GitOrigin-RevId: f2f1a10762
release-1.4
@@ -7,7 +7,6 @@ dnn/src/cuda/matrix_mul/fp32_simt/kimpl/* binary | |||
dnn/src/cuda/sass/prebuilt/map_defs.cpp binary | |||
dnn/src/cuda/convolution/backward_data/int8/kimpl/* binary | |||
tools/mlir/mlir-tblgen filter=lfs diff=lfs merge=lfs -text | |||
*.caffemodel filter=lfs diff=lfs merge=lfs -text | |||
imperative/python/test/integration/data/*.mge filter=lfs diff=lfs merge=lfs -text | |||
ci/resource/models/float/mobilenet_v2.pkl filter=lfs diff=lfs merge=lfs -text | |||
ci/resource/models/float/shufflenet_v2.pkl filter=lfs diff=lfs merge=lfs -text | |||
@@ -72,12 +72,11 @@ TensorRTRuntimeOpr::TensorRTRuntimeOpr( | |||
size_t nr_input = 0; | |||
bool is_input = true; | |||
for (int i = 0; i < m_engine->getNbBindings(); ++i) { | |||
// nbDims == 3, means CHW, without batch | |||
if (m_engine->getBindingDimensions(i).nbDims != 3) | |||
m_trt_engine_has_batch = true; | |||
if (m_engine->bindingIsInput(nr_input)) { | |||
mgb_assert(is_input, "mixed input/output bindings"); | |||
// nbDims == 3, means CHW, without batch | |||
if (m_engine->getBindingDimensions(nr_input).nbDims != 3) | |||
m_trt_engine_has_batch = true; | |||
++nr_input; | |||
} else { | |||
is_input = false; | |||
@@ -106,6 +106,70 @@ intl::SimpleTensorRTNetwork::create_trt_network(bool has_batch_dim) { | |||
return std::make_pair(builder, network); | |||
} | |||
intl::BatchedTensorRTNetwork::BatchedTensorRTNetwork() { | |||
host_x = gen({23, 28, 28}); | |||
graph = ComputingGraph::make(); | |||
x = Host2DeviceCopy::make(*graph, host_x); | |||
opr::Reduce::Param param1{Reduce::Mode::SUM, 0, Reduce::Param::DataType::DEFAULT}; | |||
opr::Reduce::Param param2{Reduce::Mode::SUM, 1, Reduce::Param::DataType::DEFAULT}; | |||
auto y0 = opr::Reduce::make(x, param1); | |||
auto y1 = opr::Reduce::make(y0, param2); | |||
TensorShape tshp{1, 28}; | |||
y = opr::Reshape::make(y1, tshp); | |||
} | |||
std::pair<nvinfer1::IBuilder*, INetworkDefinition*> | |||
intl::BatchedTensorRTNetwork::create_trt_network(bool has_batch_dim) { | |||
CompNode::load("xpu0").activate(); | |||
auto builder = createInferBuilder(TensorRTOpr::Logger::instance()); | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
nvinfer1::NetworkDefinitionCreationFlags flags; | |||
::memset(&flags, 0, sizeof(nvinfer1::NetworkDefinitionCreationFlags)); | |||
if (has_batch_dim) | |||
flags = 1 << static_cast<int>(nvinfer1::NetworkDefinitionCreationFlag:: | |||
kEXPLICIT_BATCH); | |||
auto network = builder->createNetworkV2(flags); | |||
#else | |||
auto network = builder->createNetwork(); | |||
#endif | |||
nvinfer1::ITensor* data; | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
if (has_batch_dim) { | |||
data = network->addInput("data", DataType::kFLOAT, | |||
Dims4{1, 23, 28, 28}); | |||
} else { | |||
data = network->addInput("data", DataType::kFLOAT, Dims3{23, 28, 28}); | |||
} | |||
{ | |||
nvinfer1::TensorFormats formats = | |||
1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR); | |||
data->setAllowedFormats(formats); | |||
} | |||
#else | |||
if (has_batch_dim) { | |||
data = network->addInput("data", DataType::kFLOAT, | |||
DimsNCHW{1, 23, 28, 28}); | |||
} else { | |||
data = network->addInput("data", DataType::kFLOAT, DimsCHW{23, 28, 28}); | |||
} | |||
#endif | |||
mgb_assert(data != nullptr, "data is invalid"); | |||
auto reduce1 = network->addReduce(*data, nvinfer1::ReduceOperation::kSUM, 3, false); | |||
mgb_assert(reduce1 != nullptr, "reduce1 is invalid"); | |||
reduce1->getOutput(0)->setName("prob"); | |||
network->markOutput(*reduce1->getOutput(0)); | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
{ | |||
nvinfer1::TensorFormats formats = | |||
1 << static_cast<int>(nvinfer1::TensorFormat::kLINEAR); | |||
reduce1->getOutput(0)->setAllowedFormats(formats); | |||
} | |||
#endif | |||
return std::make_pair(builder, network); | |||
} | |||
intl::SimpleQuantizedTensorRTNetwork::SimpleQuantizedTensorRTNetwork() { | |||
host_x = range_gen({32, 8, 28, 28}); | |||
host_w = weight_gen({8, 8, 3, 3}); | |||
@@ -48,6 +48,20 @@ struct SimpleTensorRTNetwork { | |||
create_trt_network(bool has_batch_dim); | |||
}; | |||
struct BatchedTensorRTNetwork { | |||
HostTensorGenerator<> gen; | |||
std::shared_ptr<HostTensorND> host_x, host_w, host_b; | |||
std::shared_ptr<ComputingGraph> graph; | |||
SymbolVar x, y; | |||
HostTensorND host_z1; | |||
BatchedTensorRTNetwork(); | |||
std::pair<nvinfer1::IBuilder*, INetworkDefinition*> | |||
create_trt_network(bool has_batch_dim); | |||
}; | |||
struct SimpleQuantizedTensorRTNetwork { | |||
HostTensorGenerator<dtype::Float32, RandomDistribution::UNIFORM> weight_gen{ | |||
1*1.1f, 127*1.1f}; | |||
@@ -62,6 +62,37 @@ TEST(TestOprTensorRT, RuntimeBasic) { | |||
} | |||
TEST(TestOprTensorRT, RuntimeBasicBatched) { | |||
REQUIRE_GPU(1); | |||
intl::BatchedTensorRTNetwork net; | |||
auto make_trt = [&net]() { | |||
auto p = net.create_trt_network(false); | |||
TensorRTUniquePtr<INetworkDefinition> trt_net{p.second, {}}; | |||
TensorRTUniquePtr<IBuilder> builder{p.first, {}}; | |||
builder->setMaxBatchSize(5); | |||
#if NV_TENSOR_RT_VERSION >= 6001 | |||
TensorRTUniquePtr<IBuilderConfig> build_config{ | |||
builder->createBuilderConfig()}; | |||
TensorRTUniquePtr<ICudaEngine> cuda_engine{ | |||
builder->buildEngineWithConfig(*trt_net, *build_config)}; | |||
#else | |||
TensorRTUniquePtr<ICudaEngine> cuda_engine{ | |||
builder->buildCudaEngine(*trt_net)}; | |||
#endif | |||
TensorRTUniquePtr<IHostMemory> mem{cuda_engine->serialize(), {}}; | |||
auto nx = opr::Broadcast::make(net.x, {1, net.x.shape()[0], net.x.shape()[1], net.x.shape()[2]}); | |||
return TensorRTRuntimeOpr::make(mem->data(), mem->size(), {nx})[0]; | |||
}; | |||
auto y2 = make_trt(); | |||
HostTensorND host_z1; | |||
HostTensorND host_z2; | |||
auto func = net.graph->compile({make_callback_copy(net.y, host_z1), | |||
make_callback_copy(y2, host_z2)}); | |||
func->execute(); | |||
MGB_ASSERT_TENSOR_NEAR(host_z1, host_z2, 5e-4); | |||
} | |||
TEST(TestOprTensorRT, ConcatRuntimeBasic) { | |||
REQUIRE_GPU(1); | |||