GitOrigin-RevId: b75b792fb4
release-1.7
@@ -372,6 +372,7 @@ def conv_transpose2d( | |||||
Args: | Args: | ||||
inp: feature map of the convolution operation. | inp: feature map of the convolution operation. | ||||
weight: convolution kernel. | weight: convolution kernel. | ||||
weight usually has shape ``(in_channels, out_channels, height, width)``. | |||||
bias: bias added to the result of convolution (if given). | bias: bias added to the result of convolution (if given). | ||||
stride: stride of the 2D convolution operation. Default: 1 | stride: stride of the 2D convolution operation. Default: 1 | ||||
padding: size of the paddings added to the input on both sides of its | padding: size of the paddings added to the input on both sides of its | ||||
@@ -405,14 +406,12 @@ def conv_transpose2d( | |||||
if weight.dtype != dtype: | if weight.dtype != dtype: | ||||
weight = weight.astype(dtype) | weight = weight.astype(dtype) | ||||
if groups != 1: | |||||
raise NotImplementedError("group transposed conv2d is not supported yet.") | |||||
stride_h, stride_w = expand_hw(stride) | stride_h, stride_w = expand_hw(stride) | ||||
pad_h, pad_w = expand_hw(padding) | pad_h, pad_w = expand_hw(padding) | ||||
dilate_h, dilate_w = expand_hw(dilation) | dilate_h, dilate_w = expand_hw(dilation) | ||||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||||
sparse_type = "dense" if groups == 1 else "group" | |||||
op = builtin.ConvolutionBackwardData( | op = builtin.ConvolutionBackwardData( | ||||
stride_h=stride_h, | stride_h=stride_h, | ||||
stride_w=stride_w, | stride_w=stride_w, | ||||
@@ -422,6 +421,7 @@ def conv_transpose2d( | |||||
dilate_w=dilate_w, | dilate_w=dilate_w, | ||||
strategy=get_execution_strategy(), | strategy=get_execution_strategy(), | ||||
compute_mode=compute_mode, | compute_mode=compute_mode, | ||||
sparse=sparse_type, | |||||
) | ) | ||||
(output,) = apply(op, weight, inp) | (output,) = apply(op, weight, inp) | ||||
if bias is not None: | if bias is not None: | ||||
@@ -447,6 +447,7 @@ def deformable_conv2d( | |||||
Args: | Args: | ||||
inp: input feature map. | inp: input feature map. | ||||
weight: convolution kernel. | weight: convolution kernel. | ||||
weight usually has shape ``(out_channels, in_channels, height, width)``. | |||||
offset: input offset to kernel, channel of this tensor should match the deformable settings. | offset: input offset to kernel, channel of this tensor should match the deformable settings. | ||||
mask: input mask to kernel, channel of this tensor should match the deformable settings. | mask: input mask to kernel, channel of this tensor should match the deformable settings. | ||||
bias: bias added to the result of convolution (if given). | bias: bias added to the result of convolution (if given). | ||||
@@ -551,6 +552,7 @@ def conv_transpose3d( | |||||
stride: Union[int, Tuple[int, int, int]] = 1, | stride: Union[int, Tuple[int, int, int]] = 1, | ||||
padding: Union[int, Tuple[int, int, int]] = 0, | padding: Union[int, Tuple[int, int, int]] = 0, | ||||
dilation: Union[int, Tuple[int, int, int]] = 1, | dilation: Union[int, Tuple[int, int, int]] = 1, | ||||
groups: int = 1, | |||||
) -> Tensor: | ) -> Tensor: | ||||
r"""3D transposed convolution operation. Only support the case that groups = 1 | r"""3D transposed convolution operation. Only support the case that groups = 1 | ||||
and conv_mode = "cross_correlation". | and conv_mode = "cross_correlation". | ||||
@@ -581,6 +583,7 @@ def conv_transpose3d( | |||||
if weight.dtype != dtype: | if weight.dtype != dtype: | ||||
weight = weight.astype(dtype) | weight = weight.astype(dtype) | ||||
sparse_type = "dense" if groups == 1 else "group" | |||||
op = builtin.Convolution3DBackwardData( | op = builtin.Convolution3DBackwardData( | ||||
pad_d=pad[D], | pad_d=pad[D], | ||||
pad_h=pad[H], | pad_h=pad[H], | ||||
@@ -592,6 +595,7 @@ def conv_transpose3d( | |||||
dilate_h=dilate[H], | dilate_h=dilate[H], | ||||
dilate_w=dilate[W], | dilate_w=dilate[W], | ||||
strategy=get_execution_strategy(), | strategy=get_execution_strategy(), | ||||
sparse=sparse_type, | |||||
) | ) | ||||
(output,) = apply(op, weight, inp) | (output,) = apply(op, weight, inp) | ||||
if bias is not None: | if bias is not None: | ||||
@@ -891,6 +891,7 @@ class ConvTranspose3d(_ConvNd): | |||||
padding: Union[int, Tuple[int, int, int]] = 0, | padding: Union[int, Tuple[int, int, int]] = 0, | ||||
dilation: Union[int, Tuple[int, int, int]] = 1, | dilation: Union[int, Tuple[int, int, int]] = 1, | ||||
bias: bool = True, | bias: bool = True, | ||||
groups: int = 1, | |||||
): | ): | ||||
kernel_size = _triple_nonzero(kernel_size) | kernel_size = _triple_nonzero(kernel_size) | ||||
stride = _triple_nonzero(stride) | stride = _triple_nonzero(stride) | ||||
@@ -903,7 +904,7 @@ class ConvTranspose3d(_ConvNd): | |||||
stride=stride, | stride=stride, | ||||
padding=padding, | padding=padding, | ||||
dilation=dilation, | dilation=dilation, | ||||
groups=1, | |||||
groups=groups, | |||||
bias=bias, | bias=bias, | ||||
) | ) | ||||
@@ -913,10 +914,21 @@ class ConvTranspose3d(_ConvNd): | |||||
return kt * kh * kw * ic | return kt * kh * kw * ic | ||||
def _infer_weight_shape(self): | def _infer_weight_shape(self): | ||||
group = self.groups | |||||
ichl = self.in_channels | ichl = self.in_channels | ||||
ochl = self.out_channels | ochl = self.out_channels | ||||
kt, kh, kw = self.kernel_size | kt, kh, kw = self.kernel_size | ||||
return (ichl, ochl, kt, kh, kw) | |||||
if group == 1: | |||||
# Assume format is NCHW | |||||
return (ichl, ochl, kt, kh, kw) | |||||
assert ( | |||||
ichl % group == 0 and ochl % group == 0 | |||||
), "invalid config: in_channels={} out_channels={} group={}".format( | |||||
ichl, ochl, group | |||||
) | |||||
# Assume format is NCHW | |||||
return (group, ichl // group, ochl // group, kt, kh, kw) | |||||
def _infer_bias_shape(self): | def _infer_bias_shape(self): | ||||
# Assume format is NCTHW | # Assume format is NCTHW | ||||
@@ -1290,3 +1290,62 @@ def test_set_warp_perspective_config(): | |||||
expected = F.vision.warp_perspective(inp, M, (2, 2), format="NHWC") | expected = F.vision.warp_perspective(inp, M, (2, 2), format="NHWC") | ||||
np.testing.assert_allclose(config_out.numpy(), expected.numpy()) | np.testing.assert_allclose(config_out.numpy(), expected.numpy()) | ||||
np.testing.assert_allclose(context_out.numpy(), expected.numpy()) | np.testing.assert_allclose(context_out.numpy(), expected.numpy()) | ||||
@pytest.mark.parametrize("stride", [(1, 1)]) | |||||
@pytest.mark.parametrize("padding", [(1, 1)]) | |||||
@pytest.mark.parametrize("dilation", [(1, 1)]) | |||||
@pytest.mark.parametrize("ksize", [(3, 3)]) | |||||
@pytest.mark.parametrize("groups", [1, 2]) | |||||
def test_local_conv2d(stride, padding, dilation, ksize, groups): | |||||
batch_size, in_channels, out_channels = 2, 4, 8 | |||||
input_height, input_width = 10, 10 | |||||
output_height = (input_height + padding[0] * 2 - ksize[0]) // stride[0] + 1 | |||||
output_width = (input_width + padding[1] * 2 - ksize[1]) // stride[1] + 1 | |||||
def local_conv2d_np(data, weight, stride, padding, dialtion): | |||||
# naive calculation use numpy | |||||
# only test output_height == input_height, output_width == input_width | |||||
data = np.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) | |||||
expected = np.zeros( | |||||
(batch_size, out_channels, output_height, output_width), dtype=np.float32, | |||||
) | |||||
ic_group_size = in_channels // groups | |||||
oc_group_size = out_channels // groups | |||||
for n, oc, oh, ow in itertools.product( | |||||
*map(range, [batch_size, out_channels, output_height, output_width]) | |||||
): | |||||
ih, iw = oh * stride[0], ow * stride[1] | |||||
g_id = oc // oc_group_size | |||||
expected[n, oc, ih, iw] = np.sum( | |||||
data[ | |||||
n, | |||||
g_id * ic_group_size : (g_id + 1) * ic_group_size, | |||||
ih : ih + ksize[0], | |||||
iw : iw + ksize[1], | |||||
] | |||||
* weight[g_id, oh, ow, :, :, :, oc % oc_group_size] | |||||
) | |||||
return expected | |||||
data = np.random.rand(batch_size, in_channels, input_height, input_width).astype( | |||||
"float32" | |||||
) | |||||
weight = np.random.rand( | |||||
groups, | |||||
output_height, | |||||
output_width, | |||||
in_channels // groups, | |||||
*ksize, | |||||
out_channels // groups, | |||||
).astype("float32") | |||||
output = F.local_conv2d( | |||||
tensor(data), | |||||
tensor(weight), | |||||
None, | |||||
stride=stride, | |||||
padding=padding, | |||||
dilation=dilation, | |||||
) | |||||
ref = local_conv2d_np(data, weight, stride, padding, dilation) | |||||
np.testing.assert_almost_equal(output.numpy(), ref, 5) |
@@ -42,162 +42,3 @@ def test_conv_dtype_promotion(name, reproducible): | |||||
m = getattr(M, name)(Ci, Co, K) | m = getattr(M, name)(Ci, Co, K) | ||||
x = tensor(np.random.random(size=(N, Ci) + S).astype("float16")) | x = tensor(np.random.random(size=(N, Ci) + S).astype("float16")) | ||||
np.testing.assert_equal(m(x).numpy(), m(x.astype("float32")).numpy()) | np.testing.assert_equal(m(x).numpy(), m(x.astype("float32")).numpy()) | ||||
def test_conv_transpose2d(): | |||||
SH, SW = 3, 1 | |||||
PH, PW = 2, 0 | |||||
N, IC, IH, IW = 4, 5, 8, 6 | |||||
KH, KW = 3, 4 | |||||
OC = 3 | |||||
BIAS = False | |||||
def getsize(inp, kern, stride): | |||||
return (inp - 1) * stride + kern | |||||
OH = getsize(IH, KH, SH) | |||||
OW = getsize(IW, KW, SW) | |||||
inp = np.random.normal(size=(N, IC, IH, IW)).astype(np.float32) | |||||
out = np.zeros((N, OC, OH, OW), dtype=np.float32) | |||||
weight = np.random.normal(size=(IC, OC, KH, KW)).astype(np.float32) | |||||
bias = np.random.normal(size=(1, OC, 1, 1)).astype(np.float32) | |||||
# naive calculation use numpy | |||||
for n, ic, ih, iw in itertools.product(*map(range, [N, IC, IH, IW])): | |||||
oh, ow = ih * SH, iw * SW | |||||
out[n, :, oh : oh + KH, ow : ow + KW] += inp[n, ic, ih, iw] * weight[ic] | |||||
out = out[:, :, PH : OH - PH, PW : OW - PW] | |||||
if BIAS: | |||||
out += bias | |||||
# megengine conv_transpose2d calculation | |||||
conv_transpose2d = ConvTranspose2d(IC, OC, (KH, KW), (SH, SW), (PH, PW), bias=BIAS) | |||||
conv_transpose2d.weight = Parameter(weight, dtype=np.float32) | |||||
if BIAS: | |||||
conv_transpose2d.bias = Parameter(bias, dtype=np.float32) | |||||
y = conv_transpose2d(tensor(inp)) | |||||
np.testing.assert_almost_equal(out, y.numpy(), 2e-6) | |||||
def test_local_conv2d(): | |||||
def test_func( | |||||
batch_size, | |||||
in_channels, | |||||
out_channels, | |||||
input_height, | |||||
input_width, | |||||
kernel_size, | |||||
stride, | |||||
padding, | |||||
dilation, | |||||
groups, | |||||
): | |||||
local_conv2d = LocalConv2d( | |||||
in_channels=in_channels, | |||||
out_channels=out_channels, | |||||
input_height=input_height, | |||||
input_width=input_width, | |||||
kernel_size=kernel_size, | |||||
stride=stride, | |||||
padding=padding, | |||||
dilation=dilation, | |||||
groups=groups, | |||||
) | |||||
inputs = np.random.normal( | |||||
size=(batch_size, in_channels, input_height, input_width) | |||||
).astype(np.float32) | |||||
output_height = (input_height + padding * 2 - kernel_size) // stride + 1 | |||||
output_width = (input_width + padding * 2 - kernel_size) // stride + 1 | |||||
weights = local_conv2d.weight.numpy() | |||||
outputs = local_conv2d(tensor(inputs)) | |||||
# naive calculation use numpy | |||||
# only test output_height == input_height, output_width == input_width | |||||
inputs = np.pad(inputs, ((0, 0), (0, 0), (1, 1), (1, 1))) | |||||
expected = np.zeros( | |||||
(batch_size, out_channels, output_height, output_width), dtype=np.float32, | |||||
) | |||||
ic_group_size = in_channels // groups | |||||
oc_group_size = out_channels // groups | |||||
for n, oc, oh, ow in itertools.product( | |||||
*map(range, [batch_size, out_channels, output_height, output_width]) | |||||
): | |||||
ih, iw = oh * stride, ow * stride | |||||
g_id = oc // oc_group_size | |||||
expected[n, oc, ih, iw] = np.sum( | |||||
inputs[ | |||||
n, | |||||
g_id * ic_group_size : (g_id + 1) * ic_group_size, | |||||
ih : ih + kernel_size, | |||||
iw : iw + kernel_size, | |||||
] | |||||
* weights[g_id, oh, ow, :, :, :, oc % oc_group_size] | |||||
) | |||||
np.testing.assert_almost_equal(outputs.numpy(), expected, 1e-5) | |||||
test_func(10, 4, 4, 5, 5, 3, 1, 1, 1, 1) | |||||
test_func(10, 32, 32, 8, 8, 3, 1, 1, 1, 2) | |||||
test_func(10, 32, 32, 8, 8, 3, 1, 1, 1, 4) | |||||
def test_conv_transpose3d(): | |||||
def getsize(inp, kernel, stride, dilate): | |||||
return (inp - 1) * stride + kernel * dilate - dilate + 1 | |||||
def test_func( | |||||
N, | |||||
IC, | |||||
ID, | |||||
IH, | |||||
IW, | |||||
OC, | |||||
KD, | |||||
KH, | |||||
KW, | |||||
SD, | |||||
SH, | |||||
SW, | |||||
PD, | |||||
PH, | |||||
PW, | |||||
DD, | |||||
DH, | |||||
DW, | |||||
bias=True, | |||||
): | |||||
conv_transpose3d = ConvTranspose3d( | |||||
in_channels=IC, | |||||
out_channels=OC, | |||||
kernel_size=(KD, KH, KW), | |||||
stride=(SD, SH, SW), | |||||
padding=(PD, PH, PW), | |||||
dilation=(DD, DH, DW), | |||||
bias=bias, | |||||
) | |||||
OD = getsize(ID, KD, SD, DD) | |||||
OH = getsize(IH, KH, SH, DH) | |||||
OW = getsize(IW, KW, SW, DW) | |||||
inp = np.random.normal(size=(N, IC, ID, IH, IW)) | |||||
weight = np.random.normal(size=(IC, OC, KD, KH, KW)) | |||||
out_np = np.zeros((N, OC, OD, OH, OW), dtype=np.float32) | |||||
for n, ic, idepth, ih, iw in itertools.product( | |||||
*map(range, [N, IC, ID, IH, IW]) | |||||
): | |||||
od, oh, ow = idepth * SD, ih * SH, iw * SW | |||||
out_np[n, :, od : od + KD, oh : oh + KH, ow : ow + KW] += ( | |||||
inp[n, ic, idepth, ih, iw] * weight[ic] | |||||
) | |||||
out_np = out_np[:, :, PD : OD - PD, PH : OH - PH, PW : OW - PW] | |||||
assert conv_transpose3d.weight.numpy().shape == weight.shape | |||||
conv_transpose3d.weight = Parameter(weight) | |||||
out_meg = conv_transpose3d.forward(tensor(inp)) | |||||
np.testing.assert_almost_equal(out_meg.numpy(), out_np, 1e-5) | |||||
test_func(4, 3, 8, 16, 16, 8, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1) | |||||
test_func(4, 8, 16, 32, 32, 16, 1, 3, 1, 2, 1, 2, 0, 1, 0, 1, 1, 1) |