@@ -45,6 +45,7 @@ BatchedMatrixMulForwardImpl::AlgoPack::AlgoPack() { | |||
#endif | |||
all_algos.push_back(&int8x8x32); | |||
all_algos.push_back(&brute_force); | |||
all_algos.push_back(&naive_bmm); | |||
for (auto&& algo : all_algos) { | |||
m_all_algos_map.emplace(algo->info().desc, algo); | |||
@@ -24,6 +24,7 @@ public: | |||
CUDA_CUBLAS, | |||
CUDA_CUBLASLT, | |||
CUDA_INT8X8X32, | |||
CUDA_NAIVE_BMM, | |||
}; | |||
using Mapper = std::unordered_map<AlgorithmDesc, AlgoBase*>; | |||
@@ -94,6 +95,27 @@ public: | |||
std::vector<SearchItem> get_subopr_list( | |||
const TensorLayoutArray& layouts, const OperatorBase* opr) const override; | |||
}; | |||
class BatchedMatrixMulForwardImpl::AlgoNaive final | |||
: public BatchedMatrixMulForwardImpl::AlgoBase { | |||
using Param = MatrixMulForward::Param; | |||
private: | |||
WorkspaceBundle get_workspace_bundle(); | |||
public: | |||
bool is_available(const SizeArgs& args) const override; | |||
size_t get_workspace_in_bytes(const SizeArgs& /*args*/) const override { | |||
return 0; | |||
}; | |||
void exec(const ExecArgs& args) const final; | |||
AlgoAttribute attribute() const override { | |||
return AlgoAttribute::REPRODUCIBLE | AlgoAttribute::NAIVE; | |||
} | |||
const char* name() const override { return "NAIVE_BMM"; } | |||
MEGDNN_DECL_ALGO_TYPE(CUDA_NAIVE_BMM) | |||
}; | |||
class BatchedMatrixMulForwardImpl::AlgoCublas final | |||
: public BatchedMatrixMulForwardImpl::AlgoBase { | |||
public: | |||
@@ -148,6 +170,7 @@ public: | |||
AlgoInt8x8x32 int8x8x32; | |||
std::vector<AlgoBase*> all_algos; | |||
AlgoBruteForce brute_force; | |||
AlgoNaive naive_bmm; | |||
const AlgoBase::Mapper& all_algos_map() const { return m_all_algos_map; } | |||
}; | |||
@@ -0,0 +1,81 @@ | |||
/** | |||
* \file dnn/src/cuda/batched_matrix_mul/naive.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/cuda/batched_matrix_mul/naive.cuh" | |||
#include <cuda.h> | |||
#include "src/cuda/batched_matrix_mul/algo.h" | |||
#include "src/cuda/utils.h" | |||
using namespace megdnn; | |||
using namespace cuda; | |||
#include "midout.h" | |||
MIDOUT_DECL(megdnn_naive_matmul) | |||
bool BatchedMatrixMulForwardImpl::AlgoNaive::is_available(const SizeArgs& args) const { | |||
auto&& layout_a = args.layout_a; | |||
auto&& layout_b = args.layout_b; | |||
auto&& layout_c = args.layout_c; | |||
return layout_a.dtype.enumv() == layout_b.dtype.enumv() && | |||
(layout_a.dtype.enumv() == DTypeEnum::Float32 || | |||
layout_a.dtype.enumv() == DTypeEnum::Float16) && | |||
(layout_c.dtype.enumv() == DTypeEnum::Float32 || | |||
layout_c.dtype.enumv() == DTypeEnum::Float16) && | |||
args.opr->param().format == param::MatrixMul::Format::DEFAULT; | |||
} | |||
void BatchedMatrixMulForwardImpl::AlgoNaive::exec(const ExecArgs& args) const { | |||
auto&& param = args.opr->param(); | |||
auto Batch = args.tensor_c.layout.shape[0]; | |||
auto m = args.tensor_c.layout.shape[1], n = args.tensor_c.layout.shape[2], | |||
k = args.tensor_a.layout.shape[param.transposeA ? 1 : 2]; | |||
auto LDA = args.tensor_a.layout.stride[1], LDB = args.tensor_b.layout.stride[1], | |||
LDC = args.tensor_c.layout.stride[1]; | |||
auto&& handle = concrete_handle(args.opr->handle()); | |||
using ComputeMode = Param::ComputeMode; | |||
#define DISPATCH_CMODE(in_dt, out_dt, in_ct, out_ct, comp_ct, cmode) \ | |||
MIDOUT_BEGIN( \ | |||
megdnn_naive_matmul, \ | |||
midout_iv(#in_dt #out_dt #in_ct, #out_ct, #comp_ct, #cmode)) { \ | |||
do { \ | |||
using namespace dtype; \ | |||
if (args.tensor_a.layout.dtype.enumv() == DTypeTrait<in_dt>::enumv && \ | |||
args.tensor_c.layout.dtype.enumv() == DTypeTrait<out_dt>::enumv && \ | |||
param.compute_mode == cmode) { \ | |||
in_ct* A = args.tensor_a.compatible_ptr<in_ct>(); \ | |||
in_ct* B = args.tensor_b.compatible_ptr<in_ct>(); \ | |||
out_ct* C = args.tensor_c.compatible_ptr<out_ct>(); \ | |||
exec_bgemm_naive<in_ct, in_ct, out_ct, comp_ct>( \ | |||
A, B, C, Batch, m, n, k, LDA, LDB, LDC, param.transposeA, \ | |||
param.transposeB, cuda_stream(handle)); \ | |||
return; \ | |||
} \ | |||
} while (0); \ | |||
} \ | |||
MIDOUT_END(); | |||
#define DISPATCH(in_dt, out_dt, in_ct, out_ct, comp_ct) \ | |||
DISPATCH_CMODE(in_dt, out_dt, in_ct, out_ct, comp_ct, ComputeMode::DEFAULT) | |||
DISPATCH(Float32, Float32, dt_float32, dt_float32, dt_float32); | |||
DISPATCH(Float16, Float16, dt_float16, dt_float16, dt_float16); | |||
DNN_INC_FLOAT16(DISPATCH_CMODE( | |||
Float16, Float16, dt_float16, dt_float16, dt_float32, | |||
ComputeMode::FLOAT32)); | |||
#undef DISPATCH_CMODE | |||
#undef DISPATCH | |||
megdnn_throw(ssprintf( | |||
"unsupported Matmul(%s, %s) -> %s with cmode = %d", | |||
args.layout_a.dtype.name(), args.layout_b.dtype.name(), | |||
args.layout_c.dtype.name(), static_cast<int>(param.compute_mode))); | |||
} | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,72 @@ | |||
/** | |||
* \file dnn/src/cuda/batched_matrix_mul/naive.cu | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include <cuda.h> | |||
#include "src/cuda/matrix_mul/naive.cuh" | |||
#include "src/cuda/utils.cuh" | |||
namespace { | |||
template <typename AType, typename BType, typename CType, typename CompType> | |||
__global__ void do_exec( | |||
const AType* A, const BType* B, CType* C, size_t Batch, size_t M, size_t N, | |||
size_t K, size_t LDA, size_t LDB, size_t LDC, bool transA, bool transB) { | |||
for (int bid = blockIdx.x; bid < Batch; bid += gridDim.x) { | |||
const AType* A_r = A + (transA ? bid * K * LDA : bid * M * LDA); | |||
const BType* B_r = B + (transB ? bid * N * LDB : bid * K * LDB); | |||
CType* C_r = C + bid * M * LDC; | |||
for (size_t m = 0; m < M; ++m) { | |||
size_t n = threadIdx.x; | |||
for (; n < N; n += blockDim.x) { | |||
CompType res = static_cast<CompType>(0); | |||
for (size_t k = 0; k < K; ++k) { | |||
AType av = transA ? A_r[k * LDA + m] : A_r[m * LDA + k]; | |||
BType bv = transB ? B_r[n * LDB + k] : B_r[k * LDB + n]; | |||
res += av * bv; | |||
} | |||
C_r[m * LDC + n] = res; | |||
} | |||
} | |||
} | |||
} | |||
} // namespace | |||
namespace megdnn { | |||
namespace cuda { | |||
template <typename AType, typename BType, typename CType, typename CompType> | |||
void exec_bgemm_naive( | |||
const AType* A, const BType* B, CType* C, size_t Batch, size_t M, size_t N, | |||
size_t K, size_t LDA, size_t LDB, size_t LDC, bool transA, bool transB, | |||
cudaStream_t stream) { | |||
do_exec<AType, BType, CType, CompType><<<Batch, 128, 0, stream>>>( | |||
A, B, C, Batch, M, N, K, LDA, LDB, LDC, transA, transB); | |||
} | |||
#define INST(in_ct, out_ct, comp_ct) \ | |||
template void exec_bgemm_naive< \ | |||
typename in_ct, typename in_ct, typename out_ct, typename comp_ct>( \ | |||
const in_ct* A, const in_ct* B, out_ct* C, size_t Batch, size_t M, \ | |||
size_t N, size_t K, size_t LDA, size_t LDB, size_t LDC, bool transA, \ | |||
bool transB, cudaStream_t stream); | |||
INST(megdnn::dt_float32, megdnn::dt_float32, megdnn::dt_float32) | |||
INST(megdnn::dt_float16, megdnn::dt_float16, megdnn::dt_float16) | |||
INST(megdnn::dt_float16, megdnn::dt_float16, megdnn::dt_float32) | |||
#undef cb | |||
#undef INST | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,26 @@ | |||
/** | |||
* \file dnn/src/cuda/batched_matrix_mul/naive.cuh | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2021 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#pragma once | |||
#include "src/cuda/utils.cuh" | |||
namespace megdnn { | |||
namespace cuda { | |||
template <typename AType, typename BType, typename CType, typename CompType> | |||
void exec_bgemm_naive( | |||
const AType* A, const BType* B, CType* C, size_t Batch, size_t m, size_t n, | |||
size_t k, size_t ldA, size_t ldB, size_t ldC, bool transA, bool transB, | |||
cudaStream_t stream); | |||
} // namespace cuda | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -10,6 +10,7 @@ public: | |||
BatchedMatrixMulForwardImpl(Handle* handle) : BatchedMatrixMul(handle) {} | |||
class AlgoBase; | |||
class AlgoNaive; | |||
class AlgoBruteForce; | |||
class AlgoCublas; | |||
#if CUDA_VERSION >= 10010 | |||
@@ -266,19 +266,14 @@ void matrix_mul::check_matrix_mul( | |||
checker.set_param(param); | |||
if (format == param::MatrixMul::Format::DEFAULT) { | |||
if (batched) { | |||
checker.execl( | |||
{TensorLayout{ | |||
{arg.b, A0, A1}, | |||
{A_batch_stride, A_stride, 1}, | |||
A_dtype}, | |||
TensorLayout{ | |||
{arg.b, B0, B1}, | |||
{B_batch_stride, B_stride, 1}, | |||
B_dtype}, | |||
TensorLayout{ | |||
{arg.b, m, n}, | |||
{C_batch_stride, C_stride, 1}, | |||
C_dtype}}); | |||
auto a_layout = TensorLayout{ | |||
{arg.b, A0, A1}, {A_batch_stride, A_stride, 1}, A_dtype}; | |||
auto b_layout = TensorLayout{ | |||
{arg.b, B0, B1}, {B_batch_stride, B_stride, 1}, B_dtype}; | |||
auto c_layout = TensorLayout{ | |||
{arg.b, m, n}, {C_batch_stride, C_stride, 1}, C_dtype}; | |||
checker.execl({a_layout, b_layout, c_layout}); | |||
} else { | |||
checker.execl( | |||
{TensorLayout{{A0, A1}, {A_stride, 1}, A_dtype}, | |||
@@ -105,6 +105,62 @@ TEST_F(CUDA, BATCHED_MATRIX_MUL_F32_BRUTE_FORCE_PART4) { | |||
matrix_mul::get_batched_matmul_args_mask(3)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F32_NAIVE_PART0) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float32{}, dtype::Float32{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(0)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F32_NAIVE_PART1) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float32{}, dtype::Float32{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(1)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F32_NAIVE_PART2) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float32{}, dtype::Float32{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(2)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F32_NAIVE_PART3) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float32{}, dtype::Float32{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(3)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F16_NAIVE_PART0) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float16{}, dtype::Float16{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(0)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F16_NAIVE_PART1) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float16{}, dtype::Float16{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(1)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F16_NAIVE_PART2) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float16{}, dtype::Float16{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(2)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F16_NAIVE_PART3) { | |||
matrix_mul::check_batched_matrix_mul( | |||
dtype::Float16{}, dtype::Float16{}, {}, handle_cuda(), | |||
ExecutionPolicyAlgoName{"NAIVE_BMM"}, 1e-5, | |||
matrix_mul::get_batched_matmul_args_mask(3)); | |||
} | |||
TEST_F(CUDA, BATCHED_MATRIX_MUL_F16_PART1) { | |||
require_compute_capability(6, 0); | |||
matrix_mul::check_batched_matrix_mul( | |||