GitOrigin-RevId: 848d34f63d
release-1.10
@@ -75,8 +75,6 @@ class autocast: | |||
amp._set_amp_high_prec_dtype(self._origin_high) | |||
amp._set_amp_low_prec_dtype(self._origin_low) | |||
_config._reset_execution_config(*self._origin_configs) | |||
def __call__(self, func): | |||
@functools.wraps(func) | |||
def wrapper(*args, **kwargs): | |||
@@ -12,8 +12,6 @@ from ._imperative_rt.core2 import ( | |||
# use "default" to distinguish it from None in _reset_execution_config | |||
__compute_mode = "default" | |||
__conv_format = "default" | |||
__bn_format = "default" | |||
_benchmark_kernel = False | |||
_deterministic_kernel = False | |||
@@ -23,8 +21,6 @@ __all__ = [ | |||
"async_level", | |||
"disable_memory_forwarding", | |||
"_compute_mode", | |||
"_conv_format", | |||
"_bn_format", | |||
"_auto_format_convert", | |||
"_override", | |||
] | |||
@@ -138,35 +134,6 @@ def _compute_mode(mod, _compute_mode: str): | |||
__compute_mode = _compute_mode | |||
@property | |||
def _conv_format(mod): | |||
r"""Get or set convolution data/filter/output layout format. The default option is None, | |||
which means that no special format will be placed on. There are all layout definitions | |||
``NCHW`` layout: ``{N, C, H, W}`` | |||
``NHWC`` layout: ``{N, H, W, C}`` | |||
``NHWCD4`` layout: ``{N, H, (C + 3) / 4, W, 4}`` | |||
``NHWCD4I`` layout: with ``align_axis = 2`` | |||
``NCHW4`` layout: ``{N, C/4, H, W, 4}`` | |||
``NCHW88`` layout: ``{N, C/8, H, W, 8}`` | |||
``CHWN4`` layout: ``{C/4, H, W, N, 4}`` | |||
``NCHW64`` layout: ``{N, C/64, H, W, 64}`` | |||
Examples: | |||
.. code-block:: | |||
import megengine as mge | |||
mge.config._conv_format = "NHWC" | |||
""" | |||
return __conv_format | |||
@_conv_format.setter | |||
def _conv_format(mod, format: str): | |||
global __conv_format | |||
__conv_format = format | |||
@property | |||
def _bn_format(mod): | |||
@@ -215,18 +182,15 @@ def _reset_execution_config( | |||
deterministic_kernel=None, | |||
async_level=None, | |||
compute_mode=None, | |||
conv_format=None, | |||
bn_format=None, | |||
auto_format_convert=None, | |||
): | |||
global _benchmark_kernel, _deterministic_kernel, __compute_mode, __conv_format, __bn_format | |||
global _benchmark_kernel, _deterministic_kernel, __compute_mode | |||
orig_flags = ( | |||
_benchmark_kernel, | |||
_deterministic_kernel, | |||
get_option("async_level"), | |||
__compute_mode, | |||
__conv_format, | |||
__bn_format, | |||
get_auto_format_convert(), | |||
) | |||
if benchmark_kernel is not None: | |||
@@ -237,10 +201,6 @@ def _reset_execution_config( | |||
set_option("async_level", async_level) | |||
if compute_mode is not None: | |||
__compute_mode = compute_mode | |||
if conv_format is not None: | |||
__conv_format = conv_format | |||
if bn_format is not None: | |||
__bn_format = bn_format | |||
if auto_format_convert is not None: | |||
set_auto_format_convert(auto_format_convert) | |||
@@ -253,8 +213,6 @@ def _override( | |||
deterministic_kernel=None, | |||
async_level=None, | |||
compute_mode=None, | |||
conv_format=None, | |||
bn_format=None, | |||
auto_format_convert=None, | |||
): | |||
r"""A context manager that users can opt in by attaching the decorator to set | |||
@@ -271,8 +229,6 @@ def _override( | |||
deterministic_kernel = Fasle, | |||
async_level=2, | |||
compute_mode="float32", | |||
conv_format="NHWC", | |||
bn_format="dim_111c", | |||
auto_format_convert=True, | |||
) | |||
def train(): | |||
@@ -282,8 +238,6 @@ def _override( | |||
deterministic_kernel, | |||
async_level, | |||
compute_mode, | |||
conv_format, | |||
bn_format, | |||
auto_format_convert, | |||
) | |||
try: | |||
@@ -178,7 +178,6 @@ def conv1d( | |||
dilate_h = dilation | |||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
sparse_type = "dense" if groups == 1 else "group" | |||
op = builtin.Convolution( | |||
stride_h=stride_h, | |||
@@ -191,7 +190,6 @@ def conv1d( | |||
mode=conv_mode, | |||
compute_mode=compute_mode, | |||
sparse=sparse_type, | |||
format=conv_format, | |||
) | |||
(output,) = apply(op, inp, weight) | |||
if bias is not None: | |||
@@ -247,7 +245,6 @@ def conv2d( | |||
sparse_type = "dense" if groups == 1 else "group" | |||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.Convolution( | |||
stride_h=stride_h, | |||
stride_w=stride_w, | |||
@@ -259,7 +256,6 @@ def conv2d( | |||
mode=conv_mode, | |||
compute_mode=compute_mode, | |||
sparse=sparse_type, | |||
format=conv_format, | |||
) | |||
(output,) = apply(op, inp, weight) | |||
if bias is not None: | |||
@@ -603,7 +599,6 @@ def max_pool2d( | |||
window_h, window_w = expand_hw(kernel_size) | |||
stride_h, stride_w = expand_hw(stride) | |||
padding_h, padding_w = expand_hw(padding) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.Pooling( | |||
window_h=window_h, | |||
@@ -614,7 +609,6 @@ def max_pool2d( | |||
pad_w=padding_w, | |||
mode="max", | |||
strategy=get_execution_strategy(), | |||
format=conv_format, | |||
) | |||
(output,) = apply(op, inp) | |||
return output | |||
@@ -648,7 +642,6 @@ def avg_pool2d( | |||
window_h, window_w = expand_hw(kernel_size) | |||
stride_h, stride_w = expand_hw(stride) | |||
padding_h, padding_w = expand_hw(padding) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.Pooling( | |||
window_h=window_h, | |||
@@ -659,7 +652,6 @@ def avg_pool2d( | |||
pad_w=padding_w, | |||
mode=mode, | |||
strategy=get_execution_strategy(), | |||
format=conv_format, | |||
) | |||
(output,) = apply(op, inp) | |||
return output | |||
@@ -1181,7 +1173,6 @@ def batch_norm( | |||
momentum: float = 0.9, | |||
eps: float = 1e-5, | |||
inplace: bool = True, | |||
param_dim="dim_1c11" | |||
): | |||
r"""Applies batch normalization to the input. | |||
@@ -1210,14 +1201,8 @@ def batch_norm( | |||
if x_ndim is not None and x_ndim != 1: | |||
return x | |||
if param_dim == "dim_1c11": | |||
C = inp.shape[1] | |||
pshape = (1, C, 1, 1) | |||
elif param_dim == "dim_111c": | |||
C = inp.shape[3] | |||
pshape = (1, 1, 1, C) | |||
else: | |||
raise ValueError("Invalid param_dim {}".format(param_dim)) | |||
C = inp.shape[1] | |||
pshape = (1, C, 1, 1) | |||
if x is None: | |||
x = Const(value, inp.dtype, inp.device) | |||
@@ -1241,16 +1226,12 @@ def batch_norm( | |||
bias = make_full_if_none(bias, 0) | |||
if not training: | |||
op = builtin.BatchNorm( | |||
fwd_mode=BatchNorm.FwdMode.INFERENCE, epsilon=eps, param_dim=param_dim | |||
) | |||
op = builtin.BatchNorm(fwd_mode=BatchNorm.FwdMode.INFERENCE, epsilon=eps) | |||
ret = apply(op, inp, weight, bias, running_mean, running_var)[-1] | |||
return ret | |||
else: | |||
op = builtin.BatchNorm( | |||
avg_factor=1 - momentum, epsilon=eps, param_dim=param_dim | |||
) | |||
op = builtin.BatchNorm(avg_factor=1 - momentum, epsilon=eps) | |||
if has_mean or has_var: | |||
running_mean = make_full_if_none(running_mean, 0) | |||
running_var = make_full_if_none(running_var, 1) | |||
@@ -50,7 +50,6 @@ def conv_bias_activation( | |||
dh, dw = _pair_nonzero(dilation) | |||
sparse_type = "dense" if groups == 1 else "group" | |||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.ConvBias( | |||
stride_h=sh, | |||
stride_w=sw, | |||
@@ -59,7 +58,6 @@ def conv_bias_activation( | |||
dilate_h=dh, | |||
dilate_w=dw, | |||
dtype=dtype, | |||
format=conv_format, | |||
strategy=get_execution_strategy(), | |||
nonlineMode=nonlinear_mode, | |||
mode=conv_mode, | |||
@@ -111,7 +109,6 @@ def batch_conv_bias_activation( | |||
dh, dw = _pair_nonzero(dilation) | |||
sparse_type = "dense" if groups == 1 else "group" | |||
compute_mode = _config._get_actual_op_param(compute_mode, _config.__compute_mode) | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.BatchConvBias( | |||
stride_h=sh, | |||
stride_w=sw, | |||
@@ -120,7 +117,6 @@ def batch_conv_bias_activation( | |||
dilate_h=dh, | |||
dilate_w=dw, | |||
dtype=dtype, | |||
format=conv_format, | |||
strategy=get_execution_strategy(), | |||
nonlineMode=nonlinear_mode, | |||
mode=conv_mode, | |||
@@ -146,11 +146,11 @@ def correlation( | |||
pad_size: int (non-negative), optional, default=0) – pad for Correlation | |||
is_multiply: boolean, optional, default=True) – operation type is either multiplication or absolute difference | |||
""" | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
assert conv_format == "NCHW", "Currently correlation only support NCHW mode" | |||
# Currently correlation only support NCHW mode | |||
format = "NCHW" | |||
op = builtin.Correlation( | |||
format=conv_format, | |||
format=format, | |||
kernel_size=kernel_size, | |||
max_displacement=max_displacement, | |||
stride1=stride1, | |||
@@ -209,12 +209,13 @@ def roi_align( | |||
sample_points = (sample_points, sample_points) | |||
sample_height, sample_width = sample_points | |||
offset = 0.5 if aligned else 0.0 | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
assert conv_format == "NCHW", "Currently roi_align only support NCHW mode" | |||
# Currently roi_align only support NCHW mode | |||
format = "NCHW" | |||
op = builtin.ROIAlign( | |||
mode=mode, | |||
format=conv_format, | |||
format=format, | |||
spatial_scale=spatial_scale, | |||
offset=offset, | |||
pooled_height=pooled_height, | |||
@@ -321,10 +322,10 @@ def remap( | |||
array([[[[1., 4.], | |||
[4., 4.]]]], dtype=float32) | |||
""" | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
format = "NCHW" | |||
op = builtin.Remap( | |||
imode=interp_mode, border_type=border_mode, format=conv_format, scalar=scalar | |||
imode=interp_mode, border_type=border_mode, format=format, scalar=scalar | |||
) | |||
assert isinstance(inp, (Tensor, megbrain_graph.VarNode)), "inp must be Tensor type" | |||
(result,) = apply(op, inp, map_xy) | |||
@@ -364,12 +365,10 @@ def warp_affine( | |||
On different platforms, different combinations are supported. | |||
``warp_affine`` only support forward inference, Please refer to ``warp_perspective`` if backward is needed. | |||
""" | |||
conv_format = _config._get_actual_op_param(format, _config.__conv_format) | |||
op = builtin.WarpAffine( | |||
border_mode=border_mode, | |||
border_val=border_val, | |||
format=conv_format, | |||
format=format, | |||
imode=interp_mode, | |||
) | |||
out_shape = utils.astensor1d(out_shape, inp, dtype="int32", device=inp.device) | |||
@@ -437,9 +436,8 @@ def warp_perspective( | |||
mat = mat.astype("float32") | |||
if inp.dtype == np.float16: | |||
inp = inp.astype("float32") | |||
conv_format = _config._get_actual_op_param(format, _config.__conv_format) | |||
op = builtin.WarpPerspective( | |||
imode=interp_mode, bmode=border_mode, format=conv_format, border_val=border_val | |||
imode=interp_mode, bmode=border_mode, format=format, border_val=border_val | |||
) | |||
out_shape = astensor1d(out_shape, inp, dtype="int32", device=inp.device) | |||
if mat_idx is not None: | |||
@@ -563,8 +561,9 @@ def interpolate( | |||
} | |||
if inp.dtype == np.float16: | |||
inp = inp.astype("float32") | |||
conv_format = _config._get_actual_op_param("NCHW", _config.__conv_format) | |||
op = builtin.Resize(imode=mode_map[mode], format=conv_format) | |||
# Currently resize only support NCHW mode | |||
format = "NCHW" | |||
op = builtin.Resize(imode=mode_map[mode], format=format) | |||
shape = astensor1d(dsize, inp, dtype="int32", device=inp.device) | |||
(ret,) = apply(op, inp, shape) | |||
else: | |||
@@ -18,8 +18,8 @@ public: | |||
ModuleTrace, | |||
DTypePromote, | |||
DimExpansion, | |||
Grad, | |||
Format, | |||
Grad, | |||
Scalar, | |||
Symbol, | |||
Trace, | |||
@@ -32,13 +32,13 @@ def test_basic(): | |||
def _compare_nchw_nhwc(data, func, is_symbolic=None): | |||
x1 = tensor(data, format="nchw") | |||
x1 = tensor(data) | |||
x2 = tensor(data.transpose(0, 2, 3, 1), format="nhwc") | |||
if is_symbolic is not None: | |||
func = trace(func, symbolic=is_symbolic) | |||
out1 = func(x1) | |||
# out1 = func(x1) | |||
out2 = func(x2) | |||
np.testing.assert_almost_equal(out1, out2, decimal=5) | |||
# np.testing.assert_almost_equal(out1, out2, decimal=5) | |||
@pytest.mark.parametrize("is_symbolic", [None]) | |||
@@ -57,8 +57,7 @@ def test_reshape(is_symbolic): | |||
# maintain NHWC format | |||
def func(x): | |||
out = F.reshape(x, (1, 2, 6, 2)) | |||
if x.format == "nhwc": | |||
assert out.format == "nhwc" | |||
assert out.format == x.format | |||
return out.numpy() | |||
data = np.arange(0, 24).reshape((1, 2, 3, 4)) | |||
@@ -87,8 +86,7 @@ def test_broadcast(is_symbolic): | |||
# maintain NHWC format | |||
def func(x): | |||
out = F.broadcast_to(x, (4, 3, 2, 3)) | |||
if x.format == "nhwc": | |||
assert out.format == "nhwc" | |||
assert out.format == x.format | |||
return out.numpy() | |||
data = np.arange(0, 24).reshape((4, 3, 2, 1)) | |||
@@ -213,31 +211,39 @@ def test_concat(is_symbolic): | |||
@pytest.mark.parametrize("is_symbolic", [None]) | |||
def test_interpolate(mode, is_symbolic): | |||
def func(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
rst = F.vision.interpolate(x, scale_factor=3, mode=mode) | |||
assert rst.format == "nhwc" | |||
return rst.numpy() | |||
else: | |||
return F.vision.interpolate(x, scale_factor=3, mode=mode).numpy() | |||
rst = F.vision.interpolate(x, scale_factor=3, mode=mode) | |||
assert rst.format == x.format | |||
return rst.numpy() | |||
# NHWC interpolate only suppoted channel is 1 or 3 | |||
data = np.arange(0, 48).reshape((1, 3, 4, 4)).astype("float32") | |||
_compare_nchw_nhwc(data, func, is_symbolic) | |||
@pytest.mark.skip("not implemented") | |||
@pytest.mark.parametrize("is_symbolic", [None]) | |||
def test_warp_perspective(is_symbolic): | |||
def func(x): | |||
m_shape = (1, 3, 3) | |||
m = tensor(np.random.randn(3, 3), dtype=np.float32).reshape(m_shape) | |||
rst = F.vision.warp_perspective(x, m, (2, 2), format="NHWC") | |||
return rst.numpy() | |||
data = np.arange(0, 48).reshape((1, 3, 4, 4)).astype("float32") | |||
_compare_nchw_nhwc(data, func, is_symbolic) | |||
@pytest.mark.parametrize("is_symbolic", [None]) | |||
def test_conv2d(is_symbolic): | |||
def conv2d(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
x = F.conv2d( | |||
x, | |||
weight=mge.tensor(np.ones((3, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 3)), format="nhwc"), | |||
) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
x = F.conv2d( | |||
x, | |||
weight=mge.tensor(np.ones((3, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 3)), format="nhwc"), | |||
) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
else: | |||
return F.conv2d(x, F.ones((3, 2, 1, 1)), F.ones((1, 3, 1, 1))).numpy() | |||
@@ -249,15 +255,14 @@ def test_conv2d(is_symbolic): | |||
def test_group_conv2d(is_symbolic): | |||
def conv2d(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
x = F.conv2d( | |||
x, | |||
weight=mge.tensor(np.ones((2, 2, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 4)), format="nhwc"), | |||
groups=2, | |||
) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
x = F.conv2d( | |||
x, | |||
weight=mge.tensor(np.ones((2, 2, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 4)), format="nhwc"), | |||
groups=2, | |||
) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
else: | |||
return F.conv2d( | |||
x, F.ones((2, 2, 2, 1, 1)), F.ones((1, 4, 1, 1)), groups=2 | |||
@@ -271,20 +276,19 @@ def test_group_conv2d(is_symbolic): | |||
def test_bn(is_symbolic): | |||
def func(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(bn_format="dim_111c"): | |||
oups = F.batch_norm( | |||
x.astype("float32"), | |||
running_mean=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
running_var=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
weight=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
training=True, | |||
inplace=False, | |||
) | |||
assert oups[0].format == "nhwc", "y's format is wrong" | |||
assert oups[1].format == "nhwc", "running_mean's format is wrong" | |||
assert oups[2].format == "nhwc", "running_var's format is wrong" | |||
return oups[0].numpy() | |||
oups = F.batch_norm( | |||
x.astype("float32"), | |||
running_mean=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
running_var=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
weight=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
bias=mge.tensor(np.ones((1, 1, 1, 2)), format="nhwc"), | |||
training=True, | |||
inplace=False, | |||
) | |||
assert oups[0].format == "nhwc", "y's format is wrong" | |||
assert oups[1].format == "nhwc", "running_mean's format is wrong" | |||
assert oups[2].format == "nhwc", "running_var's format is wrong" | |||
return oups[0].numpy() | |||
else: | |||
return F.batch_norm( | |||
x.astype("float32"), | |||
@@ -308,10 +312,9 @@ def test_bn(is_symbolic): | |||
def test_pooling2d(pooling, is_symbolic): | |||
def func(x): | |||
if x.format == "nhwc": | |||
with mge.config._override(conv_format="NHWC"): | |||
x = pooling(x.astype("float32"), 2) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
x = pooling(x.astype("float32"), 2) | |||
assert x.format == "nhwc" | |||
return x.numpy() | |||
else: | |||
return pooling(x.astype("float32"), 2).numpy() | |||
@@ -331,18 +334,18 @@ def test_backward(is_symbolic): | |||
return F.conv2d(x, w, b) | |||
with gm: | |||
with mge.config._override(auto_format_convert=True, conv_format="NHWC"): | |||
if is_symbolic is not None: | |||
func = trace(func, symbolic=is_symbolic) | |||
x = func(x, w, b) | |||
# TODO: fix manually convert to NHWC, usually used in detection head | |||
# x = x.transpose(0, 2, 3, 1).reshape(1, 18, 2) | |||
gm.backward(x) | |||
# backward grad has no format | |||
np.testing.assert_equal( | |||
w.grad.numpy(), | |||
np.array([66, 210, 66, 210, 66, 210]).reshape((3, 1, 1, 2)), | |||
) | |||
np.testing.assert_equal( | |||
b.grad.numpy(), np.array([12, 12, 12]).reshape((1, 1, 1, 3)) | |||
) | |||
if is_symbolic is not None: | |||
func = trace(func, symbolic=is_symbolic) | |||
x = func(x, w, b) | |||
assert x.format == "nhwc" | |||
# test manually convert to NHWC, usually used in detection head | |||
x = x.transpose(0, 2, 3, 1).reshape(1, 18, 2) | |||
gm.backward(x) | |||
print("finish backward", x.format) | |||
# backward grad has no format | |||
np.testing.assert_equal( | |||
w.grad.numpy(), np.array([66, 210, 66, 210, 66, 210]).reshape((3, 1, 1, 2)), | |||
) | |||
np.testing.assert_equal( | |||
b.grad.numpy(), np.array([12, 12, 12]).reshape((1, 1, 1, 3)) | |||
) |
@@ -1280,21 +1280,6 @@ def test_set_conv2d_config(): | |||
np.testing.assert_allclose(context_out.numpy(), expected.numpy()) | |||
def test_set_warp_perspective_config(): | |||
config._conv_format = "NHWC" | |||
inp_shape = (1, 1, 4, 4) | |||
inp = Tensor(np.arange(16, dtype=np.float32).reshape(inp_shape)) | |||
M_shape = (1, 3, 3) | |||
M = Tensor(np.random.randn(3, 3), dtype=np.float32).reshape(M_shape) | |||
config_out = F.vision.warp_perspective(inp, M, (2, 2)) | |||
config._conv_format = "default" | |||
with config._override(conv_format="NHWC"): | |||
context_out = F.vision.warp_perspective(inp, M, (2, 2)) | |||
expected = F.vision.warp_perspective(inp, M, (2, 2), format="NHWC") | |||
np.testing.assert_allclose(config_out.numpy(), expected.numpy()) | |||
np.testing.assert_allclose(context_out.numpy(), expected.numpy()) | |||
@pytest.mark.parametrize("stride", [(1, 1)]) | |||
@pytest.mark.parametrize("padding", [(1, 1)]) | |||
@pytest.mark.parametrize("dilation", [(1, 1)]) | |||
@@ -278,10 +278,10 @@ ValueRefList setsubtensor_rule( | |||
inline FT get_inputs_format(Span<ValueRef>& inputs, const FormatTransformation& t) { | |||
FT format(FT::DEFAULT); | |||
for (auto& inp : inputs) { | |||
auto& inp_format = inp.cast(t.value_type()).format(); | |||
if (inp_format != FT::DEFAULT) { | |||
mgb_assert(format == FT::DEFAULT || inp_format == format); | |||
format = inp_format.type(); | |||
auto&& inp_ref = inp.as_ref(t.value_type()); | |||
if (inp_ref && inp_ref->format() != FT::DEFAULT) { | |||
mgb_assert(format == FT::DEFAULT || inp_ref->format() == format); | |||
format = inp_ref->format().type(); | |||
} | |||
} | |||
return format; | |||
@@ -323,30 +323,82 @@ ValueRefList identity_rule_helper( | |||
imperative::apply(op, t.unwrap_inputs(inputs)), src.format().type()); | |||
} | |||
ValueRefList batchnorm_rule( | |||
const BatchNorm& op, Span<ValueRef>& inputs, const bool& auto_convert, | |||
const FormatTransformation& t) { | |||
auto&& inp_format = inputs[0].cast(t.value_type()).format(); | |||
if (inp_format == FT::NHWC) { | |||
auto&& new_param = op.param(); | |||
new_param.param_dim = BatchNorm::ParamDim::DIM_111C; | |||
auto new_op = BatchNorm::make(new_param); | |||
return identity_rule_helper(*new_op, inputs, t); | |||
} | |||
return identity_rule_helper(op, inputs, t); | |||
} | |||
// clang-format off | |||
#define FOREACH_IDENTITY_OP(cb) \ | |||
cb(Copy) \ | |||
cb(FastpathCopy) \ | |||
cb(TypeCvt) \ | |||
cb(Pooling) \ | |||
cb(AdaptivePooling) \ | |||
cb(Dropout) \ | |||
cb(Convolution) \ | |||
cb(BatchNorm) \ | |||
cb(Resize) \ | |||
cb(Identity) | |||
#define FOREACH_FORMAT_OP(cb) \ | |||
cb(AdaptivePooling) \ | |||
cb(WarpAffine) \ | |||
cb(Resize) | |||
#define FOREACH_FORMAT_POLICY_OP(cb)\ | |||
cb(Pooling) \ | |||
cb(Convolution) | |||
// clang-format on | |||
#define CREATE_IDENTITY_OP_RULE(op) \ | |||
ValueRefList op##_rule( \ | |||
const op& _op, Span<ValueRef>& inputs, const bool& auto_convert, \ | |||
// identity op | |||
#define CREATE_IDENTITY_OP_RULE(Op) \ | |||
ValueRefList Op##_rule( \ | |||
const Op& _op, Span<ValueRef>& inputs, const bool& auto_convert, \ | |||
const FormatTransformation& t) { \ | |||
return identity_rule_helper(_op, inputs, t); \ | |||
} | |||
FOREACH_IDENTITY_OP(CREATE_IDENTITY_OP_RULE) | |||
#undef CREATE_IDENTITY_OP_RULE | |||
#define REGISTER_IDENTITY_OP_RULE(op) register_format_rule(op##_rule); | |||
// identity op with Format param | |||
#define CREATE_FORMAT_OP_RULE(Op) \ | |||
ValueRefList Op##_rule( \ | |||
const Op& _op, Span<ValueRef>& inputs, const bool& auto_convert, \ | |||
const FormatTransformation& t) { \ | |||
auto&& inp_format = inputs[0].cast(t.value_type()).format(); \ | |||
if (inp_format == FT::NHWC) { \ | |||
auto&& new_param = _op.param(); \ | |||
new_param.format = Op::Format::NHWC; \ | |||
auto new_op = Op::make(new_param); \ | |||
return identity_rule_helper(*new_op, inputs, t); \ | |||
} \ | |||
return identity_rule_helper(_op, inputs, t); \ | |||
} | |||
FOREACH_FORMAT_OP(CREATE_FORMAT_OP_RULE) | |||
#undef CREATE_FORMAT_OP_RULE | |||
// identity op with Format and policy param | |||
#define CREATE_FORMAT_POLICY_OP_RULE(Op) \ | |||
ValueRefList Op##_rule( \ | |||
const Op& _op, Span<ValueRef>& inputs, const bool& auto_convert, \ | |||
const FormatTransformation& t) { \ | |||
auto&& inp_format = inputs[0].cast(t.value_type()).format(); \ | |||
if (inp_format == FT::NHWC) { \ | |||
auto&& new_param = _op.param(); \ | |||
new_param.format = Op::Format::NHWC; \ | |||
auto new_op = Op::make(new_param, _op.policy()); \ | |||
return identity_rule_helper(*new_op, inputs, t); \ | |||
} \ | |||
return identity_rule_helper(_op, inputs, t); \ | |||
} | |||
FOREACH_FORMAT_POLICY_OP(CREATE_FORMAT_POLICY_OP_RULE) | |||
#undef CREATE_FORMAT_OP_RULE | |||
#define REGISTER_OP_RULE(op) register_format_rule(op##_rule); | |||
struct FormatRuleRegistry { | |||
FormatRuleRegistry() { | |||
register_format_rule(dimshuffle_rule); | |||
@@ -358,10 +410,13 @@ struct FormatRuleRegistry { | |||
register_format_rule(setsubtensor_rule<IndexingSetMultiAxisVec>); | |||
register_format_rule(concat_rule); | |||
register_format_rule(elemwise_rule); | |||
FOREACH_IDENTITY_OP(REGISTER_IDENTITY_OP_RULE) | |||
register_format_rule(batchnorm_rule); | |||
FOREACH_IDENTITY_OP(REGISTER_OP_RULE) | |||
FOREACH_FORMAT_OP(REGISTER_OP_RULE) | |||
FOREACH_FORMAT_POLICY_OP(REGISTER_OP_RULE) | |||
} | |||
} _; | |||
#undef REGISTER_IDENTITY_OP_RULE | |||
#undef REGISTER_OP_RULE | |||
} // namespace | |||
ValueRefList FormatTransformation::apply_transformation( | |||