GitOrigin-RevId: 3b664bb4f5
tags/v0.5.0
@@ -226,6 +226,31 @@ public: | |||
PostprocessMode::FLOAT, | |||
"DefaultStrategyType::FLOAT"_hash); | |||
} else if (format == param::ConvBias::Format::NCHW44) { | |||
#if MEGDNN_AARCH64 | |||
auto matmul_block = matmul_algo->get_inner_block_size(); | |||
//! Optimize NCHW44 3x3s2 8X12X1 im2col+pack fuse | |||
if (matmul_block.m == 8 && matmul_block.n == 12 && | |||
matmul_block.k == 1 && | |||
param.filter_meta.spatial[0] == 3 && | |||
param.filter_meta.spatial[1] == 3 && | |||
param.filter_meta.stride[0] == 2 && | |||
param.filter_meta.stride[1] == 2 && | |||
!param.filter_meta.should_flip) { | |||
MIDOUT_BEGIN( | |||
megdnn_fallback_im2col_factory_make_strategy, | |||
midout_iv( | |||
"DefaultStrategyType::8x12x1_fuse_packb_s2_nchw44"_hash)) { | |||
return std::make_unique< | |||
StrategyFuse8x12x1Nchw44K3x3S2< | |||
float, float, | |||
PostprocessMode::FLOAT>>(); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
#endif | |||
cb1(NCHW44, DEFAULT, dt_float32, dt_float32, | |||
PostprocessMode::FLOAT, | |||
"DefaultStrategyTypeNCHW44::FLOAT"_hash); | |||
@@ -320,6 +345,52 @@ public: | |||
"DefaultStrategyType::QINT8x8x32x8"_hash); | |||
} else if (format == param::ConvBias::Format::NCHW44 || | |||
format == param::ConvBias::Format::NCHW44_DOT) { | |||
#if MEGDNN_AARCH64 | |||
auto matmul_block = matmul_algo->get_inner_block_size(); | |||
if (format == param::ConvBias::Format::NCHW44) { | |||
//! Optimize NCHW44 3x3s1 4X4X16 im2col+pack fuse | |||
if (matmul_block.m == 4 && matmul_block.n == 4 && | |||
matmul_block.k == 16 && | |||
param.filter_meta.spatial[0] == 3 && | |||
param.filter_meta.spatial[1] == 3 && | |||
param.filter_meta.stride[0] == 1 && | |||
param.filter_meta.stride[1] == 1 && | |||
!param.filter_meta.should_flip) { | |||
MIDOUT_BEGIN( | |||
megdnn_fallback_im2col_factory_make_strategy, | |||
midout_iv( | |||
"DefaultStrategyType::INT8x8x32_4x4x16"_hash)) { | |||
return std::make_unique< | |||
StrategyFuse4x4x16Nchw44< | |||
dt_qint32, dt_qint8, | |||
PostprocessMode::QUANTIZED>>(); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
} else { | |||
//! Optimize NCHW44_DOT 3x3s1 8X12X4 im2col+pack fuse | |||
if (matmul_block.m == 8 && matmul_block.n == 12 && | |||
matmul_block.k == 4 && | |||
param.filter_meta.spatial[0] == 3 && | |||
param.filter_meta.spatial[1] == 3 && | |||
param.filter_meta.stride[0] == 1 && | |||
param.filter_meta.stride[1] == 1 && | |||
!param.filter_meta.should_flip) { | |||
MIDOUT_BEGIN( | |||
megdnn_fallback_im2col_factory_make_strategy, | |||
midout_iv( | |||
"DefaultStrategyType::INT8x8x32_8x12x4"_hash)) { | |||
return std::make_unique< | |||
StrategyFuse8x12x4Nchw44Dot< | |||
dt_qint32, dt_qint8, | |||
PostprocessMode::QUANTIZED>>(); | |||
} | |||
MIDOUT_END(); | |||
return {}; | |||
} | |||
} | |||
#endif | |||
cb2(NCHW44, DEFAULT, dtype::QuantizedS8, | |||
dtype::QuantizedS32, dtype::QuantizedS8, dt_int8, | |||
dt_int32, dt_int8, PostprocessMode::QUANTIZED, | |||
@@ -445,6 +445,75 @@ public: | |||
THREAD_BUNDLE_BIAS_INDEX); | |||
} | |||
}; | |||
#if MEGDNN_AARCH64 | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
class StrategyFuse4x4x16Nchw44 | |||
: public Strategy<dt_int8, dt_int32, dt_int8, op_ctype, op_dtype, | |||
postprocess_mode, PackMode::DEFAULT, | |||
FormatMode::NCHW44> { | |||
public: | |||
StrategyFuse4x4x16Nchw44() = default; | |||
constexpr static size_t BUNDLE_PADDING_INDEX = 0; | |||
constexpr static size_t BUNDLE_PACKA_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_PACKB_INDEX = 0; | |||
constexpr static size_t THREAD_BUNDLE_IM2COL_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_BIAS_INDEX = 2; | |||
void exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam matmul_param, | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo) override; | |||
}; | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
class StrategyFuse8x12x1Nchw44K3x3S2 | |||
: public Strategy<float, float, float, op_ctype, op_dtype, | |||
postprocess_mode, PackMode::DEFAULT, | |||
FormatMode::NCHW44> { | |||
public: | |||
StrategyFuse8x12x1Nchw44K3x3S2() = default; | |||
constexpr static size_t BUNDLE_PADDING_INDEX = 0; | |||
constexpr static size_t BUNDLE_PACKA_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_PACKB_INDEX = 0; | |||
constexpr static size_t THREAD_BUNDLE_IM2COL_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_BIAS_INDEX = 2; | |||
void exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam matmul_param, | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo) override; | |||
}; | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
class StrategyFuse8x12x4Nchw44Dot | |||
: public Strategy<dt_int8, dt_int32, dt_int8, op_ctype, op_dtype, | |||
postprocess_mode, PackMode::DEFAULT, | |||
FormatMode::NCHW44> { | |||
public: | |||
StrategyFuse8x12x4Nchw44Dot() = default; | |||
constexpr static size_t BUNDLE_PADDING_INDEX = 0; | |||
constexpr static size_t BUNDLE_PACKA_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_PACKB_INDEX = 0; | |||
constexpr static size_t THREAD_BUNDLE_IM2COL_INDEX = 1; | |||
constexpr static size_t THREAD_BUNDLE_BIAS_INDEX = 2; | |||
void exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam matmul_param, | |||
fallback::MatrixMulImpl::AlgoBase* matmul_algo) override; | |||
}; | |||
#endif | |||
} // namespace megdnn | |||
// vim: syntax=cpp.doxygen |
@@ -14,6 +14,9 @@ | |||
#include "src/x86/conv_bias/postprocess_helper.h" | |||
#endif | |||
#if (MEGDNN_ARMV7 || MEGDNN_AARCH64) | |||
#include "src/arm_common/conv_bias/postprocess_helper.h" | |||
#endif | |||
using namespace megdnn; | |||
#if MEGDNN_X86 | |||
@@ -101,11 +104,23 @@ void Strategy<src_ctype, bias_ctype, dst_ctype, op_ctype, op_dtype, | |||
INSTANTIAL_CLASS(dt_float32, dt_float32, dt_float32, dt_float32, dt_float32, | |||
megdnn::PostprocessMode::FLOAT) | |||
#if __ARM_FEATURE_FP16_VECTOR_ARITHMETIC | |||
INSTANTIAL_CLASS(dt_float16, dt_float16, dt_float16, __fp16, __fp16, | |||
megdnn::PostprocessMode::FLOAT) | |||
#else | |||
#if !MEGDNN_DISABLE_FLOAT16 | |||
INSTANTIAL_CLASS(dt_float16, dt_float16, dt_float16, dt_float16, dt_float16, | |||
megdnn::PostprocessMode::NO_PROCESS) | |||
#endif | |||
#endif | |||
#if MEGDNN_AARCH64 || MEGDNN_ARMV7 | |||
//! x86 do not have uint8 matmul so only armv7 armv8 support uint8 | |||
INSTANTIAL_CLASS(dt_uint8, dt_int32, dt_uint8, dt_qint32, dt_quint8, | |||
megdnn::PostprocessMode::QUANTIZED) | |||
INSTANTIAL_CLASS(dt_uint8, dt_int32, dt_int32, dt_qint32, dt_qint32, | |||
megdnn::PostprocessMode::NO_PROCESS) | |||
#endif | |||
INSTANTIAL_CLASS(dt_int8, dt_int32, dt_int8, dt_qint32, dt_qint8, | |||
megdnn::PostprocessMode::QUANTIZED) | |||
@@ -11,5 +11,235 @@ | |||
#include "src/fallback/conv_bias/im2col/strategy_base.h" | |||
#if MEGDNN_AARCH64 | |||
#include <arm_neon.h> | |||
using namespace megdnn; | |||
namespace { | |||
#define TRANS_AND_STORE(input0, input1, input2, input3) \ | |||
{ \ | |||
auto tmp01 = vzipq_s32(input0, input1); \ | |||
auto tmp23 = vzipq_s32(input2, input3); \ | |||
auto dst0 = vzip1q_s64(vreinterpretq_s64_s32(tmp01.val[0]), \ | |||
vreinterpretq_s64_s32(tmp23.val[0])); \ | |||
auto dst1 = vzip2q_s64(vreinterpretq_s64_s32(tmp01.val[0]), \ | |||
vreinterpretq_s64_s32(tmp23.val[0])); \ | |||
auto dst2 = vzip1q_s64(vreinterpretq_s64_s32(tmp01.val[1]), \ | |||
vreinterpretq_s64_s32(tmp23.val[1])); \ | |||
auto dst3 = vzip2q_s64(vreinterpretq_s64_s32(tmp01.val[1]), \ | |||
vreinterpretq_s64_s32(tmp23.val[1])); \ | |||
vst1q_s32(dst, vreinterpretq_s32_s64(dst0)); \ | |||
vst1q_s32(dst + 4, vreinterpretq_s32_s64(dst1)); \ | |||
vst1q_s32(dst + 8, vreinterpretq_s32_s64(dst2)); \ | |||
vst1q_s32(dst + 12, vreinterpretq_s32_s64(dst3)); \ | |||
dst += 16; \ | |||
} | |||
#define TRANS_AND_STORE_REMAIN(input0, input1, input2, input3, remain) \ | |||
{ \ | |||
auto tmp01 = vzipq_s32(input0, input1); \ | |||
auto tmp23 = vzipq_s32(input2, input3); \ | |||
vdst[0] = vzip1q_s64(vreinterpretq_s64_s32(tmp01.val[0]), \ | |||
vreinterpretq_s64_s32(tmp23.val[0])); \ | |||
vdst[1] = vzip2q_s64(vreinterpretq_s64_s32(tmp01.val[0]), \ | |||
vreinterpretq_s64_s32(tmp23.val[0])); \ | |||
vdst[2] = vzip1q_s64(vreinterpretq_s64_s32(tmp01.val[1]), \ | |||
vreinterpretq_s64_s32(tmp23.val[1])); \ | |||
vdst[3] = vzip2q_s64(vreinterpretq_s64_s32(tmp01.val[1]), \ | |||
vreinterpretq_s64_s32(tmp23.val[1])); \ | |||
for (size_t i = 0; i < remain; i++) { \ | |||
vst1q_s32(dst + i * 4, vreinterpretq_s32_s64(vdst[i])); \ | |||
} \ | |||
dst += 16; \ | |||
} | |||
void optimize_fuse_im2col_packB(dt_int8* src, size_t ic, size_t iw, size_t ih, | |||
size_t curr_iw, size_t curr_ih, dt_int8* dst_ptr) { | |||
int* src_line0 = | |||
reinterpret_cast<int*>(src + curr_ih * iw * 4 + curr_iw * 4); | |||
int* src_line1 = | |||
reinterpret_cast<int*>(src + (curr_ih + 1) * iw * 4 + curr_iw * 4); | |||
int* src_line2 = | |||
reinterpret_cast<int*>(src + (curr_ih + 2) * iw * 4 + curr_iw * 4); | |||
int* dst = reinterpret_cast<int*>(dst_ptr); | |||
int32x4_t input[12]; | |||
int remain = 0; | |||
for (size_t c = 0; c < ic; c++) { | |||
input[remain] = vld1q_s32(src_line0); | |||
input[remain + 1] = vld1q_s32(src_line0 + 1); | |||
input[remain + 2] = vld1q_s32(src_line0 + 2); | |||
input[remain + 3] = vld1q_s32(src_line1); | |||
input[remain + 4] = vld1q_s32(src_line1 + 1); | |||
input[remain + 5] = vld1q_s32(src_line1 + 2); | |||
input[remain + 6] = vld1q_s32(src_line2); | |||
input[remain + 7] = vld1q_s32(src_line2 + 1); | |||
input[remain + 8] = vld1q_s32(src_line2 + 2); | |||
TRANS_AND_STORE(input[0], input[1], input[2], input[3]); | |||
TRANS_AND_STORE(input[4], input[5], input[6], input[7]); | |||
if (remain == 3) { | |||
TRANS_AND_STORE(input[8], input[9], input[10], input[11]); | |||
remain = 0; | |||
} else { | |||
for (int i = 0; i <= remain; i++) { | |||
input[i] = input[8 + i]; | |||
} | |||
remain++; | |||
} | |||
src_line0 += ih * iw; | |||
src_line1 += ih * iw; | |||
src_line2 += ih * iw; | |||
} | |||
//! pad remain to 4 | |||
if (remain > 0) { | |||
TRANS_AND_STORE(input[0], input[1], input[2], input[3]); | |||
} | |||
} | |||
void naive_fuse_im2col_packB(dt_int8* src, size_t ic, size_t iw, size_t ih, | |||
size_t curr_iw, size_t curr_ih, size_t num_point, | |||
size_t ow, dt_int8* dst_ptr) { | |||
megdnn_assert(num_point <= 4_z, | |||
"fuse im2col and packB of 4x4x16 num_point must less than 4"); | |||
int* src_line0 = reinterpret_cast<int*>(src + curr_ih * iw * 4); | |||
int* src_line1 = reinterpret_cast<int*>(src + (curr_ih + 1) * iw * 4); | |||
int* src_line2 = reinterpret_cast<int*>(src + (curr_ih + 2) * iw * 4); | |||
int remain = 0; | |||
int out[9][4] = {{0}}; | |||
int32x4_t input[12]; | |||
int* dst = reinterpret_cast<int*>(dst_ptr); | |||
for (size_t c = 0; c < ic; c++) { | |||
//! Read int buffer out | |||
size_t index = 0, w = curr_iw, dalta_h = 0; | |||
while (index < num_point) { | |||
int* src_next_line0 = src_line0 + dalta_h * iw; | |||
int* src_next_line1 = src_next_line0 + iw; | |||
int* src_next_line2 = src_next_line1 + iw; | |||
for (; index < num_point && w < ow; index++, w++) { | |||
out[0][index] = src_next_line0[w]; | |||
out[1][index] = src_next_line0[w + 1]; | |||
out[2][index] = src_next_line0[w + 2]; | |||
out[3][index] = src_next_line1[w]; | |||
out[4][index] = src_next_line1[w + 1]; | |||
out[5][index] = src_next_line1[w + 2]; | |||
out[6][index] = src_next_line2[w]; | |||
out[7][index] = src_next_line2[w + 1]; | |||
out[8][index] = src_next_line2[w + 2]; | |||
} | |||
//! next line | |||
w = 0; | |||
dalta_h += 1; | |||
} | |||
//! load int vector | |||
input[remain] = vld1q_s32(out[0]); | |||
input[remain + 1] = vld1q_s32(out[1]); | |||
input[remain + 2] = vld1q_s32(out[2]); | |||
input[remain + 3] = vld1q_s32(out[3]); | |||
input[remain + 4] = vld1q_s32(out[4]); | |||
input[remain + 5] = vld1q_s32(out[5]); | |||
input[remain + 6] = vld1q_s32(out[6]); | |||
input[remain + 7] = vld1q_s32(out[7]); | |||
input[remain + 8] = vld1q_s32(out[8]); | |||
int64x2_t vdst[4]; | |||
TRANS_AND_STORE_REMAIN(input[0], input[1], input[2], input[3], num_point); | |||
TRANS_AND_STORE_REMAIN(input[4], input[5], input[6], input[7], num_point); | |||
if (remain == 3) { | |||
TRANS_AND_STORE_REMAIN(input[8], input[9], input[10], input[11], | |||
num_point); | |||
remain = 0; | |||
} else { | |||
for (int i = 0; i <= remain; i++) { | |||
input[i] = input[8 + i]; | |||
} | |||
remain++; | |||
} | |||
src_line0 += ih * iw; | |||
src_line1 += ih * iw; | |||
src_line2 += ih * iw; | |||
} | |||
//! pad remain to 4 | |||
if (remain > 0) { | |||
int64x2_t vdst[4]; | |||
TRANS_AND_STORE_REMAIN(input[0], input[1], input[2], input[3], | |||
num_point); | |||
} | |||
} | |||
} // namespace | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
void StrategyFuse4x4x16Nchw44<op_ctype, op_dtype, postprocess_mode>:: | |||
exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam, | |||
fallback::MatrixMulImpl::AlgoBase*) { | |||
size_t ow = param.osz[1]; | |||
size_t ic = param.filter_meta.icpg; | |||
size_t ih = param.isz[0] + param.filter_meta.padding[0] * 2; | |||
size_t iw = param.isz[1] + param.filter_meta.padding[1] * 2; | |||
constexpr static size_t pack_size = 4; | |||
size_t input_offset = | |||
ih * iw * ic * | |||
(sparam.group_id + param.filter_meta.group * sparam.batch_id) * | |||
sizeof(dt_int8); | |||
dt_int8* src2 = reinterpret_cast<dt_int8*>( | |||
reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PADDING_INDEX)) + | |||
input_offset); | |||
bool is_phpwzero = param.filter_meta.padding[0] == 0 && | |||
param.filter_meta.padding[1] == 0; | |||
if (is_phpwzero) { | |||
src2 = const_cast<dt_int8*>( | |||
param.src<dt_int8>(sparam.batch_id, sparam.group_id)); | |||
} | |||
dt_int8* b_panel = | |||
reinterpret_cast<dt_int8*>(reinterpret_cast<uintptr_t>( | |||
bundle_thread.get(THREAD_BUNDLE_PACKB_INDEX))); | |||
megdnn_assert(ic % 4 == 0, "nchw44 with ic is not of time 4"); | |||
const int packed_k = (ic * 3 * 3) / pack_size; | |||
const int ksize4 = round_up<int>(packed_k, 4) * 16 * sizeof(dt_int8); | |||
size_t out_size = sparam.output_block_size; | |||
size_t curr_index = sparam.ohw_cur_index; | |||
size_t curr_ih = curr_index / ow; | |||
size_t curr_iw = curr_index % ow; | |||
size_t out_index = 0; | |||
while (out_index < out_size) { | |||
for (; curr_iw + 3 < ow && out_index + 3 < out_size; | |||
curr_iw += 4, out_index += 4) { | |||
dt_int8* dst = b_panel + (out_index / 4) * ksize4; | |||
optimize_fuse_im2col_packB(src2, ic / 4, iw, ih, curr_iw, curr_ih, | |||
dst); | |||
} | |||
if (curr_iw < ow && out_index < out_size) { | |||
size_t out_remain = std::min(out_size - out_index, 4_z); | |||
size_t remain_point_this_line = std::min(ow - curr_iw, out_remain); | |||
size_t start_point_next_line = | |||
(out_remain - remain_point_this_line) % ow; | |||
size_t pass_lines = (out_remain - remain_point_this_line) / ow; | |||
dt_int8* dst = b_panel + (out_index / 4) * ksize4; | |||
naive_fuse_im2col_packB(src2, ic / 4, iw, ih, curr_iw, curr_ih, | |||
out_remain, ow, dst); | |||
out_index += out_remain; | |||
curr_iw = start_point_next_line; | |||
curr_ih += (pass_lines + 1); | |||
} else { | |||
curr_iw = 0; | |||
curr_ih++; | |||
} | |||
} | |||
} | |||
#undef TRANS_AND_STORE_REMAIN | |||
#undef TRANS_AND_STORE | |||
namespace megdnn { | |||
template class StrategyFuse4x4x16Nchw44<dt_qint32, dt_qint8, | |||
megdnn::PostprocessMode::QUANTIZED>; | |||
} // namespace megdnn | |||
#endif | |||
// vim: syntax=cpp.doxygen |
@@ -11,5 +11,209 @@ | |||
#include "src/fallback/conv_bias/im2col/strategy_base.h" | |||
#if MEGDNN_AARCH64 | |||
#include <arm_neon.h> | |||
using namespace megdnn; | |||
namespace { | |||
#define PACKB_ONELINE() \ | |||
int out_index = 0; \ | |||
outptr = output_base; \ | |||
for (; out_index + 11 < block_size; out_index += 12) { \ | |||
std::memcpy(outptr, tmp_output, 48); \ | |||
outptr += ksize12; \ | |||
tmp_output += 12; \ | |||
} \ | |||
\ | |||
outptr = output_base4; \ | |||
for (; out_index + 3 < block_size; out_index += 4) { \ | |||
std::memcpy(outptr, tmp_output, 16); \ | |||
outptr += ksize4; \ | |||
tmp_output += 4; \ | |||
} \ | |||
\ | |||
if (out_index < block_size) { \ | |||
uint32_t zerobuffer[4] = {0}; \ | |||
size_t out_remain = std::min(block_size - out_index, 4); \ | |||
std::memcpy(outptr, tmp_output, out_remain * sizeof(uint32_t)); \ | |||
outptr += out_remain; \ | |||
std::memcpy(outptr, zerobuffer, (4 - out_remain) * sizeof(uint32_t)); \ | |||
} \ | |||
output_base += 12; \ | |||
output_base4 += 4; | |||
#define STOR_IM2COL_DST() \ | |||
output0[count] = uint32_src[index + 0]; \ | |||
output1[count] = uint32_src[index + 1]; \ | |||
output2[count] = uint32_src[index + 2]; | |||
#define LOAD_AND_STOR_IM2COL_DST() \ | |||
uint32x4_t v_tmp = vld1q_u32(&uint32_src[index + 4]); \ | |||
uint32x4_t v_o1 = vextq_u32(v_o0, v_tmp, 1); \ | |||
uint32x4_t v_o2 = vextq_u32(v_o0, v_tmp, 2); \ | |||
vst1q_u32(&output0[count], v_o0); \ | |||
vst1q_u32(&output1[count], v_o1); \ | |||
vst1q_u32(&output2[count], v_o2); \ | |||
v_o0 = v_tmp; | |||
void fuse_packb(const dt_int8* __restrict src, dt_int8* __restrict dst, | |||
dt_int8* __restrict b_panel, const int OW, const int IC, | |||
const int IH, const int IW, | |||
const int cur_index, const int block_size) { | |||
int start_h = cur_index / OW; | |||
int cur_remain_w = cur_index % OW; | |||
int end_h = (cur_index + block_size) / OW; | |||
int end_remain_w = (cur_index + block_size) % OW; | |||
bool same_line = start_h == end_h ? true : false; | |||
size_t newIC = IC / 4; | |||
const uint32_t* uint32_src = | |||
static_cast<const uint32_t*>(static_cast<const void*>(src)); | |||
uint32_t* output = static_cast<uint32_t*>(static_cast<void*>(dst)); | |||
uint32_t* b_output = static_cast<uint32_t*>(static_cast<void*>(b_panel)); | |||
const int packed_k = newIC * 3 * 3; | |||
const int ksize12 = packed_k * 12 * sizeof(dt_int8); | |||
const int ksize4 = packed_k * 4 * sizeof(dt_int8); | |||
uint32_t* outptr = b_output; | |||
uint32_t* output_base = b_output; | |||
uint32_t* output_base4 = b_output + block_size / 12 * ksize12; | |||
constexpr int FH = 3; | |||
if (same_line) { | |||
rep(ic, newIC) { | |||
rep(fh, FH) { | |||
size_t count = 0; | |||
size_t index = 0; | |||
int w = cur_remain_w; | |||
index = (ic * IH + (start_h + fh)) * IW + w; | |||
for (; w + 3 < end_remain_w; w += 4) { | |||
vst1q_u32(&output[count], vld1q_u32(&uint32_src[index])); | |||
count += 4; | |||
index += 4; | |||
} | |||
for (; w < end_remain_w; w++) { | |||
output[count++] = uint32_src[index++]; | |||
} | |||
output[count++] = uint32_src[index]; | |||
output[count++] = uint32_src[index + 1]; | |||
for (int i = 0; i < 3; i++) { | |||
const uint32_t* tmp_output = output + i; | |||
PACKB_ONELINE(); | |||
} | |||
} | |||
} | |||
} else { | |||
rep(ic, newIC) { | |||
rep(fh, FH) { | |||
size_t count = 0; | |||
size_t index = 0; | |||
uint32_t* output0 = output; | |||
uint32_t* output1 = output + block_size; | |||
uint32_t* output2 = output1 + block_size; | |||
int w = cur_remain_w; | |||
index = (ic * IH + (start_h + fh)) * IW + w; | |||
uint32x4_t v_o0 = vld1q_u32(&uint32_src[index]); | |||
for ( ; w + 3 < OW; w += 4) { | |||
LOAD_AND_STOR_IM2COL_DST(); | |||
count += 4; | |||
index += 4; | |||
} | |||
for (; w < OW; w++) { | |||
STOR_IM2COL_DST(); | |||
count++; | |||
index++; | |||
} | |||
for (int h = start_h + 1; h < end_h; h++) { | |||
int ow = 0; | |||
index = (ic * IH + (h + fh)) * IW + ow; | |||
v_o0 = vld1q_u32(&uint32_src[index]); | |||
for (; ow + 3 < OW; ow += 4) { | |||
LOAD_AND_STOR_IM2COL_DST(); | |||
count += 4; | |||
index += 4; | |||
} | |||
for (; ow < OW; ow++) { | |||
STOR_IM2COL_DST(); | |||
count++; | |||
index++; | |||
} | |||
} | |||
index = (ic * IH + (end_h + fh)) * IW; | |||
w = 0; | |||
v_o0 = vld1q_u32(&uint32_src[index]); | |||
for ( ; w + 3 < end_remain_w; w+=4) { | |||
LOAD_AND_STOR_IM2COL_DST(); | |||
count+=4; | |||
index+=4; | |||
} | |||
for ( ; w < end_remain_w; w++) { | |||
STOR_IM2COL_DST(); | |||
count++; | |||
index++; | |||
} | |||
for (int k = 0; k < 3; k++) { | |||
const uint32_t* tmp_output = output + k * block_size; | |||
PACKB_ONELINE(); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
#undef PACKB_ONELINE | |||
#undef STOR_IM2COL_DST | |||
#undef LOAD_AND_STOR_IM2COL_DST | |||
} // namespace | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
void StrategyFuse8x12x4Nchw44Dot<op_ctype, op_dtype, postprocess_mode>:: | |||
exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam /*matmul_param*/, | |||
fallback::MatrixMulImpl::AlgoBase* /*matmul_algo*/) { | |||
size_t ow = param.osz[1]; | |||
size_t ic = param.filter_meta.icpg; | |||
size_t ih = param.isz[0] + param.filter_meta.padding[0] * 2; | |||
size_t iw = param.isz[1] + param.filter_meta.padding[1] * 2; | |||
size_t input_offset = | |||
ih * iw * ic * | |||
(sparam.group_id + param.filter_meta.group * sparam.batch_id) * | |||
sizeof(dt_int8); | |||
dt_int8* src2 = reinterpret_cast<dt_int8*>( | |||
reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PADDING_INDEX)) + | |||
input_offset); | |||
bool is_phpwzero = param.filter_meta.padding[0] == 0 && | |||
param.filter_meta.padding[1] == 0; | |||
if (is_phpwzero) { | |||
src2 = const_cast<dt_int8*>( | |||
param.src<dt_int8>(sparam.batch_id, sparam.group_id)); | |||
} | |||
dt_int8* b_panel = | |||
reinterpret_cast<dt_int8*>(reinterpret_cast<uintptr_t>( | |||
bundle_thread.get(THREAD_BUNDLE_PACKB_INDEX))); | |||
megdnn_assert(ic % 4 == 0, "nchw44_dot with ic is not of time 4"); | |||
int8_t* im2col_dst = static_cast<int8_t*>( | |||
bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); | |||
fuse_packb(src2, im2col_dst, b_panel, ow, ic, ih, iw, sparam.ohw_cur_index, | |||
sparam.output_block_size); | |||
} | |||
namespace megdnn { | |||
template class StrategyFuse8x12x4Nchw44Dot<dt_qint32, dt_qint8, | |||
megdnn::PostprocessMode::QUANTIZED>; | |||
} // namespace megdnn | |||
#endif | |||
// vim: syntax=cpp.doxygen |
@@ -0,0 +1,209 @@ | |||
/** | |||
* \file dnn/src/fallback/conv_bias/im2col/strategy_fuse_nchw44_fp32_s2.cpp | |||
* MegEngine is Licensed under the Apache License, Version 2.0 (the "License") | |||
* | |||
* Copyright (c) 2014-2020 Megvii Inc. All rights reserved. | |||
* | |||
* Unless required by applicable law or agreed to in writing, | |||
* software distributed under the License is distributed on an | |||
* "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
*/ | |||
#include "src/fallback/conv_bias/im2col/strategy_base.h" | |||
#include "src/fallback/convolution/img2col_helper.h" | |||
#if MEGDNN_AARCH64 | |||
#include <arm_neon.h> | |||
using namespace megdnn; | |||
namespace { | |||
#define PACKB_ONELINE() \ | |||
int out_index = 0; \ | |||
outptr = output_base; \ | |||
for (; out_index + 11 < block_size; out_index += 12) { \ | |||
float32x4x4_t v0 = vld4q_f32(tmp_output); \ | |||
float32x4x4_t v1 = vld4q_f32(tmp_output + 16); \ | |||
float32x4x4_t v2 = vld4q_f32(tmp_output + 32); \ | |||
vst1q_f32(outptr, v0.val[0]); \ | |||
vst1q_f32(outptr + 4, v1.val[0]); \ | |||
vst1q_f32(outptr + 8, v2.val[0]); \ | |||
vst1q_f32(outptr + 12, v0.val[1]); \ | |||
vst1q_f32(outptr + 16, v1.val[1]); \ | |||
vst1q_f32(outptr + 20, v2.val[1]); \ | |||
vst1q_f32(outptr + 24, v0.val[2]); \ | |||
vst1q_f32(outptr + 28, v1.val[2]); \ | |||
vst1q_f32(outptr + 32, v2.val[2]); \ | |||
vst1q_f32(outptr + 36, v0.val[3]); \ | |||
vst1q_f32(outptr + 40, v1.val[3]); \ | |||
vst1q_f32(outptr + 44, v2.val[3]); \ | |||
outptr += ksize12; \ | |||
tmp_output += 48; \ | |||
} \ | |||
\ | |||
outptr = output_base4; \ | |||
for (; out_index + 3 < block_size; out_index += 4) { \ | |||
float32x4x4_t v0 = vld4q_f32(tmp_output); \ | |||
vst1q_f32(outptr, v0.val[0]); \ | |||
vst1q_f32(outptr + 4, v0.val[1]); \ | |||
vst1q_f32(outptr + 8, v0.val[2]); \ | |||
vst1q_f32(outptr + 12, v0.val[3]); \ | |||
outptr += ksize4; \ | |||
tmp_output += 16; \ | |||
} \ | |||
\ | |||
if (out_index < block_size) { \ | |||
float zerobuffer[16] = {0}; \ | |||
size_t out_remain = std::min(block_size - out_index, 4); \ | |||
std::memcpy(zerobuffer, tmp_output, out_remain * sizeof(float) * 4); \ | |||
float32x4x4_t v0 = vld4q_f32(zerobuffer); \ | |||
vst1q_f32(outptr, v0.val[0]); \ | |||
vst1q_f32(outptr + 4, v0.val[1]); \ | |||
vst1q_f32(outptr + 8, v0.val[2]); \ | |||
vst1q_f32(outptr + 12, v0.val[3]); \ | |||
} \ | |||
output_base += 48; \ | |||
output_base4 += 16; | |||
#define LOAD_AND_STOR_IM2COL_DST() \ | |||
float32x4_t v1 = vld1q_f32(&src[index + 4]); \ | |||
float32x4_t v2 = vld1q_f32(&src[index + 8]); \ | |||
vst1q_f32(&output0[i], v0); \ | |||
vst1q_f32(&output1[i], v1); \ | |||
vst1q_f32(&output2[i], v2); \ | |||
i += 4; \ | |||
index += 8; \ | |||
v0 = v2; | |||
void fuse_packb(const float* __restrict src, float* __restrict dst, | |||
float* __restrict b_panel, const int OW, const int IC, | |||
const int IH, const int IW, const int cur_index, | |||
const int block_size) { | |||
int start_h = cur_index / OW; | |||
int cur_remain_w = cur_index % OW; | |||
int end_h = (cur_index + block_size) / OW; | |||
int end_remain_w = (cur_index + block_size) % OW; | |||
bool same_line = start_h == end_h ? true : false; | |||
size_t newIC = IC / 4; | |||
float* b_output = b_panel; | |||
const int packed_k = IC * 3 * 3; | |||
const int ksize12 = packed_k * 12; | |||
const int ksize4 = packed_k * 4; | |||
float* outptr = b_output; | |||
float* output_base = b_output; | |||
float* output_base4 = b_output + block_size / 12 * ksize12; | |||
constexpr int FH = 3; | |||
constexpr int SH = 2; | |||
constexpr int SW = 2; | |||
if (same_line) { | |||
rep(ic, newIC) { | |||
rep(fh, FH) { | |||
float* output02 = dst; | |||
float* output1 = dst + block_size * 4 + 4; | |||
size_t i = 0; | |||
size_t index = 4 * (ic * IH * IW + (start_h * SH + fh) * IW + | |||
cur_remain_w * SW); | |||
for (int w = cur_remain_w; w < end_remain_w; w++) { | |||
vst1q_f32(&output02[i], vld1q_f32(&src[index])); | |||
vst1q_f32(&output1[i], vld1q_f32(&src[index + 4])); | |||
i += 4; | |||
index += 8; | |||
} | |||
vst1q_f32(&output02[i], vld1q_f32(&src[index])); | |||
float* output[3]; | |||
output[0] = output02; | |||
output[1] = output1; | |||
output[2] = output02 + 4; | |||
for (int i = 0; i < 3; i++) { | |||
const float* tmp_output = output[i]; | |||
PACKB_ONELINE(); | |||
} | |||
} | |||
} | |||
} else { | |||
rep(ic, newIC) { | |||
rep(fh, FH) { | |||
float* output0 = dst; | |||
float* output1 = dst + block_size * 4; | |||
float* output2 = output1 + block_size * 4; | |||
size_t i = 0; | |||
size_t index = 4 * (ic * IH * IW + (start_h * SH + fh) * IW + | |||
(cur_remain_w * SW)); | |||
float32x4_t v0 = vld1q_f32(&src[index]); | |||
for (int w = cur_remain_w; w < OW; w++) { | |||
LOAD_AND_STOR_IM2COL_DST(); | |||
} | |||
for (int h = start_h + 1; h < end_h; h++) { | |||
size_t index = 4 * (ic * IH * IW + (h * SH + fh) * IW); | |||
v0 = vld1q_f32(&src[index]); | |||
rep(ow, OW) { LOAD_AND_STOR_IM2COL_DST(); } | |||
} | |||
index = 4 * (ic * IH * IW + (end_h * SH + fh) * IW); | |||
v0 = vld1q_f32(&src[index]); | |||
for (int w = 0; w < end_remain_w; w++) { | |||
LOAD_AND_STOR_IM2COL_DST(); | |||
} | |||
for (int i = 0; i < 3; i++) { | |||
const float* tmp_output = output0 + i * block_size * 4; | |||
PACKB_ONELINE(); | |||
} | |||
} | |||
} | |||
} | |||
} | |||
#undef PACKB_ONELINE | |||
#undef LOAD_AND_STOR_IM2COL_DST | |||
} // namespace | |||
template <typename op_ctype, typename op_dtype, | |||
megdnn::PostprocessMode postprocess_mode> | |||
void StrategyFuse8x12x1Nchw44K3x3S2<op_ctype, op_dtype, postprocess_mode>:: | |||
exec_im2col(WorkspaceBundle bundle, WorkspaceBundle bundle_thread, | |||
const StrategyParam& sparam, | |||
const fallback::ConvBiasImpl::NCBKernParam& param, | |||
fallback::MatrixMulImpl::KernParam /*matmul_param*/, | |||
fallback::MatrixMulImpl::AlgoBase* /*matmul_algo*/) { | |||
size_t ow = param.osz[1]; | |||
size_t ic = param.filter_meta.icpg; | |||
size_t ih = param.isz[0] + param.filter_meta.padding[0] * 2; | |||
size_t iw = param.isz[1] + param.filter_meta.padding[1] * 2; | |||
size_t input_offset = | |||
ih * iw * ic * | |||
(sparam.group_id + param.filter_meta.group * sparam.batch_id) * | |||
sizeof(float); | |||
float* src2 = reinterpret_cast<float*>( | |||
reinterpret_cast<uintptr_t>(bundle.get(BUNDLE_PADDING_INDEX)) + | |||
input_offset); | |||
bool is_phpwzero = param.filter_meta.padding[0] == 0 && | |||
param.filter_meta.padding[1] == 0; | |||
if (is_phpwzero) { | |||
src2 = const_cast<float*>( | |||
param.src<float>(sparam.batch_id, sparam.group_id)); | |||
} | |||
float* b_panel = reinterpret_cast<float*>(reinterpret_cast<uintptr_t>( | |||
bundle_thread.get(THREAD_BUNDLE_PACKB_INDEX))); | |||
megdnn_assert(ic % 4 == 0, "nchw44_dot with ic is not of time 4"); | |||
float* im2col_dst = | |||
static_cast<float*>(bundle_thread.get(THREAD_BUNDLE_IM2COL_INDEX)); | |||
fuse_packb(src2, im2col_dst, b_panel, ow, ic, ih, iw, sparam.ohw_cur_index, | |||
sparam.output_block_size); | |||
} | |||
namespace megdnn { | |||
template class StrategyFuse8x12x1Nchw44K3x3S2<float, float, | |||
megdnn::PostprocessMode::FLOAT>; | |||
} // namespace megdnn | |||
#endif | |||
// vim: syntax=cpp.doxygen |
@@ -1838,7 +1838,16 @@ TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32) { | |||
check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
#endif | |||
} | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_IM2COL_S2_MK4_PACK_F32_FUSE) { | |||
using namespace conv_bias; | |||
std::vector<conv_bias::TestArg> args = get_nchw44_conv_bias_args( | |||
{3}, 2, false, false, false, false, false, true, true,false); | |||
#if MEGDNN_AARCH64 | |||
check_conv_bias(args, handle(), "IM2COLMATMUL:AARCH64_F32_MK4_K8X12X1"); | |||
#elif MEGDNN_ARMV7 | |||
check_conv_bias(args, handle(), "IM2COLMATMUL:ARMV7_F32_MK4_PACK_4X12"); | |||
#endif | |||
} | |||
/***************************** Conv1x1 Algo Test ***********************/ | |||
TEST_F(ARM_COMMON_MULTI_THREADS, CONV_BIAS_1X1_S1_F32) { | |||
using namespace conv_bias; | |||
@@ -708,6 +708,66 @@ TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_INT8_NCHW44_DOT) { | |||
} | |||
TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, BENCHMARK_CONVBIAS_FLOAT_NCHW44) { | |||
constexpr size_t RUNS = 40; | |||
std::vector<DType> data_type = { | |||
dtype::Float32(), dtype::Float32(), | |||
dtype::Float32(), dtype::Float32()}; | |||
auto bench_case = [&](size_t N, size_t IC, size_t OC, size_t H, size_t W, | |||
size_t FS, size_t group, size_t P, size_t S, | |||
bool is_nchw = false) { | |||
param::ConvBias param; | |||
param.nonlineMode = param::ConvBias::NonlineMode::RELU; | |||
param.pad_h = P; | |||
param.pad_w = P; | |||
param.stride_h = S; | |||
param.stride_w = S; | |||
param.sparse = param::ConvBias::Sparse::DENSE; | |||
param.format = param::ConvBias::Format::NCHW44; | |||
auto OH = (H + 2 * P - FS) / static_cast<size_t>(S) + 1; | |||
auto OW = (W + 2 * P - FS) / static_cast<size_t>(S) + 1; | |||
TensorShape src = {N, IC / 4, H, W, 4}; | |||
TensorShape filter = {OC / 4, IC / 4, FS, FS, 4, 4}; | |||
if (group > 1) { | |||
filter = {group, OC / group / 4, IC / group / 4, FS, FS, 4, 4}; | |||
param.sparse = param::ConvBias::Sparse::GROUP; | |||
} | |||
if (is_nchw) { | |||
src = {N, IC, H, W}; | |||
filter = {OC / 4, FS, FS, IC, 4}; | |||
} | |||
TensorShape bias = {1, OC / 4, 1, 1, 4}; | |||
TensorShape dst = {N, OC / 4, OH, OW, 4}; | |||
SmallVector<TensorShape> shapes{src, filter, bias, {}, dst}; | |||
float computations = | |||
(((IC / group) * FS * FS + 1) * dst.total_nr_elems() * 2 + | |||
dst.total_nr_elems()) * | |||
1e-6; | |||
std::vector<std::pair<SmallVector<TensorShape>, float>> shape_arg = { | |||
std::make_pair(shapes, computations)}; | |||
benchmark_impl(param, shape_arg, ".+", RUNS, {4, {4, 5, 6, 7}}, | |||
{1, {7}}, data_type); | |||
}; | |||
bench_case(1, 64, 64, 56, 56, 3, 1, 1, 2); | |||
bench_case(1, 128, 128, 28, 28, 3, 1, 1, 2); | |||
bench_case(1, 256, 256, 14, 14, 3, 1, 1, 2); | |||
bench_case(1, 512, 512, 7, 7, 3, 1, 1, 2); | |||
bench_case(1, 64, 64, 56, 56, 3, 4, 1, 2); | |||
bench_case(1, 128, 128, 28, 28, 3, 4, 1, 2); | |||
bench_case(1, 256, 256, 14, 14, 3, 4, 1, 2); | |||
bench_case(1, 512, 512, 7, 7, 3, 4, 1, 2); | |||
bench_case(1, 64, 64, 56*2, 56*2, 3, 4, 1, 2); | |||
bench_case(1, 128, 128, 28*2, 28*2, 3, 4, 1, 2); | |||
bench_case(1, 256, 256, 14*2, 14*2, 3, 4, 1, 2); | |||
bench_case(1, 512, 512, 7*2, 7*2, 3, 4, 1, 2); | |||
} | |||
TEST_F(ARM_COMMON_BENCHMARK_MULTI_THREADS, | |||
BENCHMARK_CONVBIAS_INT8_INT8_INT8_STRIDE2) { | |||
constexpr size_t RUNS = 50; | |||