GitOrigin-RevId: b75b792fb4
release-1.7
@@ -372,6 +372,7 @@ def conv_transpose2d( | |||
Args: | |||
inp: feature map of the convolution operation. | |||
weight: convolution kernel. | |||
weight usually has shape ``(in_channels, out_channels, height, width)``. | |||
bias: bias added to the result of convolution (if given). | |||
stride: stride of the 2D convolution operation. Default: 1 | |||
padding: size of the paddings added to the input on both sides of its | |||
@@ -405,14 +406,12 @@ def conv_transpose2d( | |||
if weight.dtype != dtype: | |||
weight = weight.astype(dtype) | |||
if groups != 1: | |||
raise NotImplementedError("group transposed conv2d is not supported yet.") | |||
stride_h, stride_w = expand_hw(stride) | |||
pad_h, pad_w = expand_hw(padding) | |||
dilate_h, dilate_w = expand_hw(dilation) | |||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.ConvolutionBackwardData( | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
@@ -422,6 +421,7 @@ def conv_transpose2d( | |||
dilate_w=dilate_w, | |||
strategy=get_execution_strategy(), | |||
compute_mode=compute_mode, | |||
sparse=sparse_type, | |||
) | |||
(output,) = apply(op, weight, inp) | |||
if bias is not None: | |||
@@ -447,6 +447,7 @@ def deformable_conv2d( | |||
Args: | |||
inp: input feature map. | |||
weight: convolution kernel. | |||
weight usually has shape ``(out_channels, in_channels, height, width)``. | |||
offset: input offset to kernel, channel of this tensor should match the deformable settings. | |||
mask: input mask to kernel, channel of this tensor should match the deformable settings. | |||
bias: bias added to the result of convolution (if given). | |||
@@ -551,6 +552,7 @@ def conv_transpose3d( | |||
stride: Union[int, Tuple[int, int, int]] = 1, | |||
padding: Union[int, Tuple[int, int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int, int]] = 1, | |||
groups: int = 1, | |||
) -> Tensor: | |||
r"""3D transposed convolution operation. Only support the case that groups = 1 | |||
and conv_mode = "cross_correlation". | |||
@@ -581,6 +583,7 @@ def conv_transpose3d( | |||
if weight.dtype != dtype: | |||
weight = weight.astype(dtype) | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.Convolution3DBackwardData( | |||
pad_d=pad[D], | |||
pad_h=pad[H], | |||
@@ -592,6 +595,7 @@ def conv_transpose3d( | |||
dilate_h=dilate[H], | |||
dilate_w=dilate[W], | |||
strategy=get_execution_strategy(), | |||
sparse=sparse_type, | |||
) | |||
(output,) = apply(op, weight, inp) | |||
if bias is not None: | |||
@@ -891,6 +891,7 @@ class ConvTranspose3d(_ConvNd): | |||
padding: Union[int, Tuple[int, int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int, int]] = 1, | |||
bias: bool = True, | |||
groups: int = 1, | |||
): | |||
kernel_size = _triple_nonzero(kernel_size) | |||
stride = _triple_nonzero(stride) | |||
@@ -903,7 +904,7 @@ class ConvTranspose3d(_ConvNd): | |||
stride=stride, | |||
padding=padding, | |||
dilation=dilation, | |||
groups=1, | |||
groups=groups, | |||
bias=bias, | |||
) | |||
@@ -913,10 +914,21 @@ class ConvTranspose3d(_ConvNd): | |||
return kt * kh * kw * ic | |||
def _infer_weight_shape(self): | |||
group = self.groups | |||
ichl = self.in_channels | |||
ochl = self.out_channels | |||
kt, kh, kw = self.kernel_size | |||
return (ichl, ochl, kt, kh, kw) | |||
if group == 1: | |||
# Assume format is NCHW | |||
return (ichl, ochl, kt, kh, kw) | |||
assert ( | |||
ichl % group == 0 and ochl % group == 0 | |||
), "invalid config: in_channels={} out_channels={} group={}".format( | |||
ichl, ochl, group | |||
) | |||
# Assume format is NCHW | |||
return (group, ichl // group, ochl // group, kt, kh, kw) | |||
def _infer_bias_shape(self): | |||
# Assume format is NCTHW | |||
@@ -1290,3 +1290,62 @@ def test_set_warp_perspective_config(): | |||
expected = F.vision.warp_perspective(inp, M, (2, 2), format="NHWC") | |||
np.testing.assert_allclose(config_out.numpy(), expected.numpy()) | |||
np.testing.assert_allclose(context_out.numpy(), expected.numpy()) | |||
@pytest.mark.parametrize("stride", [(1, 1)]) | |||
@pytest.mark.parametrize("padding", [(1, 1)]) | |||
@pytest.mark.parametrize("dilation", [(1, 1)]) | |||
@pytest.mark.parametrize("ksize", [(3, 3)]) | |||
@pytest.mark.parametrize("groups", [1, 2]) | |||
def test_local_conv2d(stride, padding, dilation, ksize, groups): | |||
batch_size, in_channels, out_channels = 2, 4, 8 | |||
input_height, input_width = 10, 10 | |||
output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1 | |||
output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1 | |||
def local_conv2d_np(data, weight, stride, padding, dialtion): | |||
# naive calculation use numpy | |||
# only test output_height == input_height, output_width == input_width | |||
data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) | |||
expected = np.zeros( | |||
(batch_size, out_channels, output_height, output_width), dtype=np.float32, | |||
) | |||
ic_group_size = in_channels // groups | |||
oc_group_size = out_channels // groups | |||
for n, oc, oh, ow in itertools.product( | |||
*map(range, [batch_size, out_channels, output_height, output_width]) | |||
): | |||
ih, iw = oh * stride[0], ow * stride[1] | |||
g_id = oc // oc_group_size | |||
expected[n, oc, ih, iw] = np.sum( | |||
data[ | |||
n, | |||
g_id * ic_group_size : (g_id + 1) * ic_group_size, | |||
ih : ih + ksize[0], | |||
iw : iw + ksize[1], | |||
] | |||
* weight[g_id, oh, ow, :, :, :, oc % oc_group_size] | |||
) | |||
return expected | |||
data = np.random.rand(batch_size, in_channels, input_height, input_width).astype( | |||
"float32" | |||
) | |||
weight = np.random.rand( | |||
groups, | |||
output_height, | |||
output_width, | |||
in_channels // groups, | |||
*ksize, | |||
out_channels // groups, | |||
).astype("float32") | |||
output = F.local_conv2d( | |||
tensor(data), | |||
tensor(weight), | |||
None, | |||
stride=stride, | |||
padding=padding, | |||
dilation=dilation, | |||
) | |||
ref = local_conv2d_np(data, weight, stride, padding, dilation) | |||
np.testing.assert_almost_equal(output.numpy(), ref, 5) |
@@ -42,162 +42,3 @@ def test_conv_dtype_promotion(name, reproducible): | |||
m = getattr(M, name)(Ci, Co, K) | |||
x = tensor(np.random.random(size=(N, Ci) + S).astype("float16")) | |||
np.testing.assert_equal(m(x).numpy(), m(x.astype("float32")).numpy()) | |||
def test_conv_transpose2d(): | |||
SH, SW = 3, 1 | |||
PH, PW = 2, 0 | |||
N, IC, IH, IW = 4, 5, 8, 6 | |||
KH, KW = 3, 4 | |||
OC = 3 | |||
BIAS = False | |||
def getsize(inp, kern, stride): | |||
return (inp - 1) * stride + kern | |||
OH = getsize(IH, KH, SH) | |||
OW = getsize(IW, KW, SW) | |||
inp = np.random.normal(size=(N, IC, IH, IW)).astype(np.float32) | |||
out = np.zeros((N, OC, OH, OW), dtype=np.float32) | |||
weight = np.random.normal(size=(IC, OC, KH, KW)).astype(np.float32) | |||
bias = np.random.normal(size=(1, OC, 1, 1)).astype(np.float32) | |||
# naive calculation use numpy | |||
for n, ic, ih, iw in itertools.product(*map(range, [N, IC, IH, IW])): | |||
oh, ow = ih * SH, iw * SW | |||
out[n, :, oh : oh + KH, ow : ow + KW] += inp[n, ic, ih, iw] * weight[ic] | |||
out = out[:, :, PH : OH - PH, PW : OW - PW] | |||
if BIAS: | |||
out += bias | |||
# megengine conv_transpose2d calculation | |||
conv_transpose2d = ConvTranspose2d(IC, OC, (KH, KW), (SH, SW), (PH, PW), bias=BIAS) | |||
conv_transpose2d.weight = Parameter(weight, dtype=np.float32) | |||
if BIAS: | |||
conv_transpose2d.bias = Parameter(bias, dtype=np.float32) | |||
y = conv_transpose2d(tensor(inp)) | |||
np.testing.assert_almost_equal(out, y.numpy(), 2e-6) | |||
def test_local_conv2d(): | |||
def test_func( | |||
batch_size, | |||
in_channels, | |||
out_channels, | |||
input_height, | |||
input_width, | |||
kernel_size, | |||
stride, | |||
padding, | |||
dilation, | |||
groups, | |||
): | |||
local_conv2d = LocalConv2d( | |||
in_channels=in_channels, | |||
out_channels=out_channels, | |||
input_height=input_height, | |||
input_width=input_width, | |||
kernel_size=kernel_size, | |||
stride=stride, | |||
padding=padding, | |||
dilation=dilation, | |||
groups=groups, | |||
) | |||
inputs = np.random.normal( | |||
size=(batch_size, in_channels, input_height, input_width) | |||
).astype(np.float32) | |||
output_height = (input_height + padding * 2 - kernel_size) // stride + 1 | |||
output_width = (input_width + padding * 2 - kernel_size) // stride + 1 | |||
weights = local_conv2d.weight.numpy() | |||
outputs = local_conv2d(tensor(inputs)) | |||
# naive calculation use numpy | |||
# only test output_height == input_height, output_width == input_width | |||
inputs = np.pad(inputs, ((0, 0), (0, 0), (1, 1), (1, 1))) | |||
expected = np.zeros( | |||
(batch_size, out_channels, output_height, output_width), dtype=np.float32, | |||
) | |||
ic_group_size = in_channels // groups | |||
oc_group_size = out_channels // groups | |||
for n, oc, oh, ow in itertools.product( | |||
*map(range, [batch_size, out_channels, output_height, output_width]) | |||
): | |||
ih, iw = oh * stride, ow * stride | |||
g_id = oc // oc_group_size | |||
expected[n, oc, ih, iw] = np.sum( | |||
inputs[ | |||
n, | |||
g_id * ic_group_size : (g_id + 1) * ic_group_size, | |||
ih : ih + kernel_size, | |||
iw : iw + kernel_size, | |||
] | |||
* weights[g_id, oh, ow, :, :, :, oc % oc_group_size] | |||
) | |||
np.testing.assert_almost_equal(outputs.numpy(), expected, 1e-5) | |||
test_func(10, 4, 4, 5, 5, 3, 1, 1, 1, 1) | |||
test_func(10, 32, 32, 8, 8, 3, 1, 1, 1, 2) | |||
test_func(10, 32, 32, 8, 8, 3, 1, 1, 1, 4) | |||
def test_conv_transpose3d(): | |||
def getsize(inp, kernel, stride, dilate): | |||
return (inp - 1) * stride + kernel * dilate - dilate + 1 | |||
def test_func( | |||
N, | |||
IC, | |||
ID, | |||
IH, | |||
IW, | |||
OC, | |||
KD, | |||
KH, | |||
KW, | |||
SD, | |||
SH, | |||
SW, | |||
PD, | |||
PH, | |||
PW, | |||
DD, | |||
DH, | |||
DW, | |||
bias=True, | |||
): | |||
conv_transpose3d = ConvTranspose3d( | |||
in_channels=IC, | |||
out_channels=OC, | |||
kernel_size=(KD, KH, KW), | |||
stride=(SD, SH, SW), | |||
padding=(PD, PH, PW), | |||
dilation=(DD, DH, DW), | |||
bias=bias, | |||
) | |||
OD = getsize(ID, KD, SD, DD) | |||
OH = getsize(IH, KH, SH, DH) | |||
OW = getsize(IW, KW, SW, DW) | |||
inp = np.random.normal(size=(N, IC, ID, IH, IW)) | |||
weight = np.random.normal(size=(IC, OC, KD, KH, KW)) | |||
out_np = np.zeros((N, OC, OD, OH, OW), dtype=np.float32) | |||
for n, ic, idepth, ih, iw in itertools.product( | |||
*map(range, [N, IC, ID, IH, IW]) | |||
): | |||
od, oh, ow = idepth * SD, ih * SH, iw * SW | |||
out_np[n, :, od : od + KD, oh : oh + KH, ow : ow + KW] += ( | |||
inp[n, ic, idepth, ih, iw] * weight[ic] | |||
) | |||
out_np = out_np[:, :, PD : OD - PD, PH : OH - PH, PW : OW - PW] | |||
assert conv_transpose3d.weight.numpy().shape == weight.shape | |||
conv_transpose3d.weight = Parameter(weight) | |||
out_meg = conv_transpose3d.forward(tensor(inp)) | |||
np.testing.assert_almost_equal(out_meg.numpy(), out_np, 1e-5) | |||
test_func(4, 3, 8, 16, 16, 8, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1) | |||
test_func(4, 8, 16, 32, 32, 16, 1, 3, 1, 2, 1, 2, 0, 1, 0, 1, 1, 1) |