcast involves empty tensor"); | |||
if (is_scalar()) { | |||
TensorLayout result{dtype, format}; | |||
@@ -426,10 +426,9 @@ TensorLayout TensorLayout::broadcast(const TensorShape& tshape) const { | |||
} | |||
megdnn_throw_if(tshape.ndim < ndim, tensor_reshape_error, | |||
megdnn_mangle(ssprintf( | |||
"dimension for broadcast less than " | |||
"dst_shape: src_shape=%s dst_shape=%s", | |||
to_string().c_str(), tshape.to_string().c_str()))); | |||
ssprintf("dimension for broadcast less than " | |||
"dst_shape: src_shape=%s dst_shape=%s", | |||
to_string().c_str(), tshape.to_string().c_str())); | |||
TensorLayout result{dtype, format}; | |||
for (size_t i = 0; i < tshape.ndim; ++i) { | |||
int target_idx = tshape.ndim - i - 1; | |||
@@ -439,10 +438,9 @@ TensorLayout TensorLayout::broadcast(const TensorShape& tshape) const { | |||
if (tshape.shape[target_idx] != cur_shape) { | |||
megdnn_throw_if( | |||
cur_shape != 1 && cur_stride != 0, tensor_reshape_error, | |||
megdnn_mangle(ssprintf( | |||
"broadcast on dim with shape not equal to 1: " | |||
"src_shape=%s dst_shape=%s", | |||
to_string().c_str(), tshape.to_string().c_str()))); | |||
ssprintf("broadcast on dim with shape not equal to 1: " | |||
"src_shape=%s dst_shape=%s", | |||
to_string().c_str(), tshape.to_string().c_str())); | |||
result.shape[target_idx] = tshape.shape[target_idx]; | |||
result.stride[target_idx] = 0; | |||
} else { | |||
@@ -461,9 +459,9 @@ bool TensorLayout::try_reshape(TensorLayout& result, | |||
bool is_empty_shape = false; | |||
for (size_t i = 0; i < tshp.ndim; ++i) { | |||
if (!tshp.shape[i]) { | |||
megdnn_throw_if(!format.is_default(), tensor_reshape_error, | |||
megdnn_mangle(ssprintf("bad target tshp: %s", | |||
tshp.to_string().c_str()))); | |||
megdnn_throw_if( | |||
!format.is_default(), tensor_reshape_error, | |||
ssprintf("bad target tshp: %s", tshp.to_string().c_str())); | |||
is_empty_shape = true; | |||
break; | |||
} | |||
@@ -472,11 +470,10 @@ bool TensorLayout::try_reshape(TensorLayout& result, | |||
megdnn_throw_if( | |||
!tshp.ndim || total_nr_elems() != tshp.total_nr_elems(), | |||
tensor_reshape_error, | |||
megdnn_mangle(ssprintf( | |||
"number of elements do not match " | |||
"in reshape: src=%s dest=%s", | |||
static_cast<const TensorShape&>(*this).to_string().c_str(), | |||
tshp.to_string().c_str()))); | |||
ssprintf("number of elements do not match " | |||
"in reshape: src=%s dest=%s", | |||
static_cast<const TensorShape&>(*this).to_string().c_str(), | |||
tshp.to_string().c_str())); | |||
auto cont = collapse_contiguous(); | |||
result.dtype = this->dtype; | |||
@@ -516,9 +513,8 @@ TensorLayout TensorLayout::reshape(const TensorShape& shape) const { | |||
TensorLayout ret; | |||
auto succ = try_reshape(ret, shape); | |||
megdnn_throw_if(!succ, tensor_reshape_error, | |||
megdnn_mangle(ssprintf("can not reshape from %s to %s", | |||
to_string().c_str(), | |||
shape.to_string().c_str()))); | |||
ssprintf("can not reshape from %s to %s", | |||
to_string().c_str(), shape.to_string().c_str())); | |||
return ret; | |||
} | |||
@@ -39,15 +39,15 @@ void BatchedMatrixMulForward::deduce_layout(const TensorLayout& A, | |||
TensorLayout& C) { | |||
auto errmsg = [&]() { | |||
std::string msg; | |||
msg.append(megdnn_mangle("A=")); | |||
msg.append("A="); | |||
msg.append(A.to_string()); | |||
msg.append(megdnn_mangle(", B=")); | |||
msg.append(", B="); | |||
msg.append(B.to_string()); | |||
msg.append(megdnn_mangle(", C=")); | |||
msg.append(", C="); | |||
msg.append(C.to_string()); | |||
msg.append(megdnn_mangle(", transposeA=")); | |||
msg.append(", transposeA="); | |||
msg.append(std::to_string(m_param.transposeA)); | |||
msg.append(megdnn_mangle(", transposeB=")); | |||
msg.append(", transposeB="); | |||
msg.append(std::to_string(m_param.transposeB)); | |||
return msg; | |||
}; | |||
@@ -41,8 +41,8 @@ void ConcatSplitBase::check_layout_common(const TensorLayoutArray &srcs, | |||
megdnn_assert_eq_size_t(src.ndim, ndim); | |||
} | |||
// ensure param().axis is correct | |||
auto errmsg = megdnn_mangle("param().axis=") + | |||
std::to_string(param().axis) + megdnn_mangle(", ndim=") + | |||
auto errmsg = "param().axis=" + | |||
std::to_string(param().axis) + ", ndim=" + | |||
std::to_string(ndim); | |||
MEGDNN_MARK_USED_VAR(errmsg); | |||
megdnn_assert(param().axis < static_cast<int32_t>(ndim), "%s", | |||
@@ -23,17 +23,17 @@ std::string get_errmsg(const TensorLayout& src, const TensorLayout& filter, | |||
MEGDNN_MARK_USED_VAR(filter); | |||
MEGDNN_MARK_USED_VAR(dst); | |||
return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + ", " + | |||
megdnn_layout_msg(dst) + ", " + megdnn_mangle("is_nchw=") + | |||
megdnn_layout_msg(dst) + ", " + "is_nchw=" + | |||
std::to_string(param.format == param::Convolution::Format::NCHW) + | |||
", " + +megdnn_mangle("is_xcorr=") + | |||
", " + "is_xcorr=" + | |||
std::to_string( | |||
(param.mode == Convolution::Mode::CROSS_CORRELATION)) + | |||
", " + megdnn_mangle("pad_h=") + std::to_string(param.pad_h) + ", " + | |||
megdnn_mangle("pad_w=") + std::to_string(param.pad_w) + ", " + | |||
megdnn_mangle("stride_h=") + std::to_string(param.stride_h) + ", " + | |||
megdnn_mangle("stride_w=") + std::to_string(param.stride_w) + ", " + | |||
megdnn_mangle("dilate_h=") + std::to_string(param.dilate_h) + ", " + | |||
megdnn_mangle("dilate_w=") + std::to_string(param.dilate_w); | |||
", " + "pad_h=" + std::to_string(param.pad_h) + ", " + | |||
"pad_w=" + std::to_string(param.pad_w) + ", " + | |||
"stride_h=" + std::to_string(param.stride_h) + ", " + | |||
"stride_w=" + std::to_string(param.stride_w) + ", " + | |||
"dilate_h=" + std::to_string(param.dilate_h) + ", " + | |||
"dilate_w=" + std::to_string(param.dilate_w); | |||
} | |||
template <typename Param, typename Param::Format> | |||
@@ -22,20 +22,20 @@ std::string get_errmsg(const TensorLayout& src, const TensorLayout& filter, | |||
MEGDNN_MARK_USED_VAR(filter); | |||
MEGDNN_MARK_USED_VAR(dst); | |||
return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + ", " + | |||
megdnn_layout_msg(dst) + ", " + megdnn_mangle("is_ncdhw=") + | |||
megdnn_layout_msg(dst) + ", " + "is_ncdhw=" + | |||
std::to_string(param.format == param::Convolution3D::Format::NCDHW) + | |||
", " + +megdnn_mangle("is_xcorr=") + | |||
", " + "is_xcorr=" + | |||
std::to_string( | |||
(param.mode == Convolution3D::Mode::CROSS_CORRELATION)) + | |||
", " + megdnn_mangle("pad_d=") + std::to_string(param.pad_d) + ", " + | |||
megdnn_mangle("pad_h=") + std::to_string(param.pad_h) + ", " + | |||
megdnn_mangle("pad_w=") + std::to_string(param.pad_w) + ", " + | |||
megdnn_mangle("stride_d=") + std::to_string(param.stride_d) + ", " + | |||
megdnn_mangle("stride_h=") + std::to_string(param.stride_h) + ", " + | |||
megdnn_mangle("stride_w=") + std::to_string(param.stride_w) + ", " + | |||
megdnn_mangle("dilate_d=") + std::to_string(param.dilate_d) + ", " + | |||
megdnn_mangle("dilate_h=") + std::to_string(param.dilate_h) + ", " + | |||
megdnn_mangle("dilate_w=") + std::to_string(param.dilate_w); | |||
", " + "pad_d=" + std::to_string(param.pad_d) + ", " + | |||
"pad_h=" + std::to_string(param.pad_h) + ", " + | |||
"pad_w=" + std::to_string(param.pad_w) + ", " + | |||
"stride_d=" + std::to_string(param.stride_d) + ", " + | |||
"stride_h=" + std::to_string(param.stride_h) + ", " + | |||
"stride_w=" + std::to_string(param.stride_w) + ", " + | |||
"dilate_d=" + std::to_string(param.dilate_d) + ", " + | |||
"dilate_h=" + std::to_string(param.dilate_h) + ", " + | |||
"dilate_w=" + std::to_string(param.dilate_w); | |||
} | |||
} // namespace | |||
@@ -127,15 +127,15 @@ Convolution3DBase::CanonizedFilterMeta Convolution3DBase::deduce_layout_fwd( | |||
megdnn_assert(src.ndim >= 5_z, "%s", errmsg().c_str()); | |||
megdnn_assert(src.dtype == filter.dtype, "%s", errmsg().c_str()); | |||
if (param().data_type == Param::DataType::FLOAT) { | |||
megdnn_assert(src.dtype == dtype::Float32() MEGDNN_INC_FLOAT16( | |||
megdnn_assert(src.dtype == dtype::Float32() DNN_INC_FLOAT16( | |||
|| src.dtype == dtype::Float16()), | |||
"invalid src dtype for conv: %s", src.dtype.name()); | |||
dst.dtype = src.dtype; | |||
} else { | |||
megdnn_assert(param().data_type == Param::DataType::FLOAT_IO16xC32); | |||
MEGDNN_INC_FLOAT16(megdnn_assert(src.dtype == dtype::Float16(), | |||
DNN_INC_FLOAT16(megdnn_assert(src.dtype == dtype::Float16(), | |||
"invalid src dtype for conv: %s", src.dtype.name())); | |||
MEGDNN_INC_FLOAT16(dst.dtype = dtype::Float16()); | |||
DNN_INC_FLOAT16(dst.dtype = dtype::Float16()); | |||
} | |||
auto img_dim = src.ndim - 2; | |||
megdnn_assert(img_dim == 3, "this is the convolution for 3D image"); | |||
@@ -77,9 +77,9 @@ | |||
#include <xmmintrin.h> | |||
#endif | |||
#define MegCVException(expr) \ | |||
do { \ | |||
megdnn_throw(megdnn_mangle(#expr)); \ | |||
#define MegCVException(expr) \ | |||
do { \ | |||
megdnn_throw(#expr); \ | |||
} while (0) | |||
namespace megdnn { | |||
@@ -27,16 +27,15 @@ std::string get_errmsg(const TensorLayout& src, const TensorLayout& filter, | |||
MEGDNN_MARK_USED_VAR(dst); | |||
return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + ", " + | |||
megdnn_layout_msg(offset) + ", " + megdnn_layout_msg(mask) + ", " + | |||
megdnn_layout_msg(dst) + ", " + megdnn_mangle("only support nchw") + | |||
", " + megdnn_mangle("group=") + std::to_string(param.group) + ", " + | |||
megdnn_mangle("deformable_group=") + | |||
std::to_string(param.deformable_group) + ", " + | |||
megdnn_mangle("pad_h=") + std::to_string(param.pad_h) + ", " + | |||
megdnn_mangle("pad_w=") + std::to_string(param.pad_w) + ", " + | |||
megdnn_mangle("stride_h=") + std::to_string(param.stride_h) + ", " + | |||
megdnn_mangle("stride_w=") + std::to_string(param.stride_w) + ", " + | |||
megdnn_mangle("dilate_h=") + std::to_string(param.dilate_h) + ", " + | |||
megdnn_mangle("dilate_w=") + std::to_string(param.dilate_w); | |||
megdnn_layout_msg(dst) + ", " + "only support nchw" + ", " + | |||
"group=" + std::to_string(param.group) + ", " + | |||
"deformable_group=" + std::to_string(param.deformable_group) + ", " + | |||
"pad_h=" + std::to_string(param.pad_h) + ", " + | |||
"pad_w=" + std::to_string(param.pad_w) + ", " + | |||
"stride_h=" + std::to_string(param.stride_h) + ", " + | |||
"stride_w=" + std::to_string(param.stride_w) + ", " + | |||
"dilate_h=" + std::to_string(param.dilate_h) + ", " + | |||
"dilate_w=" + std::to_string(param.dilate_w); | |||
} | |||
template <typename Param> | |||
@@ -42,15 +42,13 @@ MEGDNN_FOREACH_PARAMETERIZED_DTYPE(TEMPLATED_IMPL) | |||
#undef IMPL | |||
void DType::on_assert_is_failed(const char *rname) const { | |||
megdnn_throw(megdnn_mangle( | |||
ssprintf("attempt to access dtype %s as %s", | |||
name(), rname).c_str())); | |||
megdnn_throw(ssprintf("attempt to access dtype %s as %s", name(), rname) | |||
.c_str()); | |||
MEGDNN_MARK_USED_VAR(rname); | |||
} | |||
void DType::on_request_lowbit_size() const { | |||
megdnn_throw(megdnn_mangle( | |||
ssprintf("attempt to get size of lowbit dtype %s", name()))); | |||
megdnn_throw(ssprintf("attempt to get size of lowbit dtype %s", name())); | |||
} | |||
DType DType::from_enum(DTypeEnum ev) { | |||
@@ -60,11 +58,11 @@ DType DType::from_enum(DTypeEnum ev) { | |||
#undef cb | |||
#define cb(_dt) case DTypeEnum::_dt: | |||
MEGDNN_FOREACH_PARAMETERIZED_DTYPE(cb) | |||
megdnn_throw(megdnn_mangle( | |||
"cannot construct parameterized DType via DType::from_enum")); | |||
megdnn_throw( | |||
"cannot construct parameterized DType via DType::from_enum"); | |||
#undef cb | |||
} | |||
megdnn_throw(megdnn_mangle("bad DTypeEnum value")); | |||
megdnn_throw("bad DTypeEnum value"); | |||
} | |||
template <DTypeEnum type_enum> | |||
@@ -87,8 +87,8 @@ namespace megdnn { | |||
//! define kernel for all float types | |||
#define DEF_KERN_FLOAT(_mode, _imp) \ | |||
DEF_KERN(dt_float32, _mode, _imp); \ | |||
MEGDNN_INC_FLOAT16(DEF_KERN(dt_float16, _mode, _imp);) \ | |||
MEGDNN_INC_FLOAT16(DEF_KERN(dt_bfloat16, _mode, _imp);) | |||
DNN_INC_FLOAT16(DEF_KERN(dt_float16, _mode, _imp);) \ | |||
DNN_INC_FLOAT16(DEF_KERN(dt_bfloat16, _mode, _imp);) | |||
//! define kernel for all int types | |||
#define DEF_KERN_INT(_mode, _imp) \ | |||
@@ -85,7 +85,7 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
MIDOUT_BEGIN(megdnn_common_elemwise, midout_iv(Mode::_m)) { \ | |||
auto&& t = get(Mode::_m); \ | |||
t.arity = _a; \ | |||
t.name = megdnn_mangle(#_m); \ | |||
t.name = (#_m); \ | |||
} \ | |||
MIDOUT_END(); | |||
#define _a 1 | |||
@@ -111,7 +111,7 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
t.allow_float = true; \ | |||
t.allow_bool = true; \ | |||
t.arity = _arity; \ | |||
t.name = megdnn_mangle(#_m); \ | |||
t.name = (#_m); \ | |||
} \ | |||
MIDOUT_END(); | |||
FUSE(FUSE_MUL_ADD3, 3); | |||
@@ -159,14 +159,13 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
void ElemwiseForward::deduce_shape(const TensorShapeArray& src, | |||
TensorShape& dst) { | |||
auto err = [&]() { | |||
std::string msg( | |||
megdnn_mangle("bad input shape for polyadic operator: ")); | |||
std::string msg("bad input shape for polyadic operator: "); | |||
bool first = true; | |||
for (auto&& i : src) { | |||
if (first) | |||
first = false; | |||
else | |||
msg.append(megdnn_mangle(", ")); | |||
msg.append(", "); | |||
msg.append(i.to_string()); | |||
} | |||
megdnn_throw(msg); | |||
@@ -158,7 +158,7 @@ const ModeTrait& ModeTrait::from_mode(Mode mode) { | |||
#define SET(f, m) \ | |||
MIDOUT_BEGIN(megdnn_common_elemwise_multi_type, midout_iv(Mode::m)) { \ | |||
f(traits[static_cast<int>(Mode::m)], megdnn_mangle(#m)); \ | |||
f(traits[static_cast<int>(Mode::m)], (#m)); \ | |||
} \ | |||
MIDOUT_END(); | |||
SET(init_fma3_int16x32x32x32, FUSE_MUL_ADD3_INT16x32x32x32); | |||
@@ -19,13 +19,12 @@ void GroupLocalBase::deduce_layout_fwd(const TensorLayout &src, | |||
TensorLayout &dst) | |||
{ | |||
auto errmsg = [&]() { | |||
return megdnn_layout_msg(src) + ", " | |||
+ megdnn_layout_msg(filter) + ", " | |||
+ megdnn_layout_msg(dst) + ", " | |||
+ megdnn_mangle("pad_h=") + std::to_string(param().pad_h) + ", " | |||
+ megdnn_mangle("pad_w=") + std::to_string(param().pad_w) + ", " | |||
+ megdnn_mangle("stride_h=") + std::to_string(param().stride_h) + ", " | |||
+ megdnn_mangle("stride_w=") + std::to_string(param().stride_w); | |||
return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + | |||
", " + megdnn_layout_msg(dst) + ", " + | |||
"pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w); | |||
}; | |||
MEGDNN_MARK_USED_VAR(errmsg); | |||
megdnn_assert_contiguous(src); | |||
@@ -66,7 +65,7 @@ void GroupLocalBase::check_layout_fwd(const TensorLayout &src, | |||
megdnn_assert_eq_dtype(src, dst); | |||
deduce_layout_fwd(src, filter, dst_expected); | |||
megdnn_assert_eq_layout(dst_expected, dst); | |||
megdnn_assert(src.dtype == dtype::Float32() || MEGDNN_FLOAT16_SELECT(src.dtype == dtype::Float16(), true)); | |||
megdnn_assert(src.dtype == dtype::Float32() || DNN_FLOAT16_SELECT(src.dtype == dtype::Float16(), true)); | |||
} | |||
void GroupLocalForward::check_exec(const TensorLayout &src, | |||
@@ -87,7 +87,7 @@ std::unique_ptr<Handle> Handle::make(megcoreComputingHandle_t computing_handle, | |||
} else if (debug_level == 2) { | |||
return make_unique<naive::HandleImpl>(computing_handle); | |||
} else { | |||
megdnn_throw(megdnn_mangle("Debug level must be 0/1/2.")); | |||
megdnn_throw("Debug level must be 0/1/2."); | |||
} | |||
} | |||
MIDOUT_END(); | |||
@@ -116,7 +116,8 @@ std::unique_ptr<Handle> Handle::make(megcoreComputingHandle_t computing_handle, | |||
} | |||
else { | |||
// CUDA | |||
megdnn_assert_internal(platform == megcorePlatformCUDA); | |||
megdnn_throw_if(platform != megcorePlatformCUDA, megdnn_error, | |||
"platform should be CUDA Platform"); | |||
#if MEGDNN_WITH_CUDA | |||
return make_unique<cuda::HandleImpl>(computing_handle); | |||
#else | |||
@@ -216,7 +217,7 @@ std::unique_ptr<Handle> Handle::make(megcoreComputingHandle_t computing_handle, | |||
CASE(CAMBRICON, cambricon); | |||
#endif | |||
default: | |||
megdnn_throw(megdnn_mangle("bad handle type")); | |||
megdnn_throw("bad handle type"); | |||
} | |||
#undef CASE | |||
} | |||
@@ -19,16 +19,12 @@ void Images2NeibsBase::deduce_layout_fwd(const TensorLayout &src, | |||
{ | |||
auto errmsg = [&]() { | |||
return megdnn_layout_msg(src) + ", " + | |||
megdnn_mangle("pad_h=") + std::to_string(param().pad_h) + ", " + | |||
megdnn_mangle("pad_w=") + std::to_string(param().pad_w) + ", " + | |||
megdnn_mangle("stride_h=") + | |||
std::to_string(param().stride_h) + ", " + | |||
megdnn_mangle("stride_w=") + | |||
std::to_string(param().stride_w) + ", " + | |||
megdnn_mangle("window_h=") + | |||
std::to_string(param().window_h) + ", " + | |||
megdnn_mangle("window_w=") + | |||
std::to_string(param().window_w); | |||
"pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w) + ", " + | |||
"window_h=" + std::to_string(param().window_h) + ", " + | |||
"window_w=" + std::to_string(param().window_w); | |||
}; | |||
MEGDNN_MARK_USED_VAR(errmsg); | |||
megdnn_assert_contiguous(src); | |||
@@ -32,10 +32,11 @@ void IndexingOneHotBase::check_layout_fwd( | |||
const TensorLayout &src, const TensorLayout &index, | |||
const TensorLayout &dst) { | |||
auto errmsg = [&]() -> std::string { | |||
return megdnn_mangle(ssprintf("bad layout for IndexingOneHot: " | |||
"src=%s index=%s dst=%s axis=%d", | |||
src.to_string().c_str(), index.to_string().c_str(), | |||
dst.to_string().c_str(), m_param.axis)); | |||
return ssprintf( | |||
"bad layout for IndexingOneHot: " | |||
"src=%s index=%s dst=%s axis=%d", | |||
src.to_string().c_str(), index.to_string().c_str(), | |||
dst.to_string().c_str(), m_param.axis); | |||
}; | |||
MEGDNN_MARK_USED_VAR(errmsg); | |||
megdnn_assert_eq_dtype(src, dst); | |||
@@ -17,15 +17,13 @@ namespace megdnn { | |||
void LocalBase::deduce_layout_fwd(const TensorLayout &src, | |||
const TensorLayout &filter, TensorLayout &dst) | |||
{ | |||
auto errmsg = megdnn_layout_msg(src) + ", " | |||
+ megdnn_layout_msg(filter) + ", " | |||
+ megdnn_layout_msg(dst) + ", " | |||
+ megdnn_mangle("is_xcorr=") | |||
+ std::to_string((param().mode == Mode::CROSS_CORRELATION)) + ", " | |||
+ megdnn_mangle("pad_h=") + std::to_string(param().pad_h) + ", " | |||
+ megdnn_mangle("pad_w=") + std::to_string(param().pad_w) + ", " | |||
+ megdnn_mangle("stride_h=") + std::to_string(param().stride_h) + ", " | |||
+ megdnn_mangle("stride_w=") + std::to_string(param().stride_w) ; | |||
auto errmsg = megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + | |||
", " + megdnn_layout_msg(dst) + ", " + "is_xcorr=" + | |||
std::to_string((param().mode == Mode::CROSS_CORRELATION)) + | |||
", " + "pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w); | |||
auto errmsg_c = errmsg.c_str(); | |||
MEGDNN_MARK_USED_VAR(errmsg_c); | |||
@@ -77,7 +75,7 @@ void LocalBase::check_layout_fwd(const TensorLayout &src, | |||
megdnn_assert(src.dtype == filter.dtype && src.dtype == dst.dtype); | |||
megdnn_assert(src.dtype == dtype::Float32() || | |||
MEGDNN_FLOAT16_SELECT(src.dtype == dtype::Float16(), true)); | |||
DNN_FLOAT16_SELECT(src.dtype == dtype::Float16(), true)); | |||
} | |||
void LocalForward::deduce_layout(const TensorLayout &src, | |||
@@ -19,20 +19,17 @@ void LocalShareBase::deduce_layout_fwd(const TensorLayout& src, | |||
using Mode = LocalShare::Param::Mode; | |||
auto errmsg = | |||
megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter) + ", " + | |||
megdnn_layout_msg(dst) + ", " + megdnn_mangle("is_xcorr=") + | |||
megdnn_layout_msg(dst) + ", " + "is_xcorr=" + | |||
std::to_string((param().mode == Mode::CROSS_CORRELATION)) + ", " + | |||
megdnn_mangle("pad_h=") + std::to_string(param().pad_h) + ", " + | |||
megdnn_mangle("pad_w=") + std::to_string(param().pad_w) + ", " + | |||
megdnn_mangle("stride_h=") + std::to_string(param().stride_h) + | |||
", " + megdnn_mangle("stride_w=") + | |||
std::to_string(param().stride_w) + ", " + | |||
megdnn_mangle("dilate_h=") + std::to_string(param().dilate_h) + | |||
", " + megdnn_mangle("dilate_w=") + | |||
std::to_string(param().dilate_w) + ", " + | |||
megdnn_mangle("spatial_groups_h=") + | |||
std::to_string(param().spatial_groups_h) + ", " + | |||
megdnn_mangle("spatial_groups_w=") + | |||
std::to_string(param().spatial_groups_w); | |||
"pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w) + ", " + | |||
"dilate_h=" + std::to_string(param().dilate_h) + ", " + | |||
"dilate_w=" + std::to_string(param().dilate_w) + ", " + | |||
"spatial_groups_h=" + std::to_string(param().spatial_groups_h) + | |||
", " + | |||
"spatial_groups_w=" + std::to_string(param().spatial_groups_w); | |||
auto errmsg_c = errmsg.c_str(); | |||
MEGDNN_MARK_USED_VAR(errmsg_c); | |||
@@ -118,20 +115,17 @@ void LocalShareBackwardData::deduce_layout(const TensorLayout& filter, | |||
using Mode = LocalShare::Param::Mode; | |||
auto errmsg = | |||
megdnn_layout_msg(filter) + ", " + megdnn_layout_msg(diff) + ", " + | |||
megdnn_layout_msg(grad) + ", " + megdnn_mangle("is_xcorr=") + | |||
megdnn_layout_msg(grad) + ", " + "is_xcorr=" + | |||
std::to_string((param().mode == Mode::CROSS_CORRELATION)) + ", " + | |||
megdnn_mangle("pad_h=") + std::to_string(param().pad_h) + ", " + | |||
megdnn_mangle("pad_w=") + std::to_string(param().pad_w) + ", " + | |||
megdnn_mangle("stride_h=") + std::to_string(param().stride_h) + | |||
", " + megdnn_mangle("stride_w=") + | |||
std::to_string(param().stride_w) + ", " + | |||
megdnn_mangle("dilate_h=") + std::to_string(param().dilate_h) + | |||
", " + megdnn_mangle("dilate_w=") + | |||
std::to_string(param().dilate_w) + ", " + | |||
megdnn_mangle("spatial_groups_h=") + | |||
std::to_string(param().spatial_groups_h) + ", " + | |||
megdnn_mangle("spatial_groups_w=") + | |||
std::to_string(param().spatial_groups_w); | |||
"pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w) + ", " + | |||
"dilate_h=" + std::to_string(param().dilate_h) + ", " + | |||
"dilate_w=" + std::to_string(param().dilate_w) + ", " + | |||
"spatial_groups_h=" + std::to_string(param().spatial_groups_h) + | |||
", " + | |||
"spatial_groups_w=" + std::to_string(param().spatial_groups_w); | |||
auto errmsg_c = errmsg.c_str(); | |||
MEGDNN_MARK_USED_VAR(errmsg_c); | |||
@@ -34,10 +34,9 @@ void MatrixInverse::canonize_params(const TensorLayout& layout, size_t* batch, | |||
layout[layout.ndim - 2] == layout[layout.ndim - 1], | |||
"invalid MatrixInverse layout: %s", | |||
layout.to_string().c_str()); | |||
megdnn_assert( | |||
MEGDNN_FLOAT16_SELECT(layout.dtype == dtype::Float16(), false) || | |||
layout.dtype == dtype::Float32(), | |||
"MatrixInverse only supports f16 & f32"); | |||
megdnn_assert(DNN_FLOAT16_SELECT(layout.dtype == dtype::Float16(), false) || | |||
layout.dtype == dtype::Float32(), | |||
"MatrixInverse only supports f16 & f32"); | |||
if (batch) { | |||
*batch = 1; | |||
for (size_t i = 0; i < layout.ndim - 2; ++i) { | |||
@@ -100,15 +100,15 @@ void MatrixMulForward::check_exec(const TensorLayout& A, const TensorLayout& B, | |||
size_t workspace_in_bytes) { | |||
auto errmsg = [&]() { | |||
std::string msg; | |||
msg.append(megdnn_mangle("A=")); | |||
msg.append("A="); | |||
msg.append(A.to_string()); | |||
msg.append(megdnn_mangle(", B=")); | |||
msg.append(", B="); | |||
msg.append(B.to_string()); | |||
msg.append(megdnn_mangle(", C=")); | |||
msg.append(", C="); | |||
msg.append(C.to_string()); | |||
msg.append(megdnn_mangle(", transposeA=")); | |||
msg.append(", transposeA="); | |||
msg.append(std::to_string(param().transposeA)); | |||
msg.append(megdnn_mangle(", transposeB=")); | |||
msg.append(", transposeB="); | |||
msg.append(std::to_string(param().transposeB)); | |||
return msg; | |||
}; | |||
@@ -175,7 +175,7 @@ void MatrixMulForward::check_exec(const TensorLayout& A, const TensorLayout& B, | |||
megdnn_assert(C.dtype.enumv() == DTypeEnum::QuantizedS16); | |||
} | |||
megdnn_assert(param().compute_mode != | |||
Param::ComputeMode::FLOAT32 MEGDNN_INC_FLOAT16( | |||
Param::ComputeMode::FLOAT32 DNN_INC_FLOAT16( | |||
|| A.dtype == dtype::Float16() || | |||
A.dtype == dtype::BFloat16()), | |||
"ComputeMode::FLOAT32 is only available for Float16/BFloat16 " | |||
@@ -195,7 +195,7 @@ size_t MatrixMulForward::pack_size(const Param::Format format) { | |||
case Param::Format::MK8: | |||
return 8; | |||
default: | |||
megdnn_throw(megdnn_mangle("Unknown matmul format.")); | |||
megdnn_throw("Unknown matmul format."); | |||
} | |||
} | |||
@@ -40,7 +40,8 @@ CPUDispatcher* megcoreGetCPUDispatcher(megcoreComputingHandle_t handle) { | |||
megcoreDeviceHandle_t dev_handle = H->content->dev_handle(); | |||
megcorePlatform_t platform; | |||
megcoreGetPlatform(dev_handle, &platform); | |||
megdnn_assert(platform &megcorePlatformCPU); | |||
megdnn_throw_if(!(platform & megcorePlatformCPU), megdnn_error, | |||
"can not be default ComputingContext"); | |||
auto context = static_cast<megcore::cpu::DefaultComputingContext*>( | |||
H->content.get()); | |||
return context->get_dispatcher(); | |||
@@ -41,7 +41,8 @@ DefaultComputingContext::DefaultComputingContext( | |||
{ | |||
megcorePlatform_t platform; | |||
megcoreGetPlatform(dev_handle, &platform); | |||
megdnn_assert(platform & megcorePlatformCPU); | |||
megdnn_throw_if(!(platform & megcorePlatformCPU), megdnn_error, | |||
"can not be default ComputingContext"); | |||
} | |||
DefaultComputingContext::~DefaultComputingContext() noexcept = default; | |||
@@ -13,7 +13,7 @@ | |||
const char *megcoreGetErrorName(megcoreStatus_t status) | |||
{ | |||
#define CASE(x) case x: return megdnn_mangle(#x) | |||
#define CASE(x) case x: return (#x) | |||
switch (status) { | |||
CASE(megcoreSuccess); | |||
CASE(megcoreErrorMemoryAllocation); | |||
@@ -22,7 +22,7 @@ const char *megcoreGetErrorName(megcoreStatus_t status) | |||
CASE(megcoreErrorInternalError); | |||
CASE(megcoreErrorInvalidComputingHandle); | |||
default: | |||
return megdnn_mangle("<Unknown MegCore Error>"); | |||
return "<Unknown MegCore Error>"; | |||
} | |||
#undef CASE | |||
} | |||
@@ -19,18 +19,15 @@ void PoolingBase::deduce_layout_fwd(const TensorLayout& src, | |||
TensorLayout& dst) { | |||
auto errmsg = | |||
megdnn_layout_msg(src) + ", " + megdnn_layout_msg(dst) + ", " + | |||
megdnn_mangle("pad_h=") + std::to_string(param().pad_h) + ", " + | |||
megdnn_mangle("pad_w=") + std::to_string(param().pad_w) + ", " + | |||
megdnn_mangle("stride_h=") + std::to_string(param().stride_h) + | |||
", " + megdnn_mangle("stride_w=") + | |||
std::to_string(param().stride_w) + ", " + | |||
megdnn_mangle("window_h=") + std::to_string(param().window_h) + | |||
", " + megdnn_mangle("window_w=") + | |||
std::to_string(param().window_w) + ", " + megdnn_mangle("is_max=") + | |||
std::to_string(param().mode == Mode::MAX) + ", " + | |||
megdnn_mangle("is_nhwc=") + | |||
std::to_string(param().format == Param::Format::NHWC) + ", " + | |||
megdnn_mangle("is_nhwcd4=") + | |||
"pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w) + ", " + | |||
"window_h=" + std::to_string(param().window_h) + ", " + | |||
"window_w=" + std::to_string(param().window_w) + ", " + | |||
"is_max=" + std::to_string(param().mode == Mode::MAX) + ", " + | |||
"is_nhwc=" + std::to_string(param().format == Param::Format::NHWC) + | |||
", " + "is_nhwcd4=" + | |||
std::to_string(param().format == Param::Format::NHWCD4); | |||
auto errmsg_c = errmsg.c_str(); | |||
@@ -361,11 +361,18 @@ void RelayoutFormat::deduce_format(TensorFormat src, TensorFormat& dst) { | |||
if (!dst.is_default() && | |||
( | |||
handle()->type() != Handle::HandleType::NAIVE)) { | |||
#if MEGDNN_ENABLE_MANGLING | |||
megdnn_throw( | |||
"Only naive and opencl handle support " | |||
"Image2DPack4TensorFormat, try build with debug for get more " | |||
"info"); | |||
#else | |||
megdnn_throw( | |||
"Only naive and opencl handle support " | |||
"Image2DPack4TensorFormat, try to export MGB_USE_MEGDNN_DBG=2 " | |||
"and also export CUDA_VISIBLE_DEVICES=\'\' at CUDA env" | |||
"to enable naive handle"); | |||
#endif | |||
} | |||
#undef CHECK_SRC | |||
} | |||
@@ -69,8 +69,8 @@ void RemapBase::check_layout_fwd(const TensorLayout& src, | |||
"%s", errmsg().c_str()); | |||
} else { | |||
megdnn_throw( | |||
"megdnn currently do not support other param.format except " | |||
"NHWC and NCHW"); | |||
"currently do not support other param.format except NHWC and " | |||
"NCHW"); | |||
} | |||
} | |||
@@ -91,7 +91,7 @@ void RemapBackwardData::check_exec(const TensorLayout& map_xy, | |||
const TensorLayout& grad, | |||
size_t workspace_in_bytes) { | |||
check_layout_fwd(grad, map_xy, diff); | |||
megdnn_assert(grad.dtype == dtype::Float32() MEGDNN_INC_FLOAT16( | |||
megdnn_assert(grad.dtype == dtype::Float32() DNN_INC_FLOAT16( | |||
|| grad.dtype == dtype::BFloat16()), | |||
"Backward Remap only supports Float32/BFloat16."); | |||
auto required_workspace_in_bytes = | |||
@@ -106,7 +106,7 @@ void RemapBackwardMat::check_exec(const TensorLayout& src, | |||
size_t workspace_in_bytes) { | |||
check_layout_fwd(src, map_xy, diff); | |||
megdnn_assert_eq_layout(map_xy, grad); | |||
megdnn_assert(grad.dtype == dtype::Float32() MEGDNN_INC_FLOAT16( | |||
megdnn_assert(grad.dtype == dtype::Float32() DNN_INC_FLOAT16( | |||
|| grad.dtype == dtype::BFloat16()), | |||
"Backward Remap only supports Float32/BFloat16."); | |||
auto required_workspace_in_bytes = | |||
@@ -20,17 +20,15 @@ void SeparableConvBase::deduce_layout_fwd(const TensorLayout &src, | |||
TensorLayout &dst) | |||
{ | |||
auto errmsg = [&]() { | |||
return megdnn_layout_msg(src) + ", " | |||
+ megdnn_layout_msg(filter_x) + ", " | |||
+ megdnn_layout_msg(dst) + ", " | |||
+ megdnn_mangle("is_xcorr=") | |||
+ megdnn_mangle("borderMode=") | |||
+ std::to_string((param().mode == Mode::CROSS_CORRELATION)) + ", " | |||
+ std::to_string((int)(param().borderMode)) + ", " | |||
+ megdnn_mangle("pad_h=") + std::to_string(param().pad_h) + ", " | |||
+ megdnn_mangle("pad_w=") + std::to_string(param().pad_w) + ", " | |||
+ megdnn_mangle("stride_h=") + std::to_string(param().stride_h) + ", " | |||
+ megdnn_mangle("stride_w=") + std::to_string(param().stride_w); | |||
return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter_x) + | |||
", " + megdnn_layout_msg(dst) + ", " + | |||
"is_xcorr=" + "borderMode=" + | |||
std::to_string((param().mode == Mode::CROSS_CORRELATION)) + | |||
", " + std::to_string((int)(param().borderMode)) + ", " + | |||
"pad_h=" + std::to_string(param().pad_h) + ", " + | |||
"pad_w=" + std::to_string(param().pad_w) + ", " + | |||
"stride_h=" + std::to_string(param().stride_h) + ", " + | |||
"stride_w=" + std::to_string(param().stride_w); | |||
}; | |||
MEGDNN_MARK_USED_VAR(errmsg); | |||
megdnn_assert_contiguous(src); | |||
@@ -21,14 +21,11 @@ void SeparableFilterBase::deduce_layout_fwd(const TensorLayout& src, | |||
auto errmsg = [&]() { | |||
return megdnn_layout_msg(src) + ", " + megdnn_layout_msg(filter_x) + | |||
", " + megdnn_layout_msg(dst) + ", " + | |||
megdnn_mangle("borderMode=") + | |||
std::to_string((int)(param().borderMode)) + ", " + | |||
megdnn_mangle("ksize_h=") + std::to_string(param().ksize_h) + | |||
", " + megdnn_mangle("ksize_w=") + | |||
std::to_string(param().ksize_w) + ", " + | |||
megdnn_mangle("anchor_h=") + std::to_string(param().anchor_h) + | |||
", " + megdnn_mangle("anchor_w=") + | |||
std::to_string(param().anchor_w); | |||
"borderMode=" + std::to_string((int)(param().borderMode)) + | |||
", " + "ksize_h=" + std::to_string(param().ksize_h) + ", " + | |||
"ksize_w=" + std::to_string(param().ksize_w) + ", " + | |||
"anchor_h=" + std::to_string(param().anchor_h) + ", " + | |||
"anchor_w=" + std::to_string(param().anchor_w); | |||
}; | |||
MEGDNN_MARK_USED_VAR(errmsg); | |||
megdnn_assert_contiguous(src); | |||
@@ -81,21 +81,21 @@ bool megdnn::get_next_addr(size_t* idx, const size_t* shp, size_t n, | |||
size_t stride) { | |||
auto errmsg = [&]() { | |||
std::string res; | |||
res.append(megdnn_mangle("idx={")); | |||
res.append("idx={"); | |||
for (size_t i = 0; i < n; ++i) { | |||
res.append(std::to_string(idx[i])); | |||
if (i + 1 < n) | |||
res.append(megdnn_mangle(",")); | |||
res.append(","); | |||
} | |||
res.append(megdnn_mangle("}, shp={")); | |||
res.append("}, shp={"); | |||
for (size_t i = 0; i < n; ++i) { | |||
res.append(std::to_string(shp[i])); | |||
if (i + 1 < n) | |||
res.append(megdnn_mangle(",")); | |||
res.append(","); | |||
} | |||
res.append(megdnn_mangle("}, n=")); | |||
res.append("}, n="); | |||
res.append(std::to_string(n)); | |||
res.append(megdnn_mangle(", stride=")); | |||
res.append(", stride="); | |||
res.append(std::to_string(stride)); | |||
return res; | |||
}; | |||
@@ -13,43 +13,55 @@ | |||
#include "megdnn/arch.h" | |||
//! a comma to be used in macro for template params | |||
#define MEGDNN_COMMA , | |||
#define MEGDNN_COMMA , | |||
#define MEGDNN_MARK_USED_VAR(v) static_cast<void>(v) | |||
#if MEGDNN_ENABLE_MANGLING | |||
#define megdnn_mangle(x) ("") | |||
#if MEGDNN_ENABLE_LOGGING | |||
#define megdnn_message_strip(x) (x) | |||
#else | |||
#define megdnn_mangle(x) (x) | |||
#endif // MEGDNN_ENABLE_MANGLING | |||
#define megdnn_message_strip(x) ("") | |||
#endif // MEGDNN_ENABLE_LOGGING | |||
#define megdnn_throw(msg) ::megdnn::ErrorHandler::on_megdnn_error( \ | |||
megdnn_mangle(msg)) | |||
#define megdnn_throw_if(cond, err_type, msg) do { \ | |||
if (megdnn_unlikely(cond)) { \ | |||
::megdnn::ErrorHandler::on_##err_type(megdnn_mangle(msg)); \ | |||
} \ | |||
} while(0) | |||
#define megdnn_throw(msg) \ | |||
::megdnn::ErrorHandler::on_megdnn_error(megdnn_message_strip(msg)) | |||
#define megdnn_throw_if(cond, err_type, msg) \ | |||
do { \ | |||
if (megdnn_unlikely(cond)) { \ | |||
::megdnn::ErrorHandler::on_##err_type(megdnn_message_strip(msg)); \ | |||
} \ | |||
} while (0) | |||
//! megdnn_assert | |||
#if MEGDNN_ENABLE_LOGGING | |||
#if MEGDNN_ENABLE_MANGLING | |||
#define megdnn_assert(expr, ...) \ | |||
do { \ | |||
if (megdnn_unlikely(!(expr))) { \ | |||
::megdnn::__assert_fail__(NULL, 0, NULL, NULL, NULL); \ | |||
} \ | |||
#define megdnn_assert(expr, ...) \ | |||
do { \ | |||
if (megdnn_unlikely(!(expr))) { \ | |||
::megdnn::__assert_fail__( \ | |||
"about location info, please build with debug", __LINE__, \ | |||
NULL, #expr, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#else | |||
#define megdnn_assert(expr, ...) \ | |||
do { \ | |||
if (megdnn_unlikely(!(expr))) { \ | |||
::megdnn::__assert_fail__(__FILE__, __LINE__, \ | |||
__PRETTY_FUNCTION__, # expr, ## __VA_ARGS__); \ | |||
} \ | |||
#define megdnn_assert(expr, ...) \ | |||
do { \ | |||
if (megdnn_unlikely(!(expr))) { \ | |||
::megdnn::__assert_fail__(__FILE__, __LINE__, __PRETTY_FUNCTION__, \ | |||
#expr, ##__VA_ARGS__); \ | |||
} \ | |||
} while (0) | |||
#endif // MEGDNN_ENABLE_MANGLING | |||
#else | |||
#define megdnn_assert(expr, ...) \ | |||
do { \ | |||
if (megdnn_unlikely(!(expr))) { \ | |||
::megdnn::__assert_fail__(NULL, 0, NULL, NULL, NULL); \ | |||
} \ | |||
} while (0) | |||
#endif // MEGDNN_ENABLE_MANGLING | |||
#endif // MEGDNN_ENABLE_LOGGING | |||
#define megdnn_assert_internal(expr) \ | |||
do { \ | |||
#define megdnn_assert_internal(expr) \ | |||
do { \ | |||
megdnn_assert(expr, "Impossible: internal error."); \ | |||
} while (0) | |||
@@ -116,7 +116,7 @@ | |||
} while (0) | |||
#define megdnn_layout_msg(layout) \ | |||
std::string(megdnn_mangle(#layout "=" + (layout).to_string())) | |||
std::string(#layout "=" + (layout).to_string()) | |||
#define MEGDNN_LOCK_GUARD(var) \ | |||
std::lock_guard<std::remove_cv_t<decltype(var)>> _lock_guard_##var { var } | |||
@@ -124,6 +124,16 @@ | |||
namespace megdnn { | |||
/* ================ logging ================ */ | |||
#if MEGDNN_ENABLE_MANGLING | |||
#define megdnn_log_debug(fmt...) \ | |||
_megdnn_do_log(::megdnn::LogLevel::DEBUG, "", "", __LINE__, fmt) | |||
#define megdnn_log(fmt...) \ | |||
_megdnn_do_log(::megdnn::LogLevel::INFO, "", "", __LINE__, fmt) | |||
#define megdnn_log_warn(fmt...) \ | |||
_megdnn_do_log(::megdnn::LogLevel::WARN, "", "", __LINE__, fmt) | |||
#define megdnn_log_error(fmt...) \ | |||
_megdnn_do_log(::megdnn::LogLevel::ERROR, "", "", __LINE__, fmt) | |||
#else | |||
#define megdnn_log_debug(fmt...) \ | |||
_megdnn_do_log(::megdnn::LogLevel::DEBUG, __FILE__, __func__, __LINE__, fmt) | |||
#define megdnn_log(fmt...) \ | |||
@@ -132,6 +142,7 @@ namespace megdnn { | |||
_megdnn_do_log(::megdnn::LogLevel::WARN, __FILE__, __func__, __LINE__, fmt) | |||
#define megdnn_log_error(fmt...) \ | |||
_megdnn_do_log(::megdnn::LogLevel::ERROR, __FILE__, __func__, __LINE__, fmt) | |||
#endif | |||
#if MEGDNN_ENABLE_LOGGING | |||
void __log__(LogLevel level, const char* file, const char* func, int line, | |||
@@ -34,7 +34,7 @@ void WarpAffineBase::check_layout_fwd(const TensorLayout& src, | |||
megdnn_assert(src.ndim == 4_z, "%s", errmsg().c_str()); | |||
megdnn_assert(dst.ndim == 4_z, "%s", errmsg().c_str()); | |||
megdnn_assert(src.dtype.enumv() == DTypeEnum::Float32 || | |||
MEGDNN_FLOAT16_SELECT( | |||
DNN_FLOAT16_SELECT( | |||
src.dtype.enumv() == DTypeEnum::Float16, | |||
false) || | |||
src.dtype.enumv() == DTypeEnum::Int8 || | |||
@@ -42,7 +42,7 @@ void WarpAffineBase::check_layout_fwd(const TensorLayout& src, | |||
(src.dtype.enumv() == DTypeEnum::QuantizedS8 || | |||
src.dtype.enumv() == DTypeEnum::Quantized8Asymm), | |||
"WarpAffine NCHW input dtype should be " | |||
"Float32/Int8/Uint8/QInt8/QUint8" MEGDNN_FLOAT16_SELECT( | |||
"Float32/Int8/Uint8/QInt8/QUint8" DNN_FLOAT16_SELECT( | |||
"/Float16", "") "."); | |||
megdnn_assert( | |||
(src.dtype.category() == DTypeCategory::FLOAT && | |||
@@ -95,46 +95,46 @@ void WarpAffine::check_exec(const TensorLayout& src, const TensorLayout& mat, | |||
std::string WarpAffineBase::param_msg() const { | |||
std::string res; | |||
res.append(megdnn_mangle("imode=")); | |||
res.append("imode="); | |||
switch (param().imode) { | |||
case InterpolationMode::NEAREST: | |||
res.append(megdnn_mangle("NEAREST")); | |||
res.append("NEAREST"); | |||
break; | |||
case InterpolationMode::LINEAR: | |||
res.append(megdnn_mangle("LINEAR")); | |||
res.append("LINEAR"); | |||
break; | |||
case InterpolationMode::AREA: | |||
res.append(megdnn_mangle("AREA")); | |||
res.append("AREA"); | |||
break; | |||
case InterpolationMode::CUBIC: | |||
res.append(megdnn_mangle("CUBIC")); | |||
res.append("CUBIC"); | |||
break; | |||
case InterpolationMode::LANCZOS4: | |||
res.append(megdnn_mangle("LANCZOS4")); | |||
res.append("LANCZOS4"); | |||
break; | |||
} | |||
res.append(megdnn_mangle("bmode=")); | |||
res.append("bmode="); | |||
switch (param().border_mode) { | |||
case BorderMode::WRAP: | |||
res.append(megdnn_mangle("WRAP")); | |||
res.append("WRAP"); | |||
break; | |||
case BorderMode::CONSTANT: | |||
res.append(megdnn_mangle("CONSTANT")); | |||
res.append("CONSTANT"); | |||
break; | |||
case BorderMode::REFLECT: | |||
res.append(megdnn_mangle("REFLECT")); | |||
res.append("REFLECT"); | |||
break; | |||
case BorderMode::REFLECT_101: | |||
res.append(megdnn_mangle("REFLECT_101")); | |||
res.append("REFLECT_101"); | |||
break; | |||
case BorderMode::REPLICATE: | |||
res.append(megdnn_mangle("REPLICATE")); | |||
res.append("REPLICATE"); | |||
break; | |||
case BorderMode::TRANSPARENT: | |||
res.append(megdnn_mangle("TRANSPARENT")); | |||
res.append("TRANSPARENT"); | |||
break; | |||
case BorderMode::ISOLATED: | |||
res.append(megdnn_mangle("ISOLATED")); | |||
res.append("ISOLATED"); | |||
break; | |||
} | |||
if (param().border_mode == BorderMode::CONSTANT) { | |||
@@ -64,7 +64,7 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src, | |||
if (param().format == param::WarpPerspective::Format::NCHW) { | |||
megdnn_assert( | |||
src.dtype.enumv() == DTypeEnum::Float32 || | |||
MEGDNN_FLOAT16_SELECT( | |||
DNN_FLOAT16_SELECT( | |||
(src.dtype.enumv() == DTypeEnum::Float16 || | |||
src.dtype.enumv() == DTypeEnum::BFloat16), | |||
false) || | |||
@@ -73,7 +73,7 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src, | |||
(src.dtype.enumv() == DTypeEnum::QuantizedS8 || | |||
src.dtype.enumv() == DTypeEnum::Quantized8Asymm), | |||
"WarpPerspective NCHW input dtype should be " | |||
"Float32/Int8/Uint8/QInt8/QUint8" MEGDNN_FLOAT16_SELECT( | |||
"Float32/Int8/Uint8/QInt8/QUint8" DNN_FLOAT16_SELECT( | |||
"/Float16/BFloat16", "") "."); | |||
megdnn_assert( | |||
(src.dtype.category() == DTypeCategory::FLOAT && | |||
@@ -120,14 +120,13 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src, | |||
param::WarpPerspective::Format::NHWCD4); | |||
megdnn_assert( | |||
src.dtype == dtype::Float32() || | |||
MEGDNN_FLOAT16_SELECT( | |||
(src.dtype == dtype::Float16() || | |||
src.dtype == dtype::BFloat16()), | |||
false) || | |||
DNN_FLOAT16_SELECT((src.dtype == dtype::Float16() || | |||
src.dtype == dtype::BFloat16()), | |||
false) || | |||
src.dtype.enumv() == DTypeEnum::QuantizedS8 || | |||
src.dtype.enumv() == DTypeEnum::Quantized8Asymm, | |||
"WarpPerspective NHWCD4 input dtype should be " | |||
"Float32" MEGDNN_FLOAT16_SELECT( | |||
"Float32" DNN_FLOAT16_SELECT( | |||
"/Float16/BFloat16", | |||
"") ",QunatizedS8, Quantized8Asymm."); | |||
megdnn_assert( | |||
@@ -189,46 +188,46 @@ void WarpPerspectiveBase::check_layout_fwd(const TensorLayout& src, | |||
std::string WarpPerspectiveBase::param_msg() const { | |||
std::string res; | |||
res.append(megdnn_mangle("imode=")); | |||
res.append("imode="); | |||
switch (param().imode) { | |||
case InterpolationMode::NEAREST: | |||
res.append(megdnn_mangle("NEAREST")); | |||
res.append("NEAREST"); | |||
break; | |||
case InterpolationMode::LINEAR: | |||
res.append(megdnn_mangle("LINEAR")); | |||
res.append("LINEAR"); | |||
break; | |||
case InterpolationMode::AREA: | |||
res.append(megdnn_mangle("AREA")); | |||
res.append("AREA"); | |||
break; | |||
case InterpolationMode::CUBIC: | |||
res.append(megdnn_mangle("CUBIC")); | |||
res.append("CUBIC"); | |||
break; | |||
case InterpolationMode::LANCZOS4: | |||
res.append(megdnn_mangle("LANCZOS4")); | |||
res.append("LANCZOS4"); | |||
break; | |||
} | |||
res.append(megdnn_mangle("bmode=")); | |||
res.append("bmode="); | |||
switch (param().bmode) { | |||
case BorderMode::WRAP: | |||
res.append(megdnn_mangle("WRAP")); | |||
res.append("WRAP"); | |||
break; | |||
case BorderMode::CONSTANT: | |||
res.append(megdnn_mangle("CONSTANT")); | |||
res.append("CONSTANT"); | |||
break; | |||
case BorderMode::REFLECT: | |||
res.append(megdnn_mangle("REFLECT")); | |||
res.append("REFLECT"); | |||
break; | |||
case BorderMode::REFLECT_101: | |||
res.append(megdnn_mangle("REFLECT_101")); | |||
res.append("REFLECT_101"); | |||
break; | |||
case BorderMode::REPLICATE: | |||
res.append(megdnn_mangle("REPLICATE")); | |||
res.append("REPLICATE"); | |||
break; | |||
case BorderMode::TRANSPARENT: | |||
res.append(megdnn_mangle("TRANSPARENT")); | |||
res.append("TRANSPARENT"); | |||
break; | |||
case BorderMode::ISOLATED: | |||
res.append(megdnn_mangle("ISOLATED")); | |||
res.append("ISOLATED"); | |||
break; | |||
} | |||
if (param().bmode == BorderMode::CONSTANT) { | |||
@@ -301,7 +300,7 @@ void WarpPerspectiveBackwardData::check_exec(const TensorLayout& mat, | |||
const TensorLayout& grad, | |||
size_t workspace_in_bytes) { | |||
check_layout_fwd(grad, mat, mat_idx, diff); | |||
megdnn_assert(grad.dtype == dtype::Float32() MEGDNN_INC_FLOAT16( | |||
megdnn_assert(grad.dtype == dtype::Float32() DNN_INC_FLOAT16( | |||
|| grad.dtype == dtype::BFloat16()), | |||
"Backward WarpPerspective only supports Float32/BFloat16."); | |||
auto required_workspace_in_bytes = | |||
@@ -317,7 +316,7 @@ void WarpPerspectiveBackwardMat::check_exec(const TensorLayout& src, | |||
size_t workspace_in_bytes) { | |||
check_layout_fwd(src, mat, mat_idx, diff); | |||
megdnn_assert_eq_layout(mat, grad); | |||
megdnn_assert(grad.dtype == dtype::Float32() MEGDNN_INC_FLOAT16( | |||
megdnn_assert(grad.dtype == dtype::Float32() DNN_INC_FLOAT16( | |||
|| grad.dtype == dtype::BFloat16()), | |||
"Backward WarpPerspective only supports Float32/BFloat16."); | |||
auto required_workspace_in_bytes = | |||
@@ -353,7 +353,7 @@ void StrategyHelper< | |||
_output_compute_type>; | |||
INST(float, float, float, float) | |||
MEGDNN_INC_FLOAT16(INST(dt_float16, dt_float16, dt_float16, dt_float16)) | |||
DNN_INC_FLOAT16(INST(dt_float16, dt_float16, dt_float16, dt_float16)) | |||
INST(int8_t, int8_t, int16_t, int) | |||
INST(uint8_t, uint8_t, int16_t, int) | |||
#undef INST | |||
@@ -376,7 +376,7 @@ INST(int8_t, int8_t, float, float, param::ConvBias::Format::NCHW44) | |||
INST(int8_t, int8_t, int16_t, int, param::ConvBias::Format::NCHW) | |||
INST(int8_t, int8_t, int16_t, int, param::ConvBias::Format::NCHW44) | |||
INST(float, float, float, float, param::ConvBias::Format::NCHW88) | |||
MEGDNN_INC_FLOAT16(INST(dt_float16, dt_float16, dt_float16, dt_float16, | |||
DNN_INC_FLOAT16(INST(dt_float16, dt_float16, dt_float16, dt_float16, | |||
param::ConvBias::Format::NCHW)) | |||
#undef INST | |||
} // namespace winograd | |||
@@ -39,7 +39,7 @@ void AddUpdateForwardImpl::exec( | |||
#undef cb | |||
default: | |||
megdnn_throw(megdnn_mangle("unsupported dtype for AddUpdate")); | |||
megdnn_throw("unsupported dtype for AddUpdate"); | |||
} | |||
} | |||
@@ -59,7 +59,7 @@ void AddUpdateForwardImpl::exec_noncontig( | |||
#undef cb | |||
default: | |||
megdnn_throw(megdnn_mangle("unsupported dtype for AddUpdate")); | |||
megdnn_throw("unsupported dtype for AddUpdate"); | |||
} | |||
} | |||
@@ -55,7 +55,7 @@ BatchConvBiasForwardImpl::AlgoBase::ExecArgs::ExecArgs( | |||
std::string BatchConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto&& param = opr->param(); | |||
MEGDNN_MARK_USED_VAR(param); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"src=%s, filter=%s, bias=%s, z=%s, dst=%s, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, " | |||
"dtype=(%s(src),%s(flt),%s(bias),%s(z))->(%s(dst))", | |||
@@ -65,7 +65,7 @@ std::string BatchConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
param.stride_h, param.stride_w, param.dilate_h, param.dilate_w, | |||
static_cast<int>(param.mode), src_layout.dtype.name(), | |||
filter_layout.dtype.name(), bias_layout.dtype.name(), | |||
z_layout.dtype.name(), dst_layout.dtype.name())); | |||
z_layout.dtype.name(), dst_layout.dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -32,11 +32,11 @@ BatchConvBiasForwardImpl::get_algorithm_heuristic( | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.int8_nchw4_implicit_gemm_dotprod; | |||
} | |||
megdnn_throw(megdnn_mangle( | |||
megdnn_throw( | |||
ssprintf("no %s batch conv bias algorithm with args(%s) and " | |||
"workspace limit (%zu bytes)", | |||
reproducible ? "reproducible" : "usable", | |||
args.to_string().c_str(), workspace_limit_in_bytes))); | |||
args.to_string().c_str(), workspace_limit_in_bytes)); | |||
} | |||
std::vector<BatchConvBiasForwardImpl::Algorithm*> | |||
@@ -35,8 +35,7 @@ void BNTensorDescHolder::setup(const TensorLayout& x, | |||
bn_mode = CUDNN_BATCHNORM_SPATIAL; | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle( | |||
"Unknown param dim type of batch normalization.")); | |||
megdnn_throw("Unknown param dim type of batch normalization."); | |||
} | |||
xy_desc.set(TensorLayout(xy_shape, x.dtype)); | |||
param_desc.set(xy_desc.desc, bn_mode); | |||
@@ -83,8 +82,7 @@ void BNForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in bn_scale, | |||
m_param.epsilon)); | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle( | |||
"Unknown forward mode type of batch normalization.")); | |||
megdnn_throw("Unknown forward mode type of batch normalization."); | |||
} | |||
} | |||
@@ -27,11 +27,11 @@ std::string BatchedMatrixMulForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
MEGDNN_MARK_USED_VAR(m); | |||
MEGDNN_MARK_USED_VAR(n); | |||
MEGDNN_MARK_USED_VAR(k); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"A={%zux%zu},B={%zux%zu},C={%zux%zu},Transpose A=%d,Transpose " | |||
"B=%d,ldA=%zu,ldB=%zu,ldC=%zu", | |||
m, k, k, n, m, n, param.transposeA, param.transposeB, | |||
layout_a.stride[0], layout_b.stride[0], layout_c.stride[0])); | |||
layout_a.stride[0], layout_b.stride[0], layout_c.stride[0]); | |||
} | |||
BatchedMatrixMulForwardImpl::AlgoBase::SizeArgs::SizeArgs( | |||
@@ -145,8 +145,7 @@ void BatchedMatrixMulForwardImpl::AlgoCublasLt::exec( | |||
} else if (desc.dt_compute == CUBLAS_COMPUTE_32F) { | |||
batched_sgemm(); | |||
} else { | |||
megdnn_throw( | |||
megdnn_mangle("compute_type must be int32/float16/float32")); | |||
megdnn_throw("compute_type must be int32/float16/float32"); | |||
} | |||
#else | |||
if (desc.dt_compute == CUDA_R_32I) { | |||
@@ -156,8 +155,7 @@ void BatchedMatrixMulForwardImpl::AlgoCublasLt::exec( | |||
} else if (desc.dt_compute == CUDA_R_32F) { | |||
batched_sgemm(); | |||
} else { | |||
megdnn_throw( | |||
megdnn_mangle("compute_type must be int32/float16/float32")); | |||
megdnn_throw("compute_type must be int32/float16/float32"); | |||
} | |||
#endif | |||
} | |||
@@ -163,7 +163,7 @@ std::string ConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
default: | |||
megdnn_throw("invalid conv bias nonlinear mode"); | |||
} | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"src=%s, filter=%u{%u,%u,%u,%u}, bias=%s, z=%s, dst=%s, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s, " | |||
"nonlinear_mode=%s", | |||
@@ -173,7 +173,7 @@ std::string ConvBiasForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
fm.padding[0], fm.padding[1], fm.stride[0], fm.stride[1], | |||
fm.dilation[0], fm.dilation[1], !fm.should_flip, | |||
src_layout->dtype.name(), dst_layout->dtype.name(), | |||
nonlinear_mode_str.c_str())); | |||
nonlinear_mode_str.c_str()); | |||
} | |||
void ConvBiasForwardImpl::AlgoPack::fill_cudnn_algos() { | |||
@@ -253,9 +253,8 @@ ConvBiasForwardImpl::AlgoPack::cudnn_conv_from_enum( | |||
if (i.cudnn_enum() == algo) | |||
return &i; | |||
} | |||
megdnn_throw( | |||
megdnn_mangle(ssprintf("can not find cudnn conv fwd algorithm %d", | |||
static_cast<int>(algo)))); | |||
megdnn_throw(ssprintf("can not find cudnn conv fwd algorithm %d", | |||
static_cast<int>(algo))); | |||
} | |||
ConvBiasForwardImpl::AlgoBase* | |||
@@ -265,9 +264,8 @@ ConvBiasForwardImpl::AlgoPack::cudnn_conv_bias_act_from_enum( | |||
if (i.cudnn_enum() == algo) | |||
return &i; | |||
} | |||
megdnn_throw(megdnn_mangle( | |||
ssprintf("can not find cudnn conv bias act algorithm %d", | |||
static_cast<int>(algo)))); | |||
megdnn_throw(ssprintf("can not find cudnn conv bias act algorithm %d", | |||
static_cast<int>(algo))); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -104,7 +104,7 @@ bool ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::is_available( | |||
break; | |||
return false; | |||
default: | |||
megdnn_throw(megdnn_mangle("unsupported NonlineMode")); | |||
megdnn_throw("unsupported NonlineMode"); | |||
} | |||
size_t workspace_size; | |||
auto status = cudnnGetConvolutionForwardWorkspaceSize( | |||
@@ -139,7 +139,7 @@ size_t ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::get_workspace_in_bytes( | |||
void ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::exec( | |||
const ExecArgs& args) const { | |||
#if CUDNN_MAJOR < 7 | |||
megdnn_throw(megdnn_mangle("ConvBias require cudnn 7.0 or higher")); | |||
megdnn_throw("ConvBias require cudnn 7.0 or higher"); | |||
#else | |||
megdnn_assert(cudnnGetVersion() >= 7401); | |||
CUDNNForwardDescs D; | |||
@@ -269,7 +269,7 @@ void ConvBiasForwardImpl::AlgoCUDNNConvBiasActivation::exec( | |||
break; | |||
} | |||
default: | |||
megdnn_throw(megdnn_mangle("unsupported NonlineMode")); | |||
megdnn_throw("unsupported NonlineMode"); | |||
} | |||
#endif | |||
} | |||
@@ -31,8 +31,8 @@ ConvBiasDesc::~ConvBiasDesc() { | |||
void ConvBiasDesc::set_conv_bias(DType data_type, const param::ConvBias& param, | |||
size_t nr_group) { | |||
#if CUDNN_VERSION < 7100 | |||
megdnn_throw(megdnn_mangle( | |||
"ConvBias(CUDNN_ACTIVATION_IDENTITY) require cudnn 7.1 or higher")); | |||
megdnn_throw( | |||
"ConvBias(CUDNN_ACTIVATION_IDENTITY) require cudnn 7.1 or higher"); | |||
#else | |||
cudnnConvolutionMode_t mode; | |||
using Param = param::ConvBias; | |||
@@ -44,7 +44,7 @@ void ConvBiasDesc::set_conv_bias(DType data_type, const param::ConvBias& param, | |||
mode = CUDNN_CONVOLUTION; | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle("conv mode must be conv or xcorr.")); | |||
megdnn_throw("conv mode must be conv or xcorr."); | |||
} | |||
cudnn_check(cudnnSetConvolutionGroupCount(conv_desc, nr_group)); | |||
cudnnDataType_t compute_type; | |||
@@ -57,7 +57,7 @@ void ConvBiasDesc::set_conv_bias(DType data_type, const param::ConvBias& param, | |||
compute_type = CUDNN_DATA_INT32; | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle("unspport data type for conv bias")); | |||
megdnn_throw("unspport data type for conv bias"); | |||
} | |||
if (data_type.enumv() == DTypeEnum::Float16) { | |||
auto comp_mode = param.compute_mode; | |||
@@ -81,7 +81,7 @@ void ConvBiasDesc::set_conv_bias(DType data_type, const param::ConvBias& param, | |||
0)); | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle("unsupported non linear mode")); | |||
megdnn_throw("unsupported non linear mode"); | |||
} | |||
#endif | |||
} | |||
@@ -98,7 +98,7 @@ void ConvBiasDesc::set_conv(DType data_type, const param::ConvBias& param, | |||
mode = CUDNN_CONVOLUTION; | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle("conv mode must be conv or xcorr.")); | |||
megdnn_throw("conv mode must be conv or xcorr."); | |||
} | |||
cudnnDataType_t compute_type; | |||
MEGDNN_MARK_USED_VAR(compute_type); | |||
@@ -114,7 +114,7 @@ void ConvBiasDesc::set_conv(DType data_type, const param::ConvBias& param, | |||
compute_type = CUDNN_DATA_INT32; | |||
#endif | |||
} else { | |||
megdnn_throw(megdnn_mangle("unspport data type for conv bias")); | |||
megdnn_throw("unspport data type for conv bias"); | |||
} | |||
#if CUDNN_MAJOR >= 7 | |||
cudnn_check(cudnnSetConvolutionGroupCount(conv_desc, nr_group)); | |||
@@ -73,9 +73,8 @@ ConvolutionBackwardDataImpl::AlgoPack::cudnn_from_enum( | |||
if (i.cudnn_enum() == algo) | |||
return &i; | |||
} | |||
megdnn_throw( | |||
megdnn_mangle(ssprintf("can not find cudnn bwd_data algorithm %d", | |||
static_cast<int>(algo)))); | |||
megdnn_throw(ssprintf("can not find cudnn bwd_data algorithm %d", | |||
static_cast<int>(algo))); | |||
} | |||
ConvolutionBackwardDataImpl::AlgoPack ConvolutionBackwardDataImpl::sm_algo_pack; | |||
@@ -110,14 +109,14 @@ ConvolutionBackwardDataImpl::AlgoBase::ExecArgs::ExecArgs( | |||
std::string ConvolutionBackwardDataImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto&& fm = filter_meta; | |||
MEGDNN_MARK_USED_VAR(fm); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"filter=%u{%u,%u,%u,%u}, diff=%s, grad=%s, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s", | |||
fm.group, fm.ocpg, fm.icpg, fm.spatial[0], fm.spatial[1], | |||
diff_layout->to_string().c_str(), grad_layout->to_string().c_str(), | |||
fm.padding[0], fm.padding[1], fm.stride[0], fm.stride[1], | |||
fm.dilation[0], fm.dilation[1], !fm.should_flip, | |||
diff_layout->dtype.name(), grad_layout->dtype.name())); | |||
diff_layout->dtype.name(), grad_layout->dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -60,9 +60,8 @@ ConvolutionBackwardFilterImpl::AlgoPack::cudnn_from_enum( | |||
if (i.cudnn_enum() == algo) | |||
return &i; | |||
} | |||
megdnn_throw(megdnn_mangle(ssprintf( | |||
"can not find cudnn bwd_filter algorithm %d", | |||
static_cast<int>(algo)))); | |||
megdnn_throw(ssprintf("can not find cudnn bwd_filter algorithm %d", | |||
static_cast<int>(algo))); | |||
} | |||
ConvolutionBackwardFilterImpl::AlgoPack | |||
@@ -103,16 +102,14 @@ std::string | |||
ConvolutionBackwardFilterImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto &&fm = grad_filter_meta; | |||
MEGDNN_MARK_USED_VAR(fm); | |||
return megdnn_mangle(ssprintf( | |||
"src=%s diff=%s grad_filter=%u{%u,%u,%u,%u}, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s", | |||
src_layout->to_string().c_str(), | |||
diff_layout->to_string().c_str(), | |||
fm.group, fm.ocpg, fm.icpg, fm.spatial[0], fm.spatial[1], | |||
fm.padding[0], fm.padding[1], fm.stride[0], fm.stride[1], | |||
fm.dilation[0], fm.dilation[1], | |||
!fm.should_flip, | |||
src_layout->dtype.name(), diff_layout->dtype.name())); | |||
return ssprintf( | |||
"src=%s diff=%s grad_filter=%u{%u,%u,%u,%u}, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s", | |||
src_layout->to_string().c_str(), diff_layout->to_string().c_str(), | |||
fm.group, fm.ocpg, fm.icpg, fm.spatial[0], fm.spatial[1], | |||
fm.padding[0], fm.padding[1], fm.stride[0], fm.stride[1], | |||
fm.dilation[0], fm.dilation[1], !fm.should_flip, | |||
src_layout->dtype.name(), diff_layout->dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -110,10 +110,10 @@ ConvolutionForwardImpl::AlgoBase::ExecArgs::ExecArgs( | |||
workspace{workspace} {} | |||
std::string ConvolutionForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
return megdnn_mangle(ssprintf("src=%s, filter=%s, dst=%s", | |||
layout_src->to_string().c_str(), | |||
layout_filter->to_string().c_str(), | |||
layout_dst->to_string().c_str())); | |||
return ssprintf("src=%s, filter=%s, dst=%s", | |||
layout_src->to_string().c_str(), | |||
layout_filter->to_string().c_str(), | |||
layout_dst->to_string().c_str()); | |||
} | |||
/* ===================== default algo ===================== */ | |||
@@ -54,9 +54,8 @@ Convolution3DBackwardDataImpl::AlgoPack::cudnn_from_enum( | |||
if (i.cudnn_enum() == algo) | |||
return &i; | |||
} | |||
megdnn_throw(megdnn_mangle(ssprintf( | |||
"can not find cudnn bwd_data algorithm %d", | |||
static_cast<int>(algo)))); | |||
megdnn_throw(ssprintf("can not find cudnn bwd_data algorithm %d", | |||
static_cast<int>(algo))); | |||
} | |||
Convolution3DBackwardDataImpl::AlgoPack Convolution3DBackwardDataImpl::sm_algo_pack; | |||
@@ -96,17 +95,16 @@ Convolution3DBackwardDataImpl::AlgoBase::ExecArgs::ExecArgs( | |||
std::string Convolution3DBackwardDataImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto &&fm = filter_meta; | |||
MEGDNN_MARK_USED_VAR(fm); | |||
return megdnn_mangle(ssprintf( | |||
"filter=%u{%u,%u,%u,%u,%u}, diff=%s, grad=%s, " | |||
"pad=%ux%ux%u, stride=%ux%ux%u, dilate=%ux%ux%u, xcorr=%d, dtype=%s,%s", | |||
fm.group, fm.ocpg, fm.icpg, fm.spatial[0], fm.spatial[1], fm.spatial[2], | |||
diff_layout->to_string().c_str(), | |||
grad_layout->to_string().c_str(), | |||
fm.padding[0], fm.padding[1], fm.padding[2], | |||
fm.stride[0], fm.stride[1], fm.stride[2], | |||
fm.dilation[0], fm.dilation[1] ,fm.dilation[2], | |||
!fm.should_flip, | |||
diff_layout->dtype.name(), grad_layout->dtype.name())); | |||
return ssprintf( | |||
"filter=%u{%u,%u,%u,%u,%u}, diff=%s, grad=%s, " | |||
"pad=%ux%ux%u, stride=%ux%ux%u, dilate=%ux%ux%u, xcorr=%d, " | |||
"dtype=%s,%s", | |||
fm.group, fm.ocpg, fm.icpg, fm.spatial[0], fm.spatial[1], | |||
fm.spatial[2], diff_layout->to_string().c_str(), | |||
grad_layout->to_string().c_str(), fm.padding[0], fm.padding[1], | |||
fm.padding[2], fm.stride[0], fm.stride[1], fm.stride[2], | |||
fm.dilation[0], fm.dilation[1], fm.dilation[2], !fm.should_flip, | |||
diff_layout->dtype.name(), grad_layout->dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -56,9 +56,8 @@ Convolution3DBackwardFilterImpl::AlgoPack::cudnn_from_enum( | |||
if (i.cudnn_enum() == algo) | |||
return &i; | |||
} | |||
megdnn_throw(megdnn_mangle(ssprintf( | |||
"can not find cudnn bwd_filter algorithm %d", | |||
static_cast<int>(algo)))); | |||
megdnn_throw(ssprintf("can not find cudnn bwd_filter algorithm %d", | |||
static_cast<int>(algo))); | |||
} | |||
Convolution3DBackwardFilterImpl::AlgoPack | |||
@@ -100,18 +99,16 @@ std::string | |||
Convolution3DBackwardFilterImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto &&fm = grad_filter_meta; | |||
MEGDNN_MARK_USED_VAR(fm); | |||
return megdnn_mangle(ssprintf( | |||
"src=%s diff=%s grad_filter=%u{%u,%u,%u,%u,%u}, " | |||
"pad=%ux%ux%u, stride=%ux%ux%u, dilate=%ux%ux%u, xcorr=%d, dtype=%s,%s", | |||
src_layout->to_string().c_str(), | |||
diff_layout->to_string().c_str(), | |||
fm.group, fm.ocpg, fm.icpg, | |||
fm.spatial[0], fm.spatial[1], fm.spatial[2], | |||
fm.padding[0], fm.padding[1], fm.padding[2], | |||
fm.stride[0], fm.stride[1], fm.stride[2], | |||
fm.dilation[0], fm.dilation[1], fm.dilation[2], | |||
!fm.should_flip, | |||
src_layout->dtype.name(), diff_layout->dtype.name())); | |||
return ssprintf( | |||
"src=%s diff=%s grad_filter=%u{%u,%u,%u,%u,%u}, " | |||
"pad=%ux%ux%u, stride=%ux%ux%u, dilate=%ux%ux%u, xcorr=%d, " | |||
"dtype=%s,%s", | |||
src_layout->to_string().c_str(), diff_layout->to_string().c_str(), | |||
fm.group, fm.ocpg, fm.icpg, fm.spatial[0], fm.spatial[1], | |||
fm.spatial[2], fm.padding[0], fm.padding[1], fm.padding[2], | |||
fm.stride[0], fm.stride[1], fm.stride[2], fm.dilation[0], | |||
fm.dilation[1], fm.dilation[2], !fm.should_flip, | |||
src_layout->dtype.name(), diff_layout->dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -59,8 +59,8 @@ Convolution3DForwardImpl::AlgoPack::cudnn_from_enum( | |||
if (i.cudnn_enum() == algo) | |||
return &i; | |||
} | |||
megdnn_throw(megdnn_mangle(ssprintf("can not find cudnn fwd algorithm %d", | |||
static_cast<int>(algo)))); | |||
megdnn_throw(ssprintf("can not find cudnn fwd algorithm %d", | |||
static_cast<int>(algo))); | |||
} | |||
Convolution3DForwardImpl::AlgoPack Convolution3DForwardImpl::sm_algo_pack; | |||
@@ -101,18 +101,16 @@ Convolution3DForwardImpl::AlgoBase::ExecArgs::ExecArgs( | |||
std::string Convolution3DForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto &&fm = filter_meta; | |||
MEGDNN_MARK_USED_VAR(fm); | |||
return megdnn_mangle(ssprintf( | |||
"src=%s, filter=%u{%u,%u,%u,%u,%u}, dst=%s, " | |||
"pad=%ux%ux%u, stride=%ux%ux%u, dilate=%ux%ux%u, xcorr=%d, dtype=%s,%s", | |||
src_layout->to_string().c_str(), | |||
fm.group, fm.ocpg, fm.icpg, | |||
fm.spatial[0], fm.spatial[1], fm.spatial[2], | |||
dst_layout->to_string().c_str(), | |||
fm.padding[0], fm.padding[1], fm.padding[2], | |||
fm.stride[0], fm.stride[1], fm.stride[2], | |||
fm.dilation[0], fm.dilation[1], fm.dilation[2], | |||
!fm.should_flip, | |||
src_layout->dtype.name(), dst_layout->dtype.name())); | |||
return ssprintf( | |||
"src=%s, filter=%u{%u,%u,%u,%u,%u}, dst=%s, " | |||
"pad=%ux%ux%u, stride=%ux%ux%u, dilate=%ux%ux%u, xcorr=%d, " | |||
"dtype=%s,%s", | |||
src_layout->to_string().c_str(), fm.group, fm.ocpg, fm.icpg, | |||
fm.spatial[0], fm.spatial[1], fm.spatial[2], | |||
dst_layout->to_string().c_str(), fm.padding[0], fm.padding[1], | |||
fm.padding[2], fm.stride[0], fm.stride[1], fm.stride[2], | |||
fm.dilation[0], fm.dilation[1], fm.dilation[2], !fm.should_flip, | |||
src_layout->dtype.name(), dst_layout->dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -54,9 +54,9 @@ cudnnDataType_t to_cudnn_dtype(DType type, | |||
#endif | |||
default: | |||
#if CUDNN_MAJOR >= 6 | |||
megdnn_throw(megdnn_mangle("dtype must be float16/float32/int8/int32")); | |||
megdnn_throw("dtype must be float16/float32/int8/int32"); | |||
#else | |||
megdnn_throw(megdnn_mangle("dtype must be float16/float32")); | |||
megdnn_throw("dtype must be float16/float32"); | |||
#endif | |||
} | |||
@@ -259,7 +259,7 @@ void ConvDesc::set(DType data_type, const param::Convolution& param, | |||
mode = CUDNN_CONVOLUTION; | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle("conv mode must be conv or xcorr.")); | |||
megdnn_throw("conv mode must be conv or xcorr."); | |||
} | |||
cudnnDataType_t compute_type; | |||
MEGDNN_MARK_USED_VAR(compute_type); | |||
@@ -275,7 +275,7 @@ void ConvDesc::set(DType data_type, const param::Convolution& param, | |||
compute_type = CUDNN_DATA_INT32; | |||
#endif | |||
} else { | |||
megdnn_throw(megdnn_mangle("unspport data type for conv bias")); | |||
megdnn_throw("unspport data type for conv bias"); | |||
} | |||
#if CUDNN_MAJOR >= 7 | |||
cudnn_check(cudnnSetConvolutionGroupCount(desc, nr_group)); | |||
@@ -445,7 +445,7 @@ void Conv3DDesc::set(const param::Convolution3D& param, const size_t nr_group) { | |||
mode = CUDNN_CONVOLUTION; | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle("conv mode must be conv or xcorr.")); | |||
megdnn_throw("conv mode must be conv or xcorr."); | |||
} | |||
#if CUDNN_MAJOR >= 7 | |||
cudnn_check(cudnnSetConvolutionGroupCount(desc, nr_group)); | |||
@@ -62,7 +62,7 @@ uint32_t cumsum::get_workspace_bytes_for_cub_1d(uint32_t nr_item, | |||
CASE(8, uint64_t); | |||
#undef CASE | |||
default: | |||
report_error(megdnn_mangle("unsupported item size in cumsum")); | |||
report_error("unsupported item size in cumsum"); | |||
} | |||
} | |||
@@ -77,11 +77,11 @@ AlgoFwd* Fwd::get_algorithm_heuristic(const TensorLayout& im, | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.algo_matmul; | |||
} | |||
megdnn_throw(megdnn_mangle( | |||
megdnn_throw( | |||
ssprintf("no %s deformable conv fwd algorithm with args(%s) and " | |||
"workspace limit (%zu bytes)", | |||
reproducible ? "reproducible" : "usable", | |||
args.to_string().c_str(), workspace_limit_in_bytes))); | |||
args.to_string().c_str(), workspace_limit_in_bytes)); | |||
} | |||
const char* Fwd::get_algorithm_set_name() const { | |||
@@ -131,11 +131,11 @@ AlgoBwdFlt* BwdFlt::get_algorithm_heuristic( | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.algo_matmul; | |||
} | |||
megdnn_throw(megdnn_mangle(ssprintf( | |||
megdnn_throw(ssprintf( | |||
"no %s deformable conv bwd filter algorithm with args(%s) and " | |||
"workspace limit (%zu bytes)", | |||
reproducible ? "reproducible" : "usable", args.to_string().c_str(), | |||
workspace_limit_in_bytes))); | |||
workspace_limit_in_bytes)); | |||
} | |||
size_t BwdFlt::get_workspace_in_bytes( | |||
@@ -194,11 +194,11 @@ AlgoBwdData* BwdData::get_algorithm_heuristic( | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.algo_matmul; | |||
} | |||
megdnn_throw(megdnn_mangle(ssprintf( | |||
megdnn_throw(ssprintf( | |||
"no %s deformable conv bwd data algorithm with args(%s) and " | |||
"workspace limit (%zu bytes)", | |||
reproducible ? "reproducible" : "usable", args.to_string().c_str(), | |||
workspace_limit_in_bytes))); | |||
workspace_limit_in_bytes)); | |||
} | |||
size_t BwdData::get_workspace_in_bytes( | |||
@@ -199,7 +199,7 @@ size_t IndexingIncrMultiAxisVecImpl::get_workspace_in_bytes( | |||
void IndexingIncrMultiAxisVecImpl::exec( | |||
_megdnn_tensor_inout data, _megdnn_tensor_in value, | |||
const IndexDesc &index, _megdnn_workspace workspace) { | |||
MEGDNN_INC_FLOAT16( | |||
DNN_INC_FLOAT16( | |||
megdnn_assert(data.layout.dtype != dtype::Float16(), | |||
"float16 incr on cuda currently not supported")); | |||
auto info = check_exec(data.layout, value.layout, index, workspace.size); | |||
@@ -53,7 +53,7 @@ void IndexingOneHotForwardImpl::exec( | |||
switch (src.layout.dtype.enumv()) { | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
default: | |||
megdnn_throw(megdnn_mangle("bad dtype")); | |||
megdnn_throw("bad dtype"); | |||
} | |||
#undef cb | |||
} | |||
@@ -80,7 +80,7 @@ void IndexingSetOneHotForwardImpl::exec( | |||
switch (data.layout.dtype.enumv()) { | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
default: | |||
megdnn_throw(megdnn_mangle("bad dtype")); | |||
megdnn_throw("bad dtype"); | |||
} | |||
#undef cb | |||
} | |||
@@ -47,14 +47,14 @@ LocalShareBackwardDataImpl::AlgoBase::ExecArgs::ExecArgs(LocalShareBackwardDataI | |||
std::string LocalShareBackwardDataImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto&& param = opr->param(); | |||
MEGDNN_MARK_USED_VAR(param); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"filter=%s, diff=%s, grad=%s, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s->%s", | |||
filter_layout.to_string().c_str(), diff_layout.to_string().c_str(), | |||
grad_layout.to_string().c_str(), param.pad_h, param.pad_w, | |||
param.stride_h, param.stride_w, param.dilate_h, param.dilate_w, | |||
static_cast<int>(param.mode), filter_layout.dtype.name(), | |||
diff_layout.dtype.name(), grad_layout.dtype.name())); | |||
diff_layout.dtype.name(), grad_layout.dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -48,14 +48,14 @@ std::string LocalShareBackwardFilterImpl::AlgoBase::SizeArgs::to_string() | |||
const { | |||
auto&& param = opr->param(); | |||
MEGDNN_MARK_USED_VAR(param); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"src=%s, diff=%s, grad=%s, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s->%s", | |||
src_layout.to_string().c_str(), diff_layout.to_string().c_str(), | |||
grad_layout.to_string().c_str(), param.pad_h, param.pad_w, | |||
param.stride_h, param.stride_w, param.dilate_h, param.dilate_w, | |||
static_cast<int>(param.mode), src_layout.dtype.name(), | |||
diff_layout.dtype.name(), grad_layout.dtype.name())); | |||
diff_layout.dtype.name(), grad_layout.dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -49,14 +49,14 @@ LocalShareForwardImpl::AlgoBase::ExecArgs::ExecArgs(LocalShareForwardImpl* opr, | |||
std::string LocalShareForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
auto&& param = opr->param(); | |||
MEGDNN_MARK_USED_VAR(param); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"src=%s, filter=%s, dst=%s, " | |||
"pad=%ux%u, stride=%ux%u, dilate=%ux%u, xcorr=%d, dtype=%s,%s", | |||
src_layout.to_string().c_str(), filter_layout.to_string().c_str(), | |||
dst_layout.to_string().c_str(), param.pad_h, param.pad_w, | |||
param.stride_h, param.stride_w, param.dilate_h, param.dilate_w, | |||
static_cast<int>(param.mode), src_layout.dtype.name(), | |||
dst_layout.dtype.name())); | |||
dst_layout.dtype.name()); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -39,11 +39,11 @@ LocalShareForwardImpl::get_algorithm_heuristic(const TensorLayout& src, | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.batched_matmul; | |||
} | |||
megdnn_throw(megdnn_mangle( | |||
megdnn_throw( | |||
ssprintf("no %s local share conv algorithm with args(%s) and " | |||
"workspace limit (%zu bytes)", | |||
reproducible ? "reproducible" : "usable", | |||
args.to_string().c_str(), workspace_limit_in_bytes))); | |||
args.to_string().c_str(), workspace_limit_in_bytes)); | |||
} | |||
std::vector<LocalShareForwardImpl::Algorithm*> | |||
@@ -89,11 +89,11 @@ LocalShareBackwardDataImpl::get_algorithm_heuristic( | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.batched_matmul; | |||
} | |||
megdnn_throw(megdnn_mangle( | |||
megdnn_throw( | |||
ssprintf("no %s local share bwd data algorithm with args(%s) and " | |||
"workspace limit (%zu bytes)", | |||
reproducible ? "reproducible" : "usable", | |||
args.to_string().c_str(), workspace_limit_in_bytes))); | |||
args.to_string().c_str(), workspace_limit_in_bytes)); | |||
} | |||
std::vector<LocalShareBackwardDataImpl::Algorithm*> | |||
@@ -139,11 +139,11 @@ LocalShareBackwardFilterImpl::get_algorithm_heuristic( | |||
args, reproducible, workspace_limit_in_bytes)) { | |||
return &sm_algo_pack.batched_matmul; | |||
} | |||
megdnn_throw(megdnn_mangle( | |||
megdnn_throw( | |||
ssprintf("no %s local share bwd filter algorithm with args(%s) and " | |||
"workspace limit (%zu bytes)", | |||
reproducible ? "reproducible" : "usable", | |||
args.to_string().c_str(), workspace_limit_in_bytes))); | |||
args.to_string().c_str(), workspace_limit_in_bytes)); | |||
} | |||
std::vector<LocalShareBackwardFilterImpl::Algorithm*> | |||
@@ -122,11 +122,11 @@ std::string MatrixMulForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
MEGDNN_MARK_USED_VAR(m); | |||
MEGDNN_MARK_USED_VAR(n); | |||
MEGDNN_MARK_USED_VAR(k); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"A={%zux%zu},B={%zux%zu},C={%zux%zu},Transpose A=%d,Transpose " | |||
"B=%d,ldA=%zu,ldB=%zu,ldC=%zu", | |||
m, k, k, n, m, n, param.transposeA, param.transposeB, | |||
layout_a.stride[0], layout_b.stride[0], layout_c.stride[0])); | |||
layout_a.stride[0], layout_b.stride[0], layout_c.stride[0]); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -29,8 +29,7 @@ static cudaDataType_t to_cuda_dtype(DType tp) { | |||
case DTypeEnum::QuantizedS32: | |||
return CUDA_R_32I; | |||
default: | |||
megdnn_throw(megdnn_mangle( | |||
"dtype must be float16/float32/int8/qs8/int32")); | |||
megdnn_throw("dtype must be float16/float32/int8/qs8/int32"); | |||
} | |||
} | |||
@@ -45,8 +44,7 @@ static cublasComputeType_t to_cublas_compute_type(DType tp) { | |||
case DTypeEnum::QuantizedS32: | |||
return CUBLAS_COMPUTE_32I; | |||
default: | |||
megdnn_throw( | |||
megdnn_mangle("dtype must be float16/float32/int32/Qs32")); | |||
megdnn_throw("dtype must be float16/float32/int32/Qs32"); | |||
} | |||
} | |||
#endif | |||
@@ -62,8 +60,7 @@ static const char* cuda_type_to_str(cudaDataType_t tp) { | |||
case CUDA_R_32I: | |||
return "CUDA_R_32I"; | |||
default: | |||
megdnn_throw( | |||
megdnn_mangle("dtype must be float16/float32/int8/int32")); | |||
megdnn_throw("dtype must be float16/float32/int8/int32"); | |||
} | |||
} | |||
@@ -77,8 +74,7 @@ static size_t cuda_dtype_size(cudaDataType_t dt) { | |||
case CUDA_R_32I: | |||
return 4_z; | |||
default: | |||
megdnn_throw( | |||
megdnn_mangle("dtype must be float16/float32/int8/int32")); | |||
megdnn_throw("dtype must be float16/float32/int8/int32"); | |||
} | |||
} | |||
@@ -140,8 +140,7 @@ void MatrixMulForwardImpl::AlgoCuBlasLt::exec(const ExecArgs& args) const { | |||
igemm(); | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle( | |||
"compute type must be float16/float32/int32")); | |||
megdnn_throw("compute type must be float16/float32/int32"); | |||
} | |||
#else | |||
switch (desc.dt_compute) { | |||
@@ -155,8 +154,7 @@ void MatrixMulForwardImpl::AlgoCuBlasLt::exec(const ExecArgs& args) const { | |||
igemm(); | |||
break; | |||
default: | |||
megdnn_throw(megdnn_mangle( | |||
"compute type must be float16/float32/int32")); | |||
megdnn_throw("compute type must be float16/float32/int32"); | |||
} | |||
#endif | |||
} | |||
@@ -27,7 +27,8 @@ CUDAComputingContext::CUDAComputingContext(megcoreDeviceHandle_t dev_handle, | |||
{ | |||
megcorePlatform_t platform; | |||
megcoreGetPlatform(dev_handle, &platform); | |||
megdnn_assert(platform == megcorePlatformCUDA); | |||
megdnn_throw_if(platform != megcorePlatformCUDA, megdnn_error, | |||
"platform should be CUDA Platform"); | |||
if (own_stream_) { | |||
cuda_check(cudaStreamCreateWithFlags(&context_.stream, | |||
cudaStreamNonBlocking)); | |||
@@ -38,9 +38,10 @@ megcoreStatus_t megcore::getCUDAContext(megcoreComputingHandle_t handle, | |||
megcoreDeviceHandle_t dev_handle = H->content->dev_handle(); | |||
megcorePlatform_t platform; | |||
megcoreGetPlatform(dev_handle, &platform); | |||
megdnn_assert(platform == megcorePlatformCUDA); | |||
auto context = static_cast<megcore::cuda::CUDAComputingContext *>( | |||
H->content.get()); | |||
megdnn_throw_if(platform != megcorePlatformCUDA, megdnn_error, | |||
"platform should be CUDA Platform"); | |||
auto context = | |||
static_cast<megcore::cuda::CUDAComputingContext*>(H->content.get()); | |||
*ctx = context->context(); | |||
return megcoreSuccess; | |||
} | |||
@@ -194,8 +194,8 @@ void RelayoutForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
megcoreGetDeviceHandle(src_handle->megcore_computing_handle(), &dev); | |||
megcorePlatform_t plat; | |||
megcoreGetPlatform(dev, &plat); | |||
megdnn_assert(plat == megcorePlatformCUDA, | |||
"only relayout between cuda devices are supported"); | |||
megdnn_throw_if(plat != megcorePlatformCUDA, megdnn_error, | |||
"only relayout between cuda devices are supported"); | |||
int dst_dev_id = -1, src_dev_id = -1; | |||
megcoreGetDeviceID(dev, &src_dev_id); | |||
@@ -157,7 +157,7 @@ void backwarddata_proxy(ctype* grad, const float* map_xy, const ctype* diff, | |||
INST(ctype, NCHW, BORDER_WRAP) | |||
FOR_FORMAT_BMODE(float) | |||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||
DNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||
#undef FOR_FORMAT_BMODE | |||
#undef INST | |||
@@ -158,7 +158,7 @@ void backwardmat_proxy(const ctype* src, const float* map_xy, const ctype* diff, | |||
INST(ctype, NCHW, BORDER_WRAP) | |||
FOR_FORMAT_BMODE(float) | |||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||
DNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||
#undef FOR_FORMAT_BMODE | |||
#undef INST | |||
@@ -76,8 +76,8 @@ void RemapImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_out map_xy, | |||
switch (src.layout.dtype.enumv()) { | |||
support_dtype(dtype::Float32); | |||
MEGDNN_INC_FLOAT16(support_dtype(dtype::Float16)); | |||
MEGDNN_INC_FLOAT16(support_dtype(dtype::BFloat16)); | |||
DNN_INC_FLOAT16(support_dtype(dtype::Float16)); | |||
DNN_INC_FLOAT16(support_dtype(dtype::BFloat16)); | |||
support_dtype(dtype::Int8); | |||
support_dtype(dtype::Uint8); | |||
default: | |||
@@ -209,8 +209,8 @@ void forward_proxy(const ctype* src, const float* map_xy, ctype* dst, int N, | |||
INST(ctype, NHWC, BORDER_WRAP) | |||
FOR_FORMAT_BMODE(float) | |||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_float16)) | |||
MEGDNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||
DNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_float16)) | |||
DNN_INC_FLOAT16(FOR_FORMAT_BMODE(dt_bfloat16)) | |||
FOR_FORMAT_BMODE(int8_t) | |||
FOR_FORMAT_BMODE(uint8_t) | |||
@@ -43,8 +43,7 @@ void resize_cv_proxy(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
src_mat.step(), dst_mat.step(), src_mat.channels(), imode, | |||
workspace, stream); | |||
} else { | |||
megdnn_throw( | |||
megdnn_mangle("Unsupported datatype of WarpAffine optr.")); | |||
megdnn_throw("Unsupported datatype of WarpAffine optr."); | |||
} | |||
} | |||
} | |||
@@ -73,8 +73,7 @@ void warp_affine_cv_exec(_megdnn_tensor_in src, _megdnn_tensor_in mat, | |||
} | |||
} else { | |||
megdnn_throw( | |||
megdnn_mangle("Unsupported datatype of Warpaffine optr.")); | |||
megdnn_throw("Unsupported datatype of Warpaffine optr."); | |||
} | |||
trans_ptr += 2 * 3; | |||
@@ -75,8 +75,7 @@ void warp_perspective_cv_exec(_megdnn_tensor_in src, _megdnn_tensor_in mat, | |||
} | |||
} else { | |||
megdnn_throw(megdnn_mangle( | |||
"Unsupported datatype of WarpPerspective optr.")); | |||
megdnn_throw("Unsupported datatype of WarpPerspective optr."); | |||
} | |||
trans_ptr += 3 * 3; | |||
@@ -215,7 +214,7 @@ void WarpPerspectiveForwardImpl::exec(_megdnn_tensor_in ssrc, | |||
C, IH, IW, OH, OW, bval, bmode, | |||
async_error_info(handle()), m_error_tracker, | |||
stream); | |||
} else if (MEGDNN_FLOAT16_SELECT( | |||
} else if (DNN_FLOAT16_SELECT( | |||
src.layout.dtype == dtype::Float16(), | |||
false)) { | |||
#ifndef MEGDNN_DISABLE_FLOAT16 | |||
@@ -50,11 +50,13 @@ std::string BatchedMatrixMulForwardImpl::AlgoBase::SizeArgs::to_string() const { | |||
MEGDNN_MARK_USED_VAR(m); | |||
MEGDNN_MARK_USED_VAR(n); | |||
MEGDNN_MARK_USED_VAR(k); | |||
return megdnn_mangle(ssprintf( | |||
return ssprintf( | |||
"A={%zux%zu},B={%zux%zu},C={%zux%zu},Transpose A=%d,Transpose " | |||
"B=%d,ldA=%zu,ldB=%zu,ldC=%zu", | |||
m, k, k, n, m, n, param.transposeA, param.transposeB, | |||
layout_a.stride[0], layout_b.stride[0], layout_c.stride[0])); | |||
static_cast<size_t>(layout_a.stride[0]), | |||
static_cast<size_t>(layout_b.stride[0]), | |||
static_cast<size_t>(layout_c.stride[0])); | |||
} | |||
/* ===================== default algo ===================== */ | |||
@@ -295,7 +295,7 @@ SmallVector<ConvolutionImpl::NCBKern> ConvolutionImpl::AlgoNaive::dispatch_kern( | |||
cb(dtype::Int8, dtype::Int32); | |||
cb(dtype::Quantized8Asymm, dtype::QuantizedS32); | |||
cb(dtype::QuantizedS8, dtype::QuantizedS32); | |||
megdnn_throw(megdnn_mangle("unknown convolution data type")); | |||
megdnn_throw("unknown convolution data type"); | |||
#undef cb | |||
} | |||
@@ -596,8 +596,8 @@ ConvolutionBackwardDataImpl::AlgoMatrixMul::dispatch_kern( | |||
} \ | |||
} while (0); | |||
cb(dtype::Float32, "FLOAT"_hash); | |||
MEGDNN_INC_FLOAT16(cb(dtype::Float16, "FLOAT16"_hash)); | |||
MEGDNN_INC_FLOAT16(cb(dtype::BFloat16, "BFLOAT16"_hash)); | |||
DNN_INC_FLOAT16(cb(dtype::Float16, "FLOAT16"_hash)); | |||
DNN_INC_FLOAT16(cb(dtype::BFloat16, "BFLOAT16"_hash)); | |||
#undef cb | |||
#define cb(dt_src, dt_dst, midout_tag) \ | |||
@@ -432,7 +432,7 @@ ConvolutionImpl::NCBKernSizeParam::deduce_algo_data_type() const { | |||
} else if (src_type.enumv() == DTypeEnum::Quantized8Asymm) { | |||
return ConvolutionImpl::AlgoDataType::QUINT8X8X32; | |||
} else { | |||
megdnn_throw(ssprintf("megdnn not support data type of %s * %s -> %s\n", | |||
megdnn_throw(ssprintf("not support data type of %s * %s -> %s\n", | |||
src_type.name(), filter_type.name(), | |||
dst_type.name())); | |||
} | |||
@@ -697,8 +697,7 @@ ConvolutionBackwardDataImpl::ncb_1g_dispatch_kern( | |||
return static_cast<AlgoBase*>(algo)->dispatch_kern(this, param); | |||
} | |||
megdnn_throw( | |||
megdnn_mangle("no suitable ConvolutionBackwardData algorithm")); | |||
megdnn_throw("no suitable ConvolutionBackwardData algorithm"); | |||
} | |||
bool ConvolutionBackwardDataImpl::is_matrix_mul_preferred( | |||
@@ -134,8 +134,7 @@ void run_xcorr_single_channel_templated( | |||
DISPATCH(6) | |||
DISPATCH(7) | |||
#undef DISPATCH | |||
megdnn_throw(megdnn_mangle( | |||
"internal error in conv template dispatching: impossible")); | |||
megdnn_throw("internal error in conv template dispatching: impossible"); | |||
} | |||
void run_xcorr_single_channel_nontemplated( | |||
@@ -339,8 +338,7 @@ void conv_backdata_single_channel_templated( | |||
DISPATCH(7) | |||
#undef DISPATCH | |||
megdnn_throw( | |||
megdnn_mangle("internal error in conv_backdata template " | |||
"dispatching: impossible")); | |||
"internal error in conv_backdata template dispatching: impossible"); | |||
} | |||
void conv_backdata_single_channel_nontemplated( | |||
@@ -165,7 +165,7 @@ MatrixMulImpl::kern_t MatrixMulImpl::AlgoGemv::get_kern( | |||
} | |||
DISPATCH(Float32, Float32, (gemm_gemv_like<dt_float32, dt_float32>), 0); | |||
MEGDNN_INC_FLOAT16(DISPATCH(Float16, Float16, | |||
DNN_INC_FLOAT16(DISPATCH(Float16, Float16, | |||
(gemm_gemv_like<dt_float16, dt_float16>), 1)); | |||
DISPATCH(Int8, Int16, (gemm_gemv_like<dt_int8, dt_int16>), 2); | |||
DISPATCH(Quantized8Asymm, QuantizedS32, | |||
@@ -263,9 +263,8 @@ MatrixMulImpl::KernSizeParam::deduce_algo_data_type() const { | |||
} else if (A_type.enumv() == DTypeEnum::Int16) { | |||
return MatrixMulImpl::AlgoDataType::INT16X16X32; | |||
} else { | |||
megdnn_throw(ssprintf( | |||
"megdnn matmul not support data type of %s * %s -> %s\n", | |||
A_type.name(), B_type.name(), C_type.name())); | |||
megdnn_throw(ssprintf("matmul not support data type of %s * %s -> %s\n", | |||
A_type.name(), B_type.name(), C_type.name())); | |||
} | |||
} | |||
@@ -262,10 +262,10 @@ void PowCImpl::do_exec(_megdnn_tensor_in src, _megdnn_tensor_out dst, | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
case DTypeTrait<dtype::Float16>::enumv: | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
return MEGDNN_INC_FLOAT16( | |||
return DNN_INC_FLOAT16( | |||
do_exec_ct<__fp16>(src, dst, exp_f, exp_i)); | |||
#else | |||
return MEGDNN_INC_FLOAT16( | |||
return DNN_INC_FLOAT16( | |||
do_exec_ct<dt_float16>(src, dst, exp_f, exp_i)); | |||
#endif | |||
#endif | |||
@@ -133,7 +133,7 @@ void ResizeImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in dst, | |||
switch (src.layout.dtype.enumv()) { | |||
cb(dtype::Float32, float); | |||
MEGDNN_INC_FLOAT16(cb(dtype::Float16, dt_float16)); | |||
DNN_INC_FLOAT16(cb(dtype::Float16, dt_float16)); | |||
cb(dtype::Int8, int8_t); | |||
cb(dtype::QuantizedS8, int8_t); | |||
cb(dtype::Uint8, uint8_t); | |||
@@ -93,7 +93,7 @@ void WarpPerspectiveImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in mat, | |||
switch (src.layout.dtype.enumv()) { | |||
cb(dtype::Float32, float, float); | |||
MEGDNN_INC_FLOAT16(cb(dtype::Float16, dt_float16, float)); | |||
DNN_INC_FLOAT16(cb(dtype::Float16, dt_float16, float)); | |||
cb(dtype::Int8, int8_t, float); | |||
cb(dtype::QuantizedS8, int8_t, float); | |||
cb(dtype::Uint8, uint8_t, float); | |||
@@ -224,7 +224,7 @@ void BNForwardImpl::exec(_megdnn_tensor_in src, _megdnn_tensor_in bn_scale, | |||
variance.layout, batch_mean.layout, batch_inv_variance.layout, | |||
dst.layout, workspace.size); | |||
MEGDNN_INC_FLOAT16(if (src.layout.dtype == dtype::Float16() && | |||
DNN_INC_FLOAT16(if (src.layout.dtype == dtype::Float16() && | |||
bn_scale.layout.dtype == dtype::Float32()) { | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(({ | |||
using T0 = typename DTypeTrait<dtype::Float16>::ctype; | |||
@@ -285,7 +285,7 @@ void BNBackwardImpl::exec(_megdnn_tensor_in x_in, _megdnn_tensor_in dy_in, | |||
bn_scale.layout.total_nr_elems(), | |||
workspace.raw_ptr); | |||
MEGDNN_INC_FLOAT16(if (x_in.layout.dtype == dtype::Float16() && | |||
DNN_INC_FLOAT16(if (x_in.layout.dtype == dtype::Float16() && | |||
bn_scale.layout.dtype == dtype::Float32()) { | |||
MEGDNN_DISPATCH_CPU_KERN_OPR(({ | |||
using T0 = typename DTypeTrait<dtype::Float16>::ctype; | |||
@@ -56,10 +56,10 @@ void ConvolutionForwardImpl::exec(_megdnn_tensor_in src, | |||
DISPATCH(Int8, Int16, dt_int8, dt_int16, dt_int16); | |||
DISPATCH(Int8, Int32, dt_int8, dt_int32, dt_int32); | |||
DISPATCH(QuantizedS8, QuantizedS32, dt_int8, dt_int32, dt_int32); | |||
MEGDNN_INC_FLOAT16(DISPATCH_CMODE(Float16, Float16, dt_float16, | |||
DNN_INC_FLOAT16(DISPATCH_CMODE(Float16, Float16, dt_float16, | |||
dt_float16, dt_float32, | |||
ComputeMode::FLOAT32)); | |||
MEGDNN_INC_FLOAT16(DISPATCH_CMODE(BFloat16, BFloat16, dt_bfloat16, | |||
DNN_INC_FLOAT16(DISPATCH_CMODE(BFloat16, BFloat16, dt_bfloat16, | |||
dt_bfloat16, dt_float32, | |||
ComputeMode::FLOAT32)); | |||
DISPATCH(Quantized8Asymm, QuantizedS32, dt_quint8, dt_qint32, | |||
@@ -49,7 +49,7 @@ void Convolution3DForwardImpl::exec(_megdnn_tensor_in src, | |||
#undef cb | |||
break; | |||
case Param::DataType::FLOAT_IO16xC32: | |||
MEGDNN_INC_FLOAT16(MEGDNN_DISPATCH_CPU_KERN( | |||
DNN_INC_FLOAT16(MEGDNN_DISPATCH_CPU_KERN( | |||
static_cast<HandleImpl*>(handle()), | |||
convolution3d::forward< | |||
dt_float16 MEGDNN_COMMA dt_float16 MEGDNN_COMMA | |||
@@ -149,19 +149,19 @@ void GroupLocalForwardImpl::exec(_megdnn_tensor_in src, | |||
dst.ptr<dt_float32>(), N, IC, IH, IW, FH, FW, OC, OH, | |||
OW, group, param().pad_h, param().pad_w, | |||
param().stride_h, param().stride_w)); | |||
} else if (MEGDNN_FLOAT16_SELECT( | |||
} else if (DNN_FLOAT16_SELECT( | |||
src.layout.dtype == dtype::Float16() && | |||
filter.layout.dtype == dtype::Float16() && | |||
dst.layout.dtype == dtype::Float16(), | |||
false)) { | |||
MEGDNN_INC_FLOAT16(MEGDNN_DISPATCH_CPU_KERN_OPR(forward( | |||
DNN_INC_FLOAT16(MEGDNN_DISPATCH_CPU_KERN_OPR(forward( | |||
src.ptr<dt_float16>(), filter.ptr<dt_float16>(), | |||
dst.ptr<dt_float16>(), N, IC, IH, IW, FH, FW, OC, OH, OW, group, | |||
param().pad_h, param().pad_w, param().stride_h, | |||
param().stride_w));); | |||
} else { | |||
megdnn_assert_internal(false); | |||
megdnn_assert_internal(false); | |||
} | |||
} | |||
@@ -90,7 +90,7 @@ void dispatch_exec(HandleImpl *handle, | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
cb(::megdnn::dtype::Bool) | |||
default: | |||
megdnn_throw(megdnn_mangle("bad dtype")); | |||
megdnn_throw("bad dtype"); | |||
} | |||
#undef cb | |||
} | |||
@@ -99,7 +99,7 @@ void IndexingOneHotForwardImpl::exec( | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
cb(megdnn::dtype::Quantized8Asymm) | |||
default: | |||
megdnn_throw(megdnn_mangle("bad dtype")); | |||
megdnn_throw("bad dtype"); | |||
} | |||
#undef cb | |||
} | |||
@@ -122,7 +122,7 @@ void IndexingSetOneHotForwardImpl::exec( | |||
MEGDNN_FOREACH_COMPUTING_DTYPE(cb) | |||
cb(megdnn::dtype::Quantized8Asymm) | |||
default: | |||
megdnn_throw(megdnn_mangle("bad dtype")); | |||
megdnn_throw("bad dtype"); | |||
} | |||
#undef cb | |||
} | |||