GitOrigin-RevId: dbc1f27ff7
tags/v1.4.0-rc1
@@ -65,7 +65,7 @@ def _elwise(*args, mode): | |||
def _matmul(inp1, inp2): | |||
op = builtin.MatrixMul( | |||
transposeA=False, transposeB=False, compute_mode="DEFAULT", format="DEFAULT" | |||
transposeA=False, transposeB=False, compute_mode="default", format="default" | |||
) | |||
inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
(result,) = apply(op, inp1, inp2) | |||
@@ -178,7 +178,7 @@ def _reduce(mode): | |||
def f(self, axis=None, keepdims: bool = False): | |||
data = self | |||
(data,) = utils.convert_inputs(data) | |||
if mode == "MEAN": | |||
if mode == "mean": | |||
data = data.astype("float32") | |||
elif self.dtype == np.bool_: | |||
data = data.astype("int32") | |||
@@ -204,7 +204,7 @@ def _reduce(mode): | |||
if not keepdims: | |||
result = _remove_axis(result, axis) | |||
if self.dtype == np.bool_: | |||
if mode in ["MIN", "MAX"]: | |||
if mode in ["min", "max"]: | |||
result = result.astype("bool") | |||
if axis is None or self.ndim == 1: | |||
setscalar(result) | |||
@@ -479,7 +479,7 @@ class ArrayMethodMixin(abc.ABC): | |||
10.0 | |||
""" | |||
return _reduce("SUM")(self, axis, keepdims) | |||
return _reduce("sum")(self, axis, keepdims) | |||
def prod(self, axis=None, keepdims: bool = False): | |||
r""" | |||
@@ -512,7 +512,7 @@ class ArrayMethodMixin(abc.ABC): | |||
24.0 | |||
""" | |||
return _reduce("PRODUCT")(self, axis, keepdims) | |||
return _reduce("product")(self, axis, keepdims) | |||
def min(self, axis=None, keepdims: bool = False): | |||
r""" | |||
@@ -545,7 +545,7 @@ class ArrayMethodMixin(abc.ABC): | |||
1.0 | |||
""" | |||
return _reduce("MIN")(self, axis, keepdims) | |||
return _reduce("min")(self, axis, keepdims) | |||
def max(self, axis=None, keepdims: bool = False): | |||
r""" | |||
@@ -578,7 +578,7 @@ class ArrayMethodMixin(abc.ABC): | |||
4.0 | |||
""" | |||
return _reduce("MAX")(self, axis, keepdims) | |||
return _reduce("max")(self, axis, keepdims) | |||
def mean(self, axis=None, keepdims: bool = False): | |||
r""" | |||
@@ -611,4 +611,4 @@ class ArrayMethodMixin(abc.ABC): | |||
2.5 | |||
""" | |||
return _reduce("MEAN")(self, axis, keepdims) | |||
return _reduce("mean")(self, axis, keepdims) |
@@ -267,6 +267,7 @@ def hinge_loss(pred: Tensor, label: Tensor, norm: str = "L1") -> Tensor: | |||
1.5 | |||
""" | |||
norm = norm.upper() | |||
assert norm in ["L1", "L2"], "norm must be L1 or L2" | |||
# Converts binary labels to -1/1 labels. | |||
loss = relu(1.0 - pred * label) | |||
@@ -604,9 +604,9 @@ def argsort(inp: Tensor, descending: bool = False) -> Tensor: | |||
""" | |||
assert len(inp.shape) <= 2, "Input should be 1d or 2d" | |||
if descending: | |||
order = "DESCENDING" | |||
order = "descending" | |||
else: | |||
order = "ASCENDING" | |||
order = "ascending" | |||
op = builtin.Argsort(order=order) | |||
if len(inp.shape) == 1: | |||
@@ -646,9 +646,9 @@ def sort(inp: Tensor, descending: bool = False) -> Tuple[Tensor, Tensor]: | |||
""" | |||
assert len(inp.shape) <= 2, "Input should be 1d or 2d" | |||
if descending: | |||
order = "DESCENDING" | |||
order = "descending" | |||
else: | |||
order = "ASCENDING" | |||
order = "ascending" | |||
op = builtin.Argsort(order=order) | |||
if len(inp.shape) == 1: | |||
@@ -699,11 +699,11 @@ def topk( | |||
inp = -inp | |||
if kth_only: | |||
mode = "KTH_ONLY" | |||
mode = "kth_only" | |||
elif no_sort: | |||
mode = "VALUE_IDX_NOSORT" | |||
mode = "value_idx_nosort" | |||
else: | |||
mode = "VALUE_IDX_SORTED" | |||
mode = "value_idx_sorted" | |||
op = builtin.TopK(mode=mode) | |||
if not isinstance(k, Tensor): | |||
@@ -765,8 +765,8 @@ def matmul( | |||
inp2: Tensor, | |||
transpose_a=False, | |||
transpose_b=False, | |||
compute_mode="DEFAULT", | |||
format="DEFAULT", | |||
compute_mode="default", | |||
format="default", | |||
) -> Tensor: | |||
""" | |||
Performs a matrix multiplication of the matrices ``inp1`` and ``inp2``. | |||
@@ -776,7 +776,9 @@ def matmul( | |||
- Both 1-D tensor, simply forward to ``dot``. | |||
- Both 2-D tensor, normal matrix multiplication. | |||
- If one input tensor is 1-D, matrix vector multiplication. | |||
- If at least one tensor are 3-dimensional or >3-dimensional, the other tensor should have dim >= 2, the batched matrix-matrix is returned, and the tensor with smaller dimension will be broadcasted. For example: | |||
- If at least one tensor are 3-dimensional or >3-dimensional, the other tensor should have dim >= 2, | |||
the batched matrix-matrix is returned, and the tensor with smaller dimension will be broadcasted. | |||
For example: | |||
- inp1: `(n, k, m)`, inp2: `(n, m, p)`, return: `(n, k, p)` | |||
- inp1: `(n, k, m)`, inp2: `(m, p)`, return: `(n, k, p)` | |||
@@ -52,6 +52,8 @@ __all__ = [ | |||
"deformable_psroi_pooling", | |||
"dropout", | |||
"embedding", | |||
"hsigmoid", | |||
"hswish", | |||
"indexing_one_hot", | |||
"leaky_relu", | |||
"linear", | |||
@@ -62,17 +64,14 @@ __all__ = [ | |||
"max_pool2d", | |||
"one_hot", | |||
"prelu", | |||
"softmax", | |||
"softplus", | |||
"sync_batch_norm", | |||
"conv1d", | |||
"sigmoid", | |||
"hsigmoid", | |||
"relu", | |||
"relu6", | |||
"hswish", | |||
"resize", | |||
"remap", | |||
"resize", | |||
"sigmoid", | |||
"softmax", | |||
"softplus", | |||
"sync_batch_norm", | |||
"warp_affine", | |||
"warp_perspective", | |||
] | |||
@@ -106,6 +105,83 @@ def linear(inp: Tensor, weight: Tensor, bias: Optional[Tensor] = None) -> Tensor | |||
return ret | |||
def conv1d( | |||
inp: Tensor, | |||
weight: Tensor, | |||
bias: Optional[Tensor] = None, | |||
stride: int = 1, | |||
padding: int = 0, | |||
dilation: int = 1, | |||
groups: int = 1, | |||
conv_mode="cross_correlation", | |||
compute_mode="default", | |||
) -> Tensor: | |||
"""1D convolution operation. | |||
Refer to :class:`~.Conv1d` for more information. | |||
:param inp: The feature map of the convolution operation | |||
:param weight: The convolution kernel | |||
:param bias: The bias added to the result of convolution (if given) | |||
:param stride: Stride of the 1D convolution operation. Default: 1 | |||
:param padding: Size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: Dilation of the 1D convolution operation. Default: 1 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and the shape of weight should be ``(groups, out_channel // groups, | |||
in_channels // groups, height, width)``. | |||
:type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` | |||
:param conv_mode: Supports 'cross_correlation'. Default: | |||
'cross_correlation'. | |||
:type compute_mode: string or | |||
:class:`mgb.opr_param_defs.Convolution.ComputeMode` | |||
:param compute_mode: When set to 'default', no special requirements will be | |||
placed on the precision of intermediate results. When set to 'float32', | |||
float32 would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
""" | |||
assert ( | |||
conv_mode.lower() == "cross_correlation" | |||
or conv_mode.name == "CROSS_CORRELATION" | |||
) | |||
assert compute_mode.lower() == "default" or compute_mode.name == "DEFAULT" | |||
assert inp.ndim == 3, "the input dimension of conv1d should be 3" | |||
assert weight.ndim == 3, "the weight dimension of conv1d should be 3" | |||
inp = expand_dims(inp, 3) | |||
weight = expand_dims(weight, 3) | |||
if bias is not None: | |||
assert bias.ndim == 3, "the bias dimension of conv1d should be 3" | |||
bias = expand_dims(bias, 3) | |||
stride_h = stride | |||
pad_h = padding | |||
dilate_h = dilation | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.Convolution( | |||
stride_h=stride_h, | |||
stride_w=1, | |||
pad_h=pad_h, | |||
pad_w=0, | |||
dilate_h=dilate_h, | |||
dilate_w=1, | |||
strategy=get_execution_strategy(), | |||
mode=conv_mode, | |||
compute_mode=compute_mode, | |||
sparse=sparse_type, | |||
) | |||
inp, weight = utils.convert_inputs(inp, weight) | |||
(output,) = apply(op, inp, weight) | |||
if bias is not None: | |||
output += bias | |||
output = squeeze(output, 3) | |||
return output | |||
def conv2d( | |||
inp: Tensor, | |||
weight: Tensor, | |||
@@ -114,8 +190,8 @@ def conv2d( | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
conv_mode="CROSS_CORRELATION", | |||
compute_mode="DEFAULT", | |||
conv_mode="cross_correlation", | |||
compute_mode="default", | |||
) -> Tensor: | |||
""" | |||
2D convolution operation. | |||
@@ -135,24 +211,27 @@ def conv2d( | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. | |||
:type conv_mode: string or :class:`Convolution.Mode` | |||
:param conv_mode: supports "CROSS_CORRELATION". Default: | |||
"CROSS_CORRELATION" | |||
:param conv_mode: supports "cross_correlation". Default: | |||
"cross_correlation" | |||
:type compute_mode: string or | |||
:class:`Convolution.ComputeMode` | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of Float16 dtype. | |||
:param compute_mode: when set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
:return: output tensor. | |||
""" | |||
assert conv_mode == "CROSS_CORRELATION" or conv_mode.name == "CROSS_CORRELATION" | |||
assert compute_mode == "DEFAULT" or compute_mode.name == "DEFAULT" | |||
assert ( | |||
conv_mode.lower() == "cross_correlation" | |||
or conv_mode.name == "CROSS_CORRELATION" | |||
) | |||
assert compute_mode.lower() == "default" or compute_mode.name == "DEFAULT" | |||
stride_h, stride_w = expand_hw(stride) | |||
pad_h, pad_w = expand_hw(padding) | |||
dilate_h, dilate_w = expand_hw(dilation) | |||
sparse_type = "DENSE" if groups == 1 else "GROUP" | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.Convolution( | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
@@ -180,7 +259,7 @@ def conv3d( | |||
padding: Union[int, Tuple[int, int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int, int]] = 1, | |||
groups: int = 1, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
conv_mode: str = "cross_correlation", | |||
) -> Tensor: | |||
""" | |||
3D convolution operation. | |||
@@ -194,15 +273,16 @@ def conv3d( | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 3D convolution operation. Default: 1 | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a ``grouped convolution``. When ``groups`` is not 1, | |||
:param groups: number of groups into which the input and output channels are divided, | |||
so as to perform a ``grouped convolution``. When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, t, height, width)`. | |||
:param conv_mode: supports "CROSS_CORRELATION". Default: | |||
"CROSS_CORRELATION" | |||
:param conv_mode: supports "cross_correlation". Default: | |||
"cross_correlation" | |||
:return: output tensor. | |||
""" | |||
assert conv_mode == "CROSS_CORRELATION" | |||
assert conv_mode.lower() == "cross_correlation" | |||
D, H, W = 0, 1, 2 | |||
@@ -210,7 +290,7 @@ def conv3d( | |||
stride = _triple_nonzero(stride) | |||
dilate = _triple_nonzero(dilation) | |||
sparse_type = "DENSE" if groups == 1 else "GROUP" | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.Convolution3D( | |||
pad_d=pad[D], | |||
pad_h=pad[H], | |||
@@ -240,8 +320,8 @@ def conv_transpose2d( | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
conv_mode="CROSS_CORRELATION", | |||
compute_mode="DEFAULT", | |||
conv_mode="cross_correlation", | |||
compute_mode="default", | |||
) -> Tensor: | |||
""" | |||
2D transposed convolution operation. | |||
@@ -261,18 +341,21 @@ def conv_transpose2d( | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. Default: 1 | |||
:type conv_mode: string or :class:`Convolution.Mode` | |||
:param conv_mode: supports "CROSS_CORRELATION". Default: | |||
"CROSS_CORRELATION" | |||
:param conv_mode: supports "cross_correlation". Default: | |||
"cross_correlation" | |||
:type compute_mode: string or | |||
:class:`Convolution.ComputeMode` | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of Float16 dtype. | |||
:param compute_mode: when set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
:return: output tensor. | |||
""" | |||
assert conv_mode == "CROSS_CORRELATION" or conv_mode.name == "CROSS_CORRELATION" | |||
assert compute_mode == "DEFAULT" or compute_mode.name == "DEFAULT" | |||
assert ( | |||
conv_mode.lower() == "cross_correlation" | |||
or conv_mode.name == "CROSS_CORRELATION" | |||
) | |||
assert compute_mode.lower() == "default" or compute_mode.name == "DEFAULT" | |||
if groups != 1: | |||
raise NotImplementedError("group transposed conv2d is not supported yet.") | |||
@@ -307,8 +390,8 @@ def deformable_conv2d( | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
conv_mode="CROSS_CORRELATION", | |||
compute_mode="DEFAULT", | |||
conv_mode="cross_correlation", | |||
compute_mode="default", | |||
) -> Tensor: | |||
""" | |||
Deformable Convolution. | |||
@@ -328,24 +411,27 @@ def deformable_conv2d( | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. Default: 1 | |||
:type conv_mode: string or :class:`Convolution.Mode` | |||
:param conv_mode: supports "CROSS_CORRELATION". Default: | |||
"CROSS_CORRELATION" | |||
:param conv_mode: supports "cross_correlation". Default: | |||
"cross_correlation" | |||
:type compute_mode: string or | |||
:class:`Convolution.ComputeMode` | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of Float16 dtype. | |||
:param compute_mode: when set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
:return: output tensor. | |||
""" | |||
assert conv_mode == "CROSS_CORRELATION" or conv_mode.name == "CROSS_CORRELATION" | |||
assert compute_mode == "DEFAULT" or compute_mode.name == "DEFAULT" | |||
assert ( | |||
conv_mode.lower() == "cross_correlation" | |||
or conv_mode.name == "CROSS_CORRELATION" | |||
) | |||
assert compute_mode.lower() == "default" or compute_mode.name == "DEFAULT" | |||
stride_h, stride_w = expand_hw(stride) | |||
pad_h, pad_w = expand_hw(padding) | |||
dilate_h, dilate_w = expand_hw(dilation) | |||
sparse_type = "DENSE" if groups == 1 else "GROUP" | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.DeformableConv( | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
@@ -372,10 +458,13 @@ def local_conv2d( | |||
stride: Union[int, Tuple[int, int]] = 1, | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
conv_mode="CROSS_CORRELATION", | |||
conv_mode="cross_correlation", | |||
): | |||
"""Applies spatial 2D convolution over an groupped channeled image with untied kernels.""" | |||
assert conv_mode == "CROSS_CORRELATION" or conv_mode.name == "CROSS_CORRELATION" | |||
assert ( | |||
conv_mode.lower() == "cross_correlation" | |||
or conv_mode.name == "CROSS_CORRELATION" | |||
) | |||
stride_h, stride_w = expand_hw(stride) | |||
pad_h, pad_w = expand_hw(padding) | |||
@@ -389,8 +478,8 @@ def local_conv2d( | |||
dilate_h=dilate_h, | |||
dilate_w=dilate_w, | |||
mode=conv_mode, | |||
compute_mode="DEFAULT", | |||
sparse="DENSE", | |||
compute_mode="default", | |||
sparse="dense", | |||
) | |||
inp, weight = utils.convert_inputs(inp, weight) | |||
(output,) = apply(op, inp, weight) | |||
@@ -430,7 +519,7 @@ def max_pool2d( | |||
stride_w=stride_w, | |||
pad_h=padding_h, | |||
pad_w=padding_w, | |||
mode="MAX", | |||
mode="max", | |||
) | |||
(output,) = apply(op, inp) | |||
return output | |||
@@ -441,7 +530,7 @@ def avg_pool2d( | |||
kernel_size: Union[int, Tuple[int, int]], | |||
stride: Optional[Union[int, Tuple[int, int]]] = None, | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
mode: str = "AVERAGE_COUNT_EXCLUDE_PADDING", | |||
mode: str = "average_count_exclude_padding", | |||
) -> Tensor: | |||
""" | |||
Applies 2D average pooling over an input tensor. | |||
@@ -453,7 +542,8 @@ def avg_pool2d( | |||
:param stride: stride of the window. If not provided, its value is set to ``kernel_size``. | |||
Default: None | |||
:param padding: implicit zero padding added on both sides. Default: 0 | |||
:param mode: whether to count padding values. Default: "AVERAGE_COUNT_EXCLUDE_PADDING" | |||
:param mode: whether to count padding values, set to "average" will do counting. | |||
Default: "average_count_exclude_padding" | |||
:return: output tensor. | |||
""" | |||
if stride is None: | |||
@@ -490,7 +580,7 @@ def adaptive_max_pool2d( | |||
if isinstance(oshp, int): | |||
oshp = (oshp, oshp) | |||
op = builtin.AdaptivePooling(mode="MAX", format="NCHW",) | |||
op = builtin.AdaptivePooling(mode="max", format="NCHW",) | |||
oshp = astensor1d(oshp, inp, dtype="int32", device=inp.device) | |||
(output,) = apply(op, inp, oshp) | |||
return output | |||
@@ -511,7 +601,7 @@ def adaptive_avg_pool2d( | |||
if isinstance(oshp, int): | |||
oshp = (oshp, oshp) | |||
op = builtin.AdaptivePooling(mode="AVERAGE", format="NCHW",) | |||
op = builtin.AdaptivePooling(mode="average", format="NCHW",) | |||
oshp = astensor1d(oshp, inp, dtype="int32", device=inp.device) | |||
(output,) = apply(op, inp, oshp) | |||
return output | |||
@@ -556,6 +646,53 @@ def deformable_psroi_pooling( | |||
return output | |||
def hswish(x): | |||
""" | |||
Element-wise `x * relu6(x + 3) / 6`. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
Example: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(5).astype(np.float32)) | |||
out = F.hswish(x) | |||
print(out.numpy().round(decimals=4)) | |||
.. testoutput:: | |||
[0. 0.6667 1.6667 3. 4. ] | |||
""" | |||
return _elwise(x, mode=Elemwise.Mode.H_SWISH) | |||
def sigmoid(x): | |||
"""Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
return _elwise(x, mode=Elemwise.Mode.SIGMOID) | |||
def hsigmoid(x): | |||
"""Element-wise `relu6(x + 3) / 6`.""" | |||
return relu6(x + 3) / 6 | |||
def relu(x): | |||
"""Element-wise `max(x, 0)`.""" | |||
return _elwise(x, mode=Elemwise.Mode.RELU) | |||
def relu6(x): | |||
"""Element-wise `min(max(x, 0), 6)`.""" | |||
return minimum(maximum(x, 0), 6) | |||
def prelu(inp: Tensor, weight: Tensor) -> Tensor: | |||
r""" | |||
Applies the element-wise PReLU function. | |||
@@ -872,14 +1009,14 @@ def batch_norm( | |||
if not training: | |||
op = builtin.BatchNorm( | |||
fwd_mode=BatchNorm.FwdMode.INFERENCE, epsilon=eps, param_dim="DIM_1C11" | |||
fwd_mode=BatchNorm.FwdMode.INFERENCE, epsilon=eps, param_dim="dim_1c11" | |||
) | |||
ret = apply(op, inp, weight, bias, running_mean, running_var)[-1] | |||
return ret | |||
else: | |||
op = builtin.BatchNorm( | |||
avg_factor=1 - momentum, epsilon=eps, param_dim="DIM_1C11" | |||
avg_factor=1 - momentum, epsilon=eps, param_dim="dim_1c11" | |||
) | |||
if has_mean or has_var: | |||
running_mean = make_full_if_none(running_mean, 0) | |||
@@ -915,7 +1052,7 @@ def sync_batch_norm( | |||
training: bool = False, | |||
momentum: Union[float, Tensor] = 0.9, | |||
eps: float = 1e-5, | |||
eps_mode="ADDITIVE", | |||
eps_mode="additive", | |||
group=WORLD, | |||
) -> Tensor: | |||
r""" | |||
@@ -939,7 +1076,9 @@ def sync_batch_norm( | |||
Default: 1e-5 | |||
:return: output tensor. | |||
""" | |||
assert eps_mode in {"MAX", "ADDITIVE"}, "unknown eps_mode: {}".format(eps_mode) | |||
assert eps_mode.lower() in {"max", "additive"}, "unknown eps_mode: {}".format( | |||
eps_mode | |||
) | |||
_channels = inp.shape[1] | |||
_ndim = inp.ndim | |||
_device = inp.device | |||
@@ -979,7 +1118,7 @@ def sync_batch_norm( | |||
channel_mean = running_mean.reshape(*_param_shape) | |||
invsqrt_channel_variance = ( | |||
maximum(channel_variance, eps) if eps_mode == "MAX" else channel_variance + eps | |||
maximum(channel_variance, eps) if eps_mode == "max" else channel_variance + eps | |||
) ** -0.5 | |||
if weight is not None: | |||
@@ -1019,13 +1158,16 @@ def sync_batch_norm( | |||
return outvar | |||
def one_hot(inp: Tensor, num_classes: int) -> Tensor: | |||
r""" | |||
Performs one-hot encoding for the input tensor. | |||
def dropout(inp: Tensor, drop_prob: float, training: bool = True) -> Tensor: | |||
""" | |||
Returns a new tensor where each of the elements are randomly set to zero | |||
with probability P = ``drop_prob``. Optionally rescale the output tensor if ``training`` is True. | |||
:param inp: input tensor. | |||
:param num_classes: number of classes denotes the last dimension of the output tensor. | |||
:return: output tensor. | |||
:param drop_prob: probability to drop (set to zero) a single element. | |||
:param training: the default behavior of ``dropout`` during training is to rescale the output, | |||
then it can be replaced by an :class:`~.Identity` during inference. Default: True | |||
:return: the output tensor | |||
Examples: | |||
@@ -1035,51 +1177,33 @@ def one_hot(inp: Tensor, num_classes: int) -> Tensor: | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(1, 4, dtype=np.int32)) | |||
out = F.one_hot(x, num_classes=4) | |||
x = tensor(np.ones(10, dtype=np.float32)) | |||
out = F.dropout(x, 1./3.) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
:options: +SKIP | |||
[[0 1 0 0] | |||
[0 0 1 0] | |||
[0 0 0 1]] | |||
""" | |||
zeros_tensor = zeros(list(inp.shape) + [num_classes], inp.dtype, inp.device) | |||
ones_tensor = ones(list(inp.shape) + [1], inp.dtype, inp.device) | |||
op = builtin.IndexingSetOneHot(axis=inp.ndim) | |||
(result,) = apply(op, zeros_tensor, inp, ones_tensor) | |||
return result | |||
[1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] | |||
def matmul( | |||
inp1: Tensor, | |||
inp2: Tensor, | |||
transpose_a=False, | |||
transpose_b=False, | |||
compute_mode="DEFAULT", | |||
format="DEFAULT", | |||
) -> Tensor: | |||
""" | |||
Performs a matrix multiplication of the matrices ``inp1`` and ``inp2``. | |||
assert 0 <= drop_prob < 1 | |||
rv = uniform(size=inp.shape) | |||
mask = rv > drop_prob | |||
inp *= mask.astype(inp.dtype) | |||
if training: | |||
inp *= 1 / (1 - drop_prob) | |||
return inp | |||
With different inputs dim, this function behaves differently: | |||
- Both 1-D tensor, simply forward to ``dot``. | |||
- Both 2-D tensor, normal matrix multiplication. | |||
- If one input tensor is 1-D, matrix vector multiplication. | |||
- If at least one tensor are 3-dimensional or >3-dimensional, the other tensor should have dim >= 2, the batched matrix-matrix is returned, and the tensor with smaller dimension will | |||
be broadcasted. For example: | |||
- inp1: `(n, k, m)`, inp2: `(n, m, p)`, return: `(n, k, p)` | |||
- inp1: `(n, k, m)`, inp2: `(m, p)`, return: `(n, k, p)` | |||
- inp1: `(n, j, k, m)`, inp2: `(n, j, m, p)`, return: `(n, j, k, p)` | |||
def one_hot(inp: Tensor, num_classes: int) -> Tensor: | |||
r""" | |||
Performs one-hot encoding for the input tensor. | |||
:param inp1: first matrix to be multiplied. | |||
:param inp2: second matrix to be multiplied. | |||
:param inp: input tensor. | |||
:param num_classes: number of classes denotes the last dimension of the output tensor. | |||
:return: output tensor. | |||
Examples: | |||
@@ -1090,182 +1214,27 @@ def matmul( | |||
from megengine import tensor | |||
import megengine.functional as F | |||
data1 = tensor(np.arange(0, 6, dtype=np.float32).reshape(2, 3)) | |||
data2 = tensor(np.arange(0, 6, dtype=np.float32).reshape(3, 2)) | |||
out = F.matmul(data1, data2) | |||
x = tensor(np.arange(1, 4, dtype=np.int32)) | |||
out = F.one_hot(x, num_classes=4) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
[[10. 13.] | |||
[28. 40.]] | |||
""" | |||
remove_row, remove_col = False, False | |||
inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
dim1, dim2 = inp1.ndim, inp2.ndim | |||
# handle dim=1 cases, dot and matrix-vector multiplication | |||
if dim1 == 1 and dim2 == 1: | |||
return dot(inp1, inp2) | |||
# the underlying matmul op requires input dims to be at least 2 | |||
if dim1 == 1: | |||
inp1 = expand_dims(inp1, 0) | |||
dim1 = 2 | |||
remove_row = True | |||
if dim2 == 1: | |||
inp2 = expand_dims(inp2, 1) | |||
dim2 = 2 | |||
remove_col = True | |||
batch_shape = None | |||
shape1 = inp1.shape | |||
shape2 = inp2.shape | |||
maxdim = dim1 if dim1 > dim2 else dim2 | |||
if dim1 >= 3 or dim2 >= 3: | |||
if use_symbolic_shape(): | |||
if dim1 > dim2: | |||
shape2 = concat([shape1[:-2], shape2[-2:]]) | |||
inp2 = broadcast_to(inp2, shape2) | |||
if dim1 < dim2: | |||
shape1 = concat([shape2[:-2], shape1[-2:]]) | |||
inp1 = broadcast_to(inp1, shape1) | |||
if maxdim > 3: | |||
batch_shape = shape1[:-2] | |||
# compress inputs to 3d | |||
(inp1,) = apply( | |||
builtin.Reshape(), inp1, concat([prod(shape1[:-2]), shape1[-2:]]) | |||
) | |||
(inp2,) = apply( | |||
builtin.Reshape(), inp2, concat([prod(shape2[:-2]), shape2[-2:]]) | |||
) | |||
else: | |||
if dim1 > dim2: | |||
shape2 = shape1[:-2] + shape2[-2:] | |||
inp2 = broadcast_to(inp2, shape2) | |||
if dim1 < dim2: | |||
shape1 = shape2[:-2] + shape1[-2:] | |||
inp1 = broadcast_to(inp1, shape1) | |||
if maxdim > 3: | |||
batch_shape = shape1[:-2] | |||
# compress inputs to 3d | |||
inp1 = inp1.reshape((-1, shape1[-2], shape1[-1])) | |||
inp2 = inp2.reshape((-1, shape2[-2], shape2[-1])) | |||
op = builtin.BatchedMatrixMul( | |||
transposeA=transpose_a, | |||
transposeB=transpose_b, | |||
compute_mode=compute_mode, | |||
format=format, | |||
strategy=get_execution_strategy(), | |||
) | |||
else: | |||
op = builtin.MatrixMul( | |||
transposeA=transpose_a, | |||
transposeB=transpose_b, | |||
compute_mode=compute_mode, | |||
format=format, | |||
strategy=get_execution_strategy(), | |||
) | |||
(result,) = apply(op, inp1, inp2) | |||
if maxdim > 3: | |||
if use_symbolic_shape(): | |||
(result,) = apply( | |||
builtin.Reshape(), result, concat([batch_shape, result.shape[-2:]]) | |||
) | |||
else: | |||
result = result.reshape(batch_shape + result.shape[-2:]) | |||
if remove_row: | |||
result = squeeze(result, axis=-2) | |||
if remove_col: | |||
result = squeeze(result, axis=-1) | |||
return result | |||
[[0 1 0 0] | |||
[0 0 1 0] | |||
[0 0 0 1]] | |||
def dot(inp1: Tensor, inp2: Tensor) -> Tensor: | |||
""" | |||
Computes dot-product of two vectors ``inp1`` and ``inp2``. | |||
inputs must be 1-dimensional or scalar. A scalar input is automatically broadcasted. | |||
Refer to :func:`~.matmul` for more general usage. | |||
:param inp1: first vector. | |||
:param inp2: second vector. | |||
:return: output value. | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
data1 = tensor(np.arange(0, 6, dtype=np.float32)) | |||
data2 = tensor(np.arange(0, 6, dtype=np.float32)) | |||
out = F.dot(data1, data2) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
55. | |||
zeros_tensor = zeros(list(inp.shape) + [num_classes], inp.dtype, inp.device) | |||
ones_tensor = ones(list(inp.shape) + [1], inp.dtype, inp.device) | |||
""" | |||
op = builtin.Dot() | |||
inp1, inp2 = utils.convert_inputs(inp1, inp2) | |||
assert ( | |||
inp1.ndim <= 1 and inp2.ndim <= 1 | |||
), "Input tensors for dot must be 1-dimensional or scalar" | |||
(result,) = apply(op, inp1, inp2) | |||
setscalar(result) | |||
op = builtin.IndexingSetOneHot(axis=inp.ndim) | |||
(result,) = apply(op, zeros_tensor, inp, ones_tensor) | |||
return result | |||
def dropout(inp: Tensor, drop_prob: float, training: bool = True) -> Tensor: | |||
""" | |||
Returns a new tensor where each of the elements are randomly set to zero | |||
with probability P = ``drop_prob``. Optionally rescale the output tensor if ``training`` is True. | |||
:param inp: input tensor. | |||
:param drop_prob: probability to drop (set to zero) a single element. | |||
:param training: the default behavior of ``dropout`` during training is to rescale the output, | |||
then it can be replaced by an :class:`~.Identity` during inference. Default: True | |||
:return: the output tensor | |||
Examples: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.ones(10, dtype=np.float32)) | |||
out = F.dropout(x, 1./3.) | |||
print(out.numpy()) | |||
Outputs: | |||
.. testoutput:: | |||
:options: +SKIP | |||
[1.5 1.5 0. 1.5 1.5 1.5 1.5 1.5 1.5 1.5] | |||
""" | |||
assert 0 <= drop_prob < 1 | |||
rv = uniform(size=inp.shape) | |||
mask = rv > drop_prob | |||
inp *= mask.astype(inp.dtype) | |||
if training: | |||
inp *= 1 / (1 - drop_prob) | |||
return inp | |||
def embedding( | |||
inp: Tensor, | |||
weight: Tensor, | |||
@@ -1334,128 +1303,6 @@ def indexing_one_hot( | |||
return result | |||
def conv1d( | |||
inp: Tensor, | |||
weight: Tensor, | |||
bias: Optional[Tensor] = None, | |||
stride: int = 1, | |||
padding: int = 0, | |||
dilation: int = 1, | |||
groups: int = 1, | |||
conv_mode="CROSS_CORRELATION", | |||
compute_mode="DEFAULT", | |||
) -> Tensor: | |||
"""1D convolution operation. | |||
Refer to :class:`~.Conv1d` for more information. | |||
:param inp: The feature map of the convolution operation | |||
:param weight: The convolution kernel | |||
:param bias: The bias added to the result of convolution (if given) | |||
:param stride: Stride of the 1D convolution operation. Default: 1 | |||
:param padding: Size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: Dilation of the 1D convolution operation. Default: 1 | |||
:param groups: number of groups to divide input and output channels into, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and the shape of weight should be ``(groups, out_channel // groups, | |||
in_channels // groups, height, width)``. | |||
:type conv_mode: string or :class:`mgb.opr_param_defs.Convolution.Mode` | |||
:param conv_mode: Supports 'CROSS_CORRELATION'. Default: | |||
'CROSS_CORRELATION'. | |||
:type compute_mode: string or | |||
:class:`mgb.opr_param_defs.Convolution.ComputeMode` | |||
:param compute_mode: When set to 'DEFAULT', no special requirements will be | |||
placed on the precision of intermediate results. When set to 'FLOAT32', | |||
Float32 would be used for accumulator and intermediate result, but only | |||
effective when input and output are of Float16 dtype. | |||
""" | |||
assert conv_mode == "CROSS_CORRELATION" or conv_mode.name == "CROSS_CORRELATION" | |||
assert compute_mode == "DEFAULT" or compute_mode.name == "DEFAULT" | |||
assert inp.ndim == 3, "the input dimension of conv1d should be 3" | |||
assert weight.ndim == 3, "the weight dimension of conv1d should be 3" | |||
inp = expand_dims(inp, 3) | |||
weight = expand_dims(weight, 3) | |||
if bias is not None: | |||
assert bias.ndim == 3, "the bias dimension of conv1d should be 3" | |||
bias = expand_dims(bias, 3) | |||
stride_h = stride | |||
pad_h = padding | |||
dilate_h = dilation | |||
sparse_type = "DENSE" if groups == 1 else "GROUP" | |||
op = builtin.Convolution( | |||
stride_h=stride_h, | |||
stride_w=1, | |||
pad_h=pad_h, | |||
pad_w=0, | |||
dilate_h=dilate_h, | |||
dilate_w=1, | |||
strategy=get_execution_strategy(), | |||
mode=conv_mode, | |||
compute_mode=compute_mode, | |||
sparse=sparse_type, | |||
) | |||
inp, weight = utils.convert_inputs(inp, weight) | |||
(output,) = apply(op, inp, weight) | |||
if bias is not None: | |||
output += bias | |||
output = squeeze(output, 3) | |||
return output | |||
def hswish(x): | |||
""" | |||
Element-wise `x * relu6(x + 3) / 6`. | |||
:param x: input tensor. | |||
:return: computed tensor. | |||
Example: | |||
.. testcode:: | |||
import numpy as np | |||
from megengine import tensor | |||
import megengine.functional as F | |||
x = tensor(np.arange(5).astype(np.float32)) | |||
out = F.hswish(x) | |||
print(out.numpy().round(decimals=4)) | |||
.. testoutput:: | |||
[0. 0.6667 1.6667 3. 4. ] | |||
""" | |||
return _elwise(x, mode=Elemwise.Mode.H_SWISH) | |||
def sigmoid(x): | |||
"""Element-wise `1 / ( 1 + exp( -x ) )`.""" | |||
return _elwise(x, mode=Elemwise.Mode.SIGMOID) | |||
def hsigmoid(x): | |||
"""Element-wise `relu6(x + 3) / 6`.""" | |||
return relu6(x + 3) / 6 | |||
def relu(x): | |||
"""Element-wise `max(x, 0)`.""" | |||
return _elwise(x, mode=Elemwise.Mode.RELU) | |||
def relu6(x): | |||
"""Element-wise `min(max(x, 0), 6)`.""" | |||
return minimum(maximum(x, 0), 6) | |||
interpolate = deprecated_func("1.3", "megengine.functional.vision", "interpolate", True) | |||
roi_pooling = deprecated_func("1.3", "megengine.functional.vision", "roi_pooling", True) | |||
roi_align = deprecated_func("1.3", "megengine.functional.vision", "roi_align", True) | |||
@@ -24,9 +24,9 @@ def conv_bias_activation( | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
nonlinear_mode="IDENTITY", | |||
conv_mode="CROSS_CORRELATION", | |||
compute_mode="DEFAULT", | |||
nonlinear_mode="identity", | |||
conv_mode="cross_correlation", | |||
compute_mode="default", | |||
) -> Tensor: | |||
""" | |||
Convolution bias with activation operation, only for inference. | |||
@@ -35,27 +35,30 @@ def conv_bias_activation( | |||
:param weight: convolution kernel. | |||
:param bias: bias added to the result of convolution | |||
:param stride: stride of the 2D convolution operation. Default: 1 | |||
:param padding: size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param padding: size of the paddings added to the input on both sides | |||
of its spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 2D convolution operation. Default: 1 | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
:param groups: number of groups into which the input and output channels are divided, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. | |||
:type conv_mode: string or :class:`Convolution.Mode`. | |||
:param conv_mode: supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: | |||
'CROSS_CORRELATION' | |||
:param conv_mode: supports 'cross_correlation' or 'convolution'. Default: | |||
'cross_correlation' | |||
:param dtype: support for ``np.dtype``, Default: np.int8 | |||
:type compute_mode: string or | |||
:class:`Convolution.ComputeMode`. | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. | |||
:param compute_mode: when set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, | |||
but only effective when input and output are of float16 dtype. | |||
""" | |||
ph, pw = _pair(padding) | |||
sh, sw = _pair_nonzero(stride) | |||
dh, dw = _pair_nonzero(dilation) | |||
sparse_type = "DENSE" if groups == 1 else "GROUP" | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.ConvBias( | |||
stride_h=sh, | |||
stride_w=sw, | |||
@@ -84,9 +87,9 @@ def batch_conv_bias_activation( | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
nonlinear_mode="IDENTITY", | |||
conv_mode="CROSS_CORRELATION", | |||
compute_mode="DEFAULT", | |||
nonlinear_mode="identity", | |||
conv_mode="cross_correlation", | |||
compute_mode="default", | |||
) -> Tensor: | |||
""" | |||
Batch convolution bias with activation operation, only for inference. | |||
@@ -95,27 +98,30 @@ def batch_conv_bias_activation( | |||
:param weight: convolution kernel in batched way. | |||
:param bias: bias added to the result of convolution | |||
:param stride: stride of the 2D convolution operation. Default: 1 | |||
:param padding: size of the paddings added to the input on both sides of its spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param padding: size of the paddings added to the input on both sides | |||
of its spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 2D convolution operation. Default: 1 | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
:param groups: number of groups into which the input and output channels are divided, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and the shape of weight should be `(groups, out_channel // groups, | |||
in_channels // groups, height, width)`. | |||
:type conv_mode: string or :class:`Convolution.Mode`. | |||
:param conv_mode: supports 'CROSS_CORRELATION' or 'CONVOLUTION'. Default: | |||
'CROSS_CORRELATION' | |||
:param conv_mode: supports 'cross_correlation' or 'convolution'. Default: | |||
'cross_correlation' | |||
:param dtype: support for ``np.dtype``, Default: np.int8 | |||
:type compute_mode: string or | |||
:class:`Convolution.ComputeMode`. | |||
:param compute_mode: when set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only effective when input and output are of Float16 dtype. | |||
:param compute_mode: when set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, | |||
but only effective when input and output are of float16 dtype. | |||
""" | |||
ph, pw = _pair(padding) | |||
sh, sw = _pair_nonzero(stride) | |||
dh, dw = _pair_nonzero(dilation) | |||
sparse_type = "DENSE" if groups == 1 else "GROUP" | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.BatchConvBias( | |||
stride_h=sh, | |||
stride_w=sw, | |||
@@ -335,12 +335,8 @@ def split(inp, nsplits_or_sections, axis=0): | |||
y = F.split(x, 3) | |||
z = F.split(x, [6, 17], axis=1) | |||
if os.environ.get("MEGENGINE_USE_SYMBOLIC_SHAPE"): | |||
print([tuple(i.shape.numpy().tolist()) for i in y]) | |||
print([tuple(i.shape.numpy().tolist()) for i in z]) | |||
else: | |||
print([i.shape for i in y]) | |||
print([i.shape for i in z]) | |||
print([i.numpy().shape for i in y]) | |||
print([i.numpy().shape for i in z]) | |||
Outputs: | |||
@@ -46,6 +46,7 @@ def cvt_color(inp: Tensor, mode: str = ""): | |||
[[[[0.86555195]]]] | |||
""" | |||
mode = mode.upper() | |||
assert mode in builtin.CvtColor.Mode.__dict__, "unspport mode for cvt_color" | |||
mode = getattr(builtin.CvtColor.Mode, mode) | |||
assert isinstance(mode, builtin.CvtColor.Mode) | |||
@@ -92,9 +93,8 @@ def roi_pooling( | |||
[[[-0.1383 -0.1383] | |||
[-0.5035 -0.5035]]] | |||
""" | |||
assert mode in ["max", "average"], "only max/average mode is supported" | |||
assert mode.lower() in ["max", "average"], "only max/average mode is supported" | |||
if isinstance(output_shape, int): | |||
output_shape = (output_shape, output_shape) | |||
@@ -151,6 +151,7 @@ def roi_align( | |||
[0.1359 0.1359]]] | |||
""" | |||
mode = mode.lower() | |||
assert mode in ["max", "average"], "only max/average mode is supported" | |||
if isinstance(output_shape, int): | |||
output_shape = (output_shape, output_shape) | |||
@@ -244,9 +245,9 @@ def nms( | |||
def remap( | |||
inp: Tensor, | |||
map_xy: Tensor, | |||
border_mode: str = "REPLICATE", | |||
border_mode: str = "replicate", | |||
scalar: float = 0.0, | |||
interp_mode: str = "LINEAR", | |||
interp_mode: str = "linear", | |||
) -> Tensor: | |||
r""" | |||
Applies remap transformation to batched 2D images. | |||
@@ -257,11 +258,11 @@ def remap( | |||
:param inp: input image | |||
:param map_xy: (batch, oh, ow, 2) transformation matrix | |||
:param border_mode: pixel extrapolation method. | |||
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
"REFLECT_101", "WRAP". | |||
Default: "replicate". Currently also support "constant", "reflect", | |||
"reflect_101", "wrap". | |||
:param scalar: value used in case of a constant border. Default: 0 | |||
:param interp_mode: interpolation methods. | |||
Default: "LINEAR". Currently only support "LINEAR" mode. | |||
Default: "linear". Currently only support "linear" mode. | |||
:return: output tensor. | |||
Examples: | |||
@@ -301,10 +302,10 @@ def warp_affine( | |||
inp: Tensor, | |||
weight: Tensor, | |||
out_shape, | |||
border_mode="REPLICATE", | |||
border_mode="replicate", | |||
border_val=0, | |||
format="NHWC", | |||
imode="LINEAR", | |||
imode="linear", | |||
): | |||
""" | |||
Batched affine transform on 2D images. | |||
@@ -313,13 +314,13 @@ def warp_affine( | |||
:param weight: weight tensor. | |||
:param out_shape: output tensor shape. | |||
:param border_mode: pixel extrapolation method. | |||
Default: "WRAP". Currently "CONSTANT", "REFLECT", | |||
"REFLECT_101", "ISOLATED", "WRAP", "REPLICATE", "TRANSPARENT" are supported. | |||
Default: "wrap". Currently "constant", "reflect", | |||
"reflect_101", "isolated", "wrap", "replicate", "transparent" are supported. | |||
:param border_val: value used in case of a constant border. Default: 0 | |||
:param format: "NHWC" as default based on historical concerns, | |||
"NCHW" is also supported. Default: "NCHW". | |||
:param imode: interpolation methods. Could be "LINEAR", "NEAREST", "CUBIC", "AREA". | |||
Default: "LINEAR". | |||
"NCHW" is also supported. Default: "NHWC". | |||
:param imode: interpolation methods. Could be "linear", "nearest", "cubic", "area". | |||
Default: "linear". | |||
:return: output tensor. | |||
.. note:: | |||
@@ -340,9 +341,9 @@ def warp_perspective( | |||
inp: Tensor, | |||
M: Tensor, | |||
dsize: Union[Tuple[int, int], int, Tensor], | |||
border_mode: str = "REPLICATE", | |||
border_mode: str = "replicate", | |||
border_val: float = 0.0, | |||
interp_mode: str = "LINEAR", | |||
interp_mode: str = "linear", | |||
) -> Tensor: | |||
r""" | |||
Applies perspective transformation to batched 2D images. | |||
@@ -359,11 +360,11 @@ def warp_perspective( | |||
:param M: `(batch, 3, 3)` transformation matrix. | |||
:param dsize: `(h, w)` size of the output image. | |||
:param border_mode: pixel extrapolation method. | |||
Default: "REPLICATE". Currently also support "CONSTANT", "REFLECT", | |||
"REFLECT_101", "WRAP". | |||
Default: "replicate". Currently also support "constant", "reflect", | |||
"reflect_101", "wrap". | |||
:param border_val: value used in case of a constant border. Default: 0 | |||
:param interp_mode: interpolation methods. | |||
Default: "LINEAR". Currently only support "LINEAR" mode. | |||
Default: "linear". Currently only support "linear" mode. | |||
:return: output tensor. | |||
Note: | |||
@@ -409,7 +410,7 @@ def interpolate( | |||
inp: Tensor, | |||
size: Optional[Union[int, Tuple[int, int]]] = None, | |||
scale_factor: Optional[Union[float, Tuple[float, float]]] = None, | |||
mode: str = "BILINEAR", | |||
mode: str = "bilinear", | |||
align_corners: Optional[bool] = None, | |||
) -> Tensor: | |||
r""" | |||
@@ -419,9 +420,9 @@ def interpolate( | |||
:param size: size of the output tensor. Default: None | |||
:param scale_factor: scaling factor of the output tensor. Default: None | |||
:param mode: interpolation methods, acceptable values are: | |||
"BILINEAR", "LINEAR". Default: "BILINEAR" | |||
"bilinear", "linear". Default: "bilinear" | |||
:param align_corners: This only has an effect when `mode` | |||
is "BILINEAR" or "LINEAR". Geometrically, we consider the pixels of the input | |||
is "bilinear" or "linear". Geometrically, we consider the pixels of the input | |||
and output as squares rather than points. If set to ``True``, the input | |||
and output tensors are aligned by the center points of their corner | |||
pixels, preserving the values at the corner pixels. If set to ``False``, | |||
@@ -455,10 +456,10 @@ def interpolate( | |||
[3. 3.25 3.75 4. ]]]] | |||
""" | |||
mode = mode.upper() | |||
if mode not in ["BILINEAR", "LINEAR"]: | |||
mode = mode.lower() | |||
if mode not in ["bilinear", "linear"]: | |||
raise ValueError("interpolate only support linear or bilinear mode") | |||
if mode not in ["BILINEAR", "LINEAR"]: | |||
if mode not in ["bilinear", "linear"]: | |||
if align_corners is not None: | |||
raise ValueError( | |||
"align_corners option can only be set in the bilinear/linear interpolating mode" | |||
@@ -471,16 +472,16 @@ def interpolate( | |||
size is not None | |||
and scale_factor is None | |||
and not align_corners | |||
and mode == "BILINEAR" | |||
and mode == "bilinear" | |||
and inp.ndim in [4, 5] | |||
): | |||
# fastpath for interpolate | |||
op = builtin.Resize(imode="LINEAR", format="NCHW") | |||
op = builtin.Resize(imode="linear", format="NCHW") | |||
shape = astensor1d(size, inp, dtype="int32", device=inp.device) | |||
(result,) = apply(op, inp, shape) | |||
return result | |||
if mode == "LINEAR": | |||
if mode == "linear": | |||
inp = expand_dims(inp, 3) | |||
if inp.ndim != 4: | |||
@@ -492,14 +493,14 @@ def interpolate( | |||
if isinstance(scale_factor, (float, int)): | |||
scale_factor = float(scale_factor) | |||
if mode == "LINEAR": | |||
if mode == "linear": | |||
scale_factor = (scale_factor, float(1)) | |||
else: | |||
scale_factor = (scale_factor, scale_factor) | |||
else: | |||
if mode == "LINEAR": | |||
if mode == "linear": | |||
raise ValueError( | |||
"under LINEAR mode, scale_factor can only be single value" | |||
"under linear mode, scale_factor can only be single value" | |||
) | |||
assert len(scale_factor) == 2, "shape of scale_factor must be equal to (2, )" | |||
@@ -524,8 +525,8 @@ def interpolate( | |||
if isinstance(size, int): | |||
size = (size, 1) | |||
else: | |||
if mode == "LINEAR": | |||
raise ValueError("under LINEAR mode, size can only be single value") | |||
if mode == "linear": | |||
raise ValueError("under linear mode, size can only be single value") | |||
dsize = size | |||
oh, ow = dsize[0], dsize[1] | |||
@@ -534,7 +535,7 @@ def interpolate( | |||
if align_corners: | |||
hscale = (ih - 1.0) / (oh - 1.0) | |||
wscale = 1.0 * iw / ow | |||
if mode != "LINEAR": | |||
if mode != "linear": | |||
wscale = (iw - 1.0) / (ow - 1.0) | |||
row0 = concat( | |||
[wscale, Tensor([0, 0], dtype="float32", device=inp.device)], axis=0 | |||
@@ -570,8 +571,8 @@ def interpolate( | |||
weight = broadcast_to(weight, (inp.shape[0], 3, 3)) | |||
weight = weight.astype("float32") | |||
ret = warp_perspective(inp, weight, dsize, interp_mode="LINEAR") | |||
if mode == "LINEAR": | |||
ret = warp_perspective(inp, weight, dsize, interp_mode="linear") | |||
if mode == "linear": | |||
ret = reshape(ret, ret.shape[0:3]) | |||
return ret | |||
@@ -24,7 +24,7 @@ class BatchMatMulActivation(Module): | |||
in_features: int, | |||
out_features: int, | |||
bias: bool = True, | |||
nonlinear_mode="IDENTITY", | |||
nonlinear_mode="identity", | |||
**kwargs | |||
): | |||
super().__init__(**kwargs) | |||
@@ -37,7 +37,7 @@ class BatchMatMulActivation(Module): | |||
if bias: | |||
b_shape = (out_features,) | |||
self.bias = Parameter(np.zeros(b_shape, dtype=np.float32)) | |||
self.nonlinear_mode = nonlinear_mode | |||
self.nonlinear_mode = nonlinear_mode.lower() | |||
self.reset_parameters() | |||
def _get_fanin(self): | |||
@@ -54,7 +54,7 @@ class BatchMatMulActivation(Module): | |||
res = matmul(weight, x) | |||
if self.bias is not None: | |||
res += bias | |||
if self.nonlinear_mode == "RELU": | |||
if self.nonlinear_mode == "relu": | |||
res = relu(res) | |||
return res | |||
@@ -138,11 +138,11 @@ class Conv1d(_ConvNd): | |||
out_channel // groups, in_channels // groups, *kernel_size)`. | |||
:param bias: whether to add a bias onto the result of convolution. Default: | |||
True | |||
:param conv_mode: Supports `CROSS_CORRELATION`. Default: | |||
`CROSS_CORRELATION` | |||
:param compute_mode: When set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
:param conv_mode: Supports `cross_correlation`. Default: | |||
`cross_correlation` | |||
:param compute_mode: When set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
Examples: | |||
@@ -176,8 +176,8 @@ class Conv1d(_ConvNd): | |||
dilation: int = 1, | |||
groups: int = 1, | |||
bias: bool = True, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
compute_mode: str = "DEFAULT", | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
**kwargs | |||
): | |||
kernel_size = kernel_size | |||
@@ -298,11 +298,11 @@ class Conv2d(_ConvNd): | |||
out_channel // groups, in_channels // groups, *kernel_size)`. | |||
:param bias: whether to add a bias onto the result of convolution. Default: | |||
True | |||
:param conv_mode: Supports `CROSS_CORRELATION`. Default: | |||
`CROSS_CORRELATION` | |||
:param compute_mode: When set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
:param conv_mode: Supports `cross_correlation`. Default: | |||
`cross_correlation` | |||
:param compute_mode: When set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
Examples: | |||
@@ -336,8 +336,8 @@ class Conv2d(_ConvNd): | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
bias: bool = True, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
compute_mode: str = "DEFAULT", | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
**kwargs | |||
): | |||
kernel_size = _pair_nonzero(kernel_size) | |||
@@ -436,15 +436,16 @@ class Conv3d(_ConvNd): | |||
:param padding: size of the paddings added to the input on both sides of its | |||
spatial dimensions. Only zero-padding is supported. Default: 0 | |||
:param dilation: dilation of the 3D convolution operation. Default: 1 | |||
:param groups: number of groups into which the input and output channels are divided, so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
:param groups: number of groups into which the input and output channels are divided, | |||
so as to perform a "grouped convolution". When ``groups`` is not 1, | |||
``in_channels`` and ``out_channels`` must be divisible by ``groups``, | |||
and there would be an extra dimension at the beginning of the weight's | |||
shape. Specifically, the shape of weight would be `(groups, | |||
out_channel // groups, in_channels // groups, *kernel_size)`. | |||
:param bias: whether to add a bias onto the result of convolution. Default: | |||
True | |||
:param conv_mode: Supports `CROSS_CORRELATION`. Default: | |||
`CROSS_CORRELATION` | |||
:param conv_mode: Supports `cross_correlation`. Default: | |||
`cross_correlation` | |||
Examples: | |||
@@ -477,7 +478,7 @@ class Conv3d(_ConvNd): | |||
dilation: Union[int, Tuple[int, int, int]] = 1, | |||
groups: int = 1, | |||
bias: bool = True, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
conv_mode: str = "cross_correlation", | |||
): | |||
kernel_size = _triple_nonzero(kernel_size) | |||
stride = _triple_nonzero(stride) | |||
@@ -566,11 +567,11 @@ class ConvTranspose2d(_ConvNd): | |||
out_channels // groups, in_channels // groups, *kernel_size)``. Default: 1 | |||
:param bias: wether to add a bias onto the result of convolution. Default: | |||
True | |||
:param conv_mode: Supports `CROSS_CORRELATION`. Default: | |||
`CROSS_CORRELATION` | |||
:param compute_mode: When set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
:param conv_mode: Supports `cross_correlation`. Default: | |||
`cross_correlation` | |||
:param compute_mode: When set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
""" | |||
@@ -584,8 +585,8 @@ class ConvTranspose2d(_ConvNd): | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
bias: bool = True, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
compute_mode: str = "DEFAULT", | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
**kwargs | |||
): | |||
kernel_size = _pair_nonzero(kernel_size) | |||
@@ -679,7 +680,7 @@ class LocalConv2d(Conv2d): | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
conv_mode: str = "cross_correlation", | |||
**kwargs | |||
): | |||
self.input_height = input_height | |||
@@ -758,11 +759,11 @@ class DeformableConv2d(_ConvNd): | |||
out_channel // groups, in_channels // groups, *kernel_size)`. | |||
:param bias: whether to add a bias onto the result of convolution. Default: | |||
True | |||
:param conv_mode: Supports `CROSS_CORRELATION`. Default: | |||
`CROSS_CORRELATION` | |||
:param compute_mode: When set to "DEFAULT", no special requirements will be | |||
placed on the precision of intermediate results. When set to "FLOAT32", | |||
"Float32" would be used for accumulator and intermediate result, but only | |||
:param conv_mode: Supports `cross_correlation`. Default: | |||
`cross_correlation` | |||
:param compute_mode: When set to "default", no special requirements will be | |||
placed on the precision of intermediate results. When set to "float32", | |||
"float32" would be used for accumulator and intermediate result, but only | |||
effective when input and output are of float16 dtype. | |||
""" | |||
@@ -776,8 +777,8 @@ class DeformableConv2d(_ConvNd): | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
bias: bool = True, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
compute_mode: str = "DEFAULT", | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
**kwargs | |||
): | |||
kernel_size = _pair_nonzero(kernel_size) | |||
@@ -24,8 +24,8 @@ class _ConvBnActivation2d(Module): | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
bias: bool = True, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
compute_mode: str = "DEFAULT", | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
eps=1e-5, | |||
momentum=0.9, | |||
affine=True, | |||
@@ -18,58 +18,58 @@ class Elemwise(Module): | |||
:param method: the elemwise method, support the following string. | |||
It will do the normal elemwise operator for float. | |||
* "ADD": a + b | |||
* "FUSE_ADD_RELU": max(x+y, 0) | |||
* "MUL": x * y | |||
* "MIN": min(x, y) | |||
* "MAX": max(x, y) | |||
* "SUB": x - y | |||
* "TRUE_DIV": x / y | |||
* "FUSE_ADD_SIGMOID": sigmoid(x + y) | |||
* "FUSE_ADD_TANH": tanh(x + y) | |||
* "RELU": x > 0 ? x : 0 | |||
* "ABS": x > 0 ? x : -x | |||
* "SIGMOID": sigmoid(x) | |||
* "EXP": exp(x) | |||
* "TANH": tanh(x) | |||
* "FUSE_MUL_ADD3": x * y + z | |||
* "FAST_TANH": x * (27. + x * x) / (27. + 9. * x * x) | |||
* "NEGATE": -x | |||
* "ACOS": acos(x) | |||
* "ASIN": asin(x) | |||
* "CEIL": ceil(x) | |||
* "COS": cos(x) | |||
* "EXPM1": expm1(x) | |||
* "FLOOR": floor(x) | |||
* "LOG": log(x) | |||
* "LOG1P": log1p(x) | |||
* "SIN": sin(x) | |||
* "ROUND": round(x) | |||
* "ERF": erf(x) | |||
* "ERFINV": erfinv(x) | |||
* "ERFC": erfc(x) | |||
* "ERFCINV": erfcinv(x) | |||
* "ABS_GRAD": abs_grad | |||
* "FLOOR_DIV": floor_div | |||
* "MOD": mod | |||
* "SIGMOID_GRAD": sigmoid_grad | |||
* "SWITCH_GT0": switch_gt0 | |||
* "TANH_GRAD": tanh_grad | |||
* "LT": less | |||
* "LEQ": leq | |||
* "EQ": equal | |||
* "POW": pow | |||
* "LOG_SUM_EXP": log_sum_exp | |||
* "FAST_TANH_GRAD": fast_tanh_grad | |||
* "ATAN2": atan2 | |||
* "COND_LEQ_MOV": cond_leq_mov | |||
* "H_SWISH": h_swish | |||
* "FUSE_ADD_H_SWISH": h_swish(x+y) | |||
* "H_SWISH_GRAD": h_swish_grad | |||
* "AND": bool binary: x && y | |||
* "OR": bool binary: x || y | |||
* "XOR": bool binary: x ^ y | |||
* "NOT": bool unary: ~x | |||
* "add": a + b | |||
* "fuse_add_relu": max(x+y, 0) | |||
* "mul": x * y | |||
* "min": min(x, y) | |||
* "max": max(x, y) | |||
* "sub": x - y | |||
* "true_div": x / y | |||
* "fuse_add_sigmoid": sigmoid(x + y) | |||
* "fuse_add_tanh": tanh(x + y) | |||
* "relu": x > 0 ? x : 0 | |||
* "abs": x > 0 ? x : -x | |||
* "sigmoid": sigmoid(x) | |||
* "exp": exp(x) | |||
* "tanh": tanh(x) | |||
* "fuse_mul_add3": x * y + z | |||
* "fast_tanh": x * (27. + x * x) / (27. + 9. * x * x) | |||
* "negate": -x | |||
* "acos": acos(x) | |||
* "asin": asin(x) | |||
* "ceil": ceil(x) | |||
* "cos": cos(x) | |||
* "expm1": expm1(x) | |||
* "floor": floor(x) | |||
* "log": log(x) | |||
* "log1p": log1p(x) | |||
* "sin": sin(x) | |||
* "round": round(x) | |||
* "erf": erf(x) | |||
* "erfinv": erfinv(x) | |||
* "erfc": erfc(x) | |||
* "erfcinv": erfcinv(x) | |||
* "abs_grad": abs_grad | |||
* "floor_div": floor_div | |||
* "mod": mod | |||
* "sigmoid_grad": sigmoid_grad | |||
* "switch_gt0": switch_gt0 | |||
* "tanh_grad": tanh_grad | |||
* "lt": less | |||
* "leq": leq | |||
* "eq": equal | |||
* "pow": pow | |||
* "log_sum_exp": log_sum_exp | |||
* "fast_tanh_grad": fast_tanh_grad | |||
* "atan2": atan2 | |||
* "cond_leq_mov": cond_leq_mov | |||
* "h_swish": h_swish | |||
* "fuse_add_h_swish": h_swish(x+y) | |||
* "h_swish_grad": h_swish_grad | |||
* "and": bool binary: x && y | |||
* "or": bool binary: x || y | |||
* "xor": bool binary: x ^ y | |||
* "not": bool unary: ~x | |||
""" | |||
def __init__(self, method, **kwargs): | |||
@@ -27,7 +27,7 @@ class BatchMatMulActivation(Float.BatchMatMulActivation, QuantizedModule): | |||
in_features: int, | |||
out_features: int, | |||
bias: bool = True, | |||
nonlinear_mode="IDENTITY", | |||
nonlinear_mode="identity", | |||
dtype=None, | |||
**kwargs | |||
): | |||
@@ -34,8 +34,8 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
padding: Union[int, Tuple[int, int]] = 0, | |||
dilation: Union[int, Tuple[int, int]] = 1, | |||
groups: int = 1, | |||
conv_mode: str = "CROSS_CORRELATION", | |||
compute_mode: str = "DEFAULT", | |||
conv_mode: str = "cross_correlation", | |||
compute_mode: str = "default", | |||
dtype=None, | |||
**kwargs | |||
): | |||
@@ -53,7 +53,7 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
) | |||
self.output_dtype = dtype | |||
def calc_conv_quantized(self, inp, nonlinear_mode="IDENTITY"): | |||
def calc_conv_quantized(self, inp, nonlinear_mode="identity"): | |||
inp_scale = dtype.get_scale(inp.dtype) | |||
w_scale = dtype.get_scale(self.weight.dtype) | |||
bias_scale = inp_scale * w_scale | |||
@@ -100,11 +100,11 @@ class Conv2d(Float.Conv2d, QuantizedModule): | |||
return qconv | |||
def forward(self, inp): | |||
return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY") | |||
return self.calc_conv_quantized(inp, nonlinear_mode="identity") | |||
class ConvRelu2d(Conv2d): | |||
r"""Quantized version of :class:`~.qat.ConvRelu2d`.""" | |||
def forward(self, inp): | |||
return self.calc_conv_quantized(inp, nonlinear_mode="RELU") | |||
return self.calc_conv_quantized(inp, nonlinear_mode="relu") |
@@ -50,11 +50,11 @@ class ConvBn2d(_ConvBnActivation2d): | |||
r"""Quantized version of :class:`~.qat.ConvBn2d`.""" | |||
def forward(self, inp): | |||
return self.calc_conv_quantized(inp, nonlinear_mode="IDENTITY") | |||
return self.calc_conv_quantized(inp, nonlinear_mode="identity") | |||
class ConvBnRelu2d(_ConvBnActivation2d): | |||
r"""Quantized version of :class:`~.qat.ConvBnRelu2d`.""" | |||
def forward(self, inp): | |||
return self.calc_conv_quantized(inp, nonlinear_mode="RELU") | |||
return self.calc_conv_quantized(inp, nonlinear_mode="relu") |
@@ -16,7 +16,7 @@ class Elemwise(QuantizedModule): | |||
def __init__(self, method, dtype=None, **kwargs): | |||
super().__init__(**kwargs) | |||
self.method = "Q" + method | |||
self.method = "q" + method | |||
self.output_dtype = dtype | |||
def forward(self, *inps): | |||
@@ -16,9 +16,9 @@ fi | |||
export MEGENGINE_LOGGING_LEVEL="ERROR" | |||
pushd $(dirname "${BASH_SOURCE[0]}")/.. >/dev/null | |||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'not isolated_distributed' | |||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest -v $test_dirs -m 'not isolated_distributed' | |||
if [[ "$TEST_PLAT" == cuda ]]; then | |||
echo "test GPU pytest now" | |||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest $test_dirs -m 'isolated_distributed' | |||
PYTHONPATH="." PY_IGNORE_IMPORTMISMATCH=1 python3 -m pytest -v $test_dirs -m 'isolated_distributed' | |||
fi | |||
popd >/dev/null |
@@ -372,7 +372,7 @@ def test_interpolate_fastpath(): | |||
x = mge.Tensor(x_np) | |||
grad = Grad().wrt(x, callback=save_to(x)) | |||
y = F.vision.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
y = F.vision.interpolate(x, size=(16, 16), mode="bilinear") | |||
grad(y, F.ones_like(y)) | |||
np.testing.assert_equal(np.ones(x_np.shape, dtype=np.float32) / 4, x.grad.numpy()) | |||
@@ -162,7 +162,7 @@ def test_qadd(): | |||
x = tensor(x, dtype=dtype.qint8(inp_scale)) | |||
y = tensor(y, dtype=dtype.qint8(inp_scale)) | |||
result_mge = F.elemwise._elemwise_multi_type( | |||
x, y, mode="QADD", dtype=dtype.qint8(outp_scale) | |||
x, y, mode="qadd", dtype=dtype.qint8(outp_scale) | |||
) | |||
result_mge = result_mge.astype("float32").numpy() | |||
result_expect = x.astype("float32").numpy() + y.astype("float32").numpy() | |||
@@ -140,8 +140,8 @@ def test_interpolate(): | |||
def linear_interpolate(): | |||
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) | |||
out = F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
out2 = F.vision.interpolate(inp, 4, mode="LINEAR") | |||
out = F.vision.interpolate(inp, scale_factor=2.0, mode="linear") | |||
out2 = F.vision.interpolate(inp, 4, mode="linear") | |||
np.testing.assert_allclose( | |||
out.numpy(), np.array([[[1.0, 1.25, 1.75, 2.0]]], dtype=np.float32) | |||
@@ -170,13 +170,13 @@ def test_interpolate(): | |||
inp = tensor(np.arange(1, 5, dtype=np.float32).reshape(1, 1, 2, 2)) | |||
with pytest.raises(ValueError): | |||
F.vision.interpolate(inp, scale_factor=2.0, mode="LINEAR") | |||
F.vision.interpolate(inp, scale_factor=2.0, mode="linear") | |||
def inappropriate_scale_linear_interpolate(): | |||
inp = tensor(np.arange(1, 3, dtype=np.float32).reshape(1, 1, 2)) | |||
with pytest.raises(ValueError): | |||
F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="LINEAR") | |||
F.vision.interpolate(inp, scale_factor=[2.0, 3.0], mode="linear") | |||
linear_interpolate() | |||
many_batch_interpolate() | |||
@@ -339,18 +339,18 @@ def test_interpolate_fastpath(): | |||
] | |||
for inp_shape, target_shape in test_cases: | |||
x = tensor(np.random.randn(*inp_shape), dtype=np.float32) | |||
out = F.vision.interpolate(x, target_shape, mode="BILINEAR") | |||
out = F.vision.interpolate(x, target_shape, mode="bilinear") | |||
assert out.shape[0] == x.shape[0] and out.shape[1] == x.shape[1] | |||
assert out.shape[2] == target_shape[0] and out.shape[3] == target_shape[1] | |||
# check value | |||
x = tensor(np.ones((3, 3, 10, 10)), dtype=np.float32) | |||
out = F.vision.interpolate(x, (15, 5), mode="BILINEAR") | |||
out = F.vision.interpolate(x, (15, 5), mode="bilinear") | |||
np.testing.assert_equal(out.numpy(), np.ones((3, 3, 15, 5)).astype(np.float32)) | |||
np_x = np.arange(32) | |||
x = tensor(np_x).astype(np.float32).reshape(1, 1, 32, 1) | |||
out = F.vision.interpolate(x, (1, 1), mode="BILINEAR") | |||
out = F.vision.interpolate(x, (1, 1), mode="bilinear") | |||
np.testing.assert_equal(out.item(), np_x.mean()) | |||
@@ -374,7 +374,7 @@ def test_warp_affine(): | |||
inp_shape = (1, 3, 3, 3) | |||
x = tensor(np.arange(27, dtype=np.float32).reshape(inp_shape)) | |||
weightv = [[[1.26666667, 0.6, -83.33333333], [-0.33333333, 1, 66.66666667]]] | |||
outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="WRAP") | |||
outp = F.vision.warp_affine(x, tensor(weightv), (2, 2), border_mode="wrap") | |||
res = np.array( | |||
[ | |||
[ | |||
@@ -509,7 +509,7 @@ def test_conv_bias(): | |||
SH, | |||
SW, | |||
has_bias=True, | |||
nonlinear_mode="IDENTITY", | |||
nonlinear_mode="identity", | |||
): | |||
inp_v = np.random.normal(size=(N, IC, IH, IW)) | |||
w_v = np.random.normal(size=(OC, IC, KH, KW)) | |||
@@ -541,7 +541,7 @@ def test_conv_bias(): | |||
O = F.conv2d( | |||
inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW), | |||
) | |||
if nonlinear_mode == "RELU": | |||
if nonlinear_mode == "relu": | |||
return F.relu(O) | |||
else: | |||
return O | |||
@@ -583,8 +583,8 @@ def test_conv_bias(): | |||
run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1) | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2) | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "RELU") | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "RELU") | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu") | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu") | |||
@pytest.mark.skipif( | |||
@@ -23,8 +23,8 @@ def test_module_elemwise(): | |||
y = np.random.rand(100).astype("float32") | |||
x, y = tensor(x), tensor(y) | |||
np.testing.assert_almost_equal( | |||
test_func("H_SWISH", x), F.hswish(x).numpy(), decimal=6 | |||
test_func("h_swish", x), F.hswish(x).numpy(), decimal=6 | |||
) | |||
np.testing.assert_almost_equal( | |||
test_func("ADD", x, y), F.add(x, y).numpy(), decimal=6 | |||
test_func("add", x, y), F.add(x, y).numpy(), decimal=6 | |||
) |
@@ -133,7 +133,7 @@ def test_dequant_stub(): | |||
np.testing.assert_allclose(q, fake_quant_normal.numpy()) | |||
@pytest.mark.parametrize("kind", ["COS", "RELU", "ADD", "MUL", "FUSE_ADD_RELU"]) | |||
@pytest.mark.parametrize("kind", ["cos", "relu", "add", "mul", "fuse_add_relu"]) | |||
def test_elemwise(kind): | |||
normal_net = Float.Elemwise(kind) | |||
normal_net.eval() | |||
@@ -167,7 +167,7 @@ def test_elemwise(kind): | |||
x2_int8 = quant(x2, x2_scale) | |||
# test correctness of `Float`, `QAT` and `Quantized` | |||
if kind in ("ADD", "MUL", "FUSE_ADD_RELU"): | |||
if kind in ("add", "mul", "fuse_add_relu"): | |||
normal = normal_net(x1, x2) | |||
qat_without_fakequant = qat_from_float(x1, x2) | |||
fake_quant_normal = fake_quant_act(normal_net(x1, x2), act_scale) | |||
@@ -22,7 +22,7 @@ def fake_quant(x, scale): | |||
return x | |||
@pytest.mark.parametrize("kind", ["ABS", "SIN", "SUB", "MUL", "FUSE_ADD_TANH"]) | |||
@pytest.mark.parametrize("kind", ["abs", "sin", "sub", "mul", "fuse_add_tanh"]) | |||
def test_elemwise(kind): | |||
x1 = mge.tensor(np.random.normal(size=(3, 3)).astype("float32")) | |||
x1_scale = np.float32(np.random.rand() + 1) | |||
@@ -39,8 +39,8 @@ def test_elemwise(kind): | |||
output_scale = np.float32(np.random.rand() + 1) | |||
output_dtype = dtype.qint8(output_scale) | |||
quantized_kind = "Q" + kind | |||
if kind in ("ABS", "SIN"): | |||
quantized_kind = "q" + kind | |||
if kind in ("abs", "sin"): | |||
desired_out = fake_quant(_elwise(x1, mode=kind), output_scale) | |||
actual_out = ( | |||
_elemwise_multi_type( | |||
@@ -84,7 +84,7 @@ def test_conv_bias(): | |||
SH, | |||
SW, | |||
has_bias=True, | |||
nonlinear_mode="IDENTITY", | |||
nonlinear_mode="identity", | |||
): | |||
inp_v = np.random.normal(size=(N, IC, IH, IW)) | |||
w_v = np.random.normal(size=(OC, IC, KH, KW)) | |||
@@ -116,7 +116,7 @@ def test_conv_bias(): | |||
O = F.conv2d( | |||
inp, w, b if has_bias else None, stride=(SH, SW), padding=(PH, PW), | |||
) | |||
if nonlinear_mode == "RELU": | |||
if nonlinear_mode == "relu": | |||
return F.relu(O) | |||
else: | |||
return O | |||
@@ -158,5 +158,5 @@ def test_conv_bias(): | |||
run(10, 12, 24, 46, 46, 1, 1, 2, 1, 3, 1) | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2) | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "RELU") | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "RELU") | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, False, "relu") | |||
run(10, 36, 8, 46, 26, 2, 2, 2, 1, 1, 2, True, "relu") |
@@ -280,7 +280,7 @@ def test_convbias(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(inp, weight, bias): | |||
return F.quantized.conv_bias_activation( | |||
inp, weight, bias, dtype=dtype.qint8(scale=1.0), nonlinear_mode="RELU" | |||
inp, weight, bias, dtype=dtype.qint8(scale=1.0), nonlinear_mode="relu" | |||
) | |||
inp = Tensor(np.random.random((1, 3, 64, 64)), dtype=dtype.qint8(scale=1.0)) | |||
@@ -297,7 +297,7 @@ def test_batch_convbias(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(inp, weight, bias): | |||
return F.quantized.batch_conv_bias_activation( | |||
inp, weight, bias, dtype=dtype.qint8(scale=1.0), nonlinear_mode="RELU" | |||
inp, weight, bias, dtype=dtype.qint8(scale=1.0), nonlinear_mode="relu" | |||
) | |||
inp = Tensor(np.random.random((1, 3, 64, 64)), dtype=dtype.qint8(scale=1.0)) | |||
@@ -358,7 +358,7 @@ def test_warpaffine(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(x, weightv): | |||
return F.vision.warp_affine(x, weightv, (2, 2), border_mode="WRAP") | |||
return F.vision.warp_affine(x, weightv, (2, 2), border_mode="wrap") | |||
outp = fwd(x, weightv) | |||
check_pygraph_dump(fwd, [x, weightv], [outp]) | |||
@@ -387,7 +387,7 @@ def test_resize(): | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(x): | |||
return F.vision.interpolate(x, size=(16, 16), mode="BILINEAR") | |||
return F.vision.interpolate(x, size=(16, 16), mode="bilinear") | |||
out = fwd(x) | |||
check_pygraph_dump(fwd, [x], [out]) | |||
@@ -697,7 +697,7 @@ def test_assert_equal(): | |||
def test_elemwise_multitype(): | |||
op = builtin.ElemwiseMultiType(mode="QADD", dtype=dtype.qint32(2.0)) | |||
op = builtin.ElemwiseMultiType(mode="qadd", dtype=dtype.qint32(2.0)) | |||
@trace(symbolic=True, capture_as_const=True) | |||
def fwd(x, y): | |||