GitOrigin-RevId: 2a74c35f27
release-1.1
@@ -260,16 +260,17 @@ void ConvBiasForwardImpl::AlgoPack::fill_imma_algos() { | |||
void ConvBiasForwardImpl::AlgoPack::fill_dp4a_algos() { | |||
using AlgoParam = AlgoInt8NCHW4DotProdImplicitGemm::AlgoParam; | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 64, 32, 64, 32, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 32, 32, 32, 32, 32}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 128, 32, 64, 32, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 64, 32, 64, 32, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 128, 32, 64, 32, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 128, 32, 32, 64, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{128, 32, 32, 64, 32, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 64, 32, 64, 32, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 64, 32, 32, 64, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{64, 32, 32, 64, 32, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{32, 32, 32, 32, 32, 32, 2}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 128, 16, 16, 128, 16, 1}); | |||
int8_nchw4_dotprod.emplace_back(AlgoParam{16, 64, 8, 16, 64, 8, 2}); | |||
} | |||
@@ -407,15 +407,16 @@ public: | |||
int warp_m; | |||
int warp_n; | |||
int warp_k; | |||
int stage; | |||
std::string to_string() { | |||
/// default algorithm | |||
if (threadblock_m == 128 && threadblock_n == 128 && | |||
threadblock_k == 32 && warp_m == 32 && warp_n == 64 && | |||
warp_k == 32) { | |||
warp_k == 32 && stage == 2) { | |||
return ""; | |||
} | |||
return ssprintf("_%dX%dX%d_%dX%dX%d", threadblock_m, threadblock_n, | |||
threadblock_k, warp_m, warp_n, warp_k); | |||
return ssprintf("_%dX%dX%d_%dX%dX%d_%dstage", threadblock_m, threadblock_n, | |||
threadblock_k, warp_m, warp_n, warp_k, stage); | |||
} | |||
}; | |||
AlgoInt8NCHW4DotProdImplicitGemm(AlgoParam algo_param) | |||
@@ -172,7 +172,7 @@ void megdnn::cuda::cutlass_wrapper:: | |||
const GemmCoord& warp_shape, cudaStream_t stream) { | |||
#define DISPATCH_KERNEL_WITH_TILE_SHAPE(threadblock_m_, threadblock_n_, \ | |||
threadblock_k_, warp_m_, warp_n_, \ | |||
warp_k_, aligned_) \ | |||
warp_k_, stage_, aligned_) \ | |||
if (threadblock_shape.m() == threadblock_m_ && \ | |||
threadblock_shape.n() == threadblock_n_ && \ | |||
threadblock_shape.k() == threadblock_k_ && \ | |||
@@ -194,7 +194,7 @@ void megdnn::cuda::cutlass_wrapper:: | |||
cutlass::convolution::threadblock:: \ | |||
ConvolutionNCxHWxThreadblockSwizzle< \ | |||
cutlass::convolution::ConvType::kConvolution>, \ | |||
2, 4, aligned_, NeedLoadFromConstMem>; \ | |||
stage_, 4, aligned_, NeedLoadFromConstMem>; \ | |||
typename Convolution::ConvolutionParameter conv_param{ \ | |||
param.n, param.ci, param.co, param.hi, param.wi, \ | |||
param.fh, param.fw, param.ho, param.wo, param.sh, \ | |||
@@ -204,16 +204,17 @@ void megdnn::cuda::cutlass_wrapper:: | |||
epilogue, stream); \ | |||
} | |||
#define DISPATCH_KERNEL \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 128, 32, 64, 32, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 64, 32, 64, 32, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 128, 32, 64, 32, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 32, 32, 64, 32, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 128, 32, 32, 64, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 64, 32, 64, 32, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 64, 32, 32, 64, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 32, 32, 64, 32, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 32, 32, 32, 32, 32, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(16, 64, 8, 16, 64, 8, 4); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 128, 32, 64, 32, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 64, 32, 64, 32, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 128, 32, 64, 32, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(128, 32, 32, 64, 32, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 128, 32, 32, 64, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 64, 32, 64, 32, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 64, 32, 32, 64, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(64, 32, 32, 64, 32, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(32, 32, 32, 32, 32, 32, 2, 16); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(16, 128, 16, 16, 128, 16, 1, 8); \ | |||
DISPATCH_KERNEL_WITH_TILE_SHAPE(16, 64, 8, 16, 64, 8, 2, 4); \ | |||
megdnn_assert(false, \ | |||
"unsupported threadblock shape (%dx%dx%d) and warp shape " \ | |||
"(%dx%dx%d)", \ | |||
@@ -0,0 +1,35 @@ | |||
#if !MEGDNN_TEGRA_X1 | |||
// generated by gen_cuda_conv_bias_kern_impls.py | |||
// ignore warning of cutlass | |||
#pragma GCC diagnostic push | |||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||
using ThreadBlockShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using WarpShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||
int8_t, 4, int32_t, int32_t, float>; | |||
using Convolution = cutlass::convolution::device::Convolution< | |||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||
cutlass::convolution::ConvType::kConvolution>, | |||
1, 4, 8, true>; | |||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||
const int8_t* d_src, | |||
const int8_t* d_filter, | |||
const int32_t* d_bias, | |||
const int8_t* d_z, | |||
int8_t* d_dst, | |||
int* workspace, | |||
typename Convolution::ConvolutionParameter const& conv_param, | |||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||
cudaStream_t stream); | |||
#pragma GCC diagnostic pop | |||
#endif |
@@ -0,0 +1,35 @@ | |||
#if !MEGDNN_TEGRA_X1 | |||
// generated by gen_cuda_conv_bias_kern_impls.py | |||
// ignore warning of cutlass | |||
#pragma GCC diagnostic push | |||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||
using ThreadBlockShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using WarpShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||
int8_t, 4, int32_t, int32_t, float>; | |||
using Convolution = cutlass::convolution::device::Convolution< | |||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||
cutlass::convolution::ConvType::kConvolution>, | |||
1, 4, 8, true>; | |||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||
const int8_t* d_src, | |||
const int8_t* d_filter, | |||
const int32_t* d_bias, | |||
const int8_t* d_z, | |||
int8_t* d_dst, | |||
int* workspace, | |||
typename Convolution::ConvolutionParameter const& conv_param, | |||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||
cudaStream_t stream); | |||
#pragma GCC diagnostic pop | |||
#endif |
@@ -0,0 +1,35 @@ | |||
#if !MEGDNN_TEGRA_X1 | |||
// generated by gen_cuda_conv_bias_kern_impls.py | |||
// ignore warning of cutlass | |||
#pragma GCC diagnostic push | |||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||
using ThreadBlockShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using WarpShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||
int8_t, 4, int32_t, int32_t, float>; | |||
using Convolution = cutlass::convolution::device::Convolution< | |||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||
cutlass::convolution::ConvType::kConvolution>, | |||
1, 4, 8, true>; | |||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||
const int8_t* d_src, | |||
const int8_t* d_filter, | |||
const int32_t* d_bias, | |||
const int8_t* d_z, | |||
int8_t* d_dst, | |||
int* workspace, | |||
typename Convolution::ConvolutionParameter const& conv_param, | |||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||
cudaStream_t stream); | |||
#pragma GCC diagnostic pop | |||
#endif |
@@ -0,0 +1,35 @@ | |||
#if !MEGDNN_TEGRA_X1 | |||
// generated by gen_cuda_conv_bias_kern_impls.py | |||
// ignore warning of cutlass | |||
#pragma GCC diagnostic push | |||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||
using ThreadBlockShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using WarpShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationHSwishClamp< | |||
int8_t, 4, int32_t, int32_t, float>; | |||
using Convolution = cutlass::convolution::device::Convolution< | |||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||
cutlass::convolution::ConvType::kConvolution>, | |||
1, 4, 8, false>; | |||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||
const int8_t* d_src, | |||
const int8_t* d_filter, | |||
const int32_t* d_bias, | |||
const int8_t* d_z, | |||
int8_t* d_dst, | |||
int* workspace, | |||
typename Convolution::ConvolutionParameter const& conv_param, | |||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||
cudaStream_t stream); | |||
#pragma GCC diagnostic pop | |||
#endif |
@@ -0,0 +1,35 @@ | |||
#if !MEGDNN_TEGRA_X1 | |||
// generated by gen_cuda_conv_bias_kern_impls.py | |||
// ignore warning of cutlass | |||
#pragma GCC diagnostic push | |||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||
using ThreadBlockShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using WarpShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationClamp< | |||
int8_t, 4, int32_t, int32_t, float>; | |||
using Convolution = cutlass::convolution::device::Convolution< | |||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||
cutlass::convolution::ConvType::kConvolution>, | |||
1, 4, 8, false>; | |||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||
const int8_t* d_src, | |||
const int8_t* d_filter, | |||
const int32_t* d_bias, | |||
const int8_t* d_z, | |||
int8_t* d_dst, | |||
int* workspace, | |||
typename Convolution::ConvolutionParameter const& conv_param, | |||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||
cudaStream_t stream); | |||
#pragma GCC diagnostic pop | |||
#endif |
@@ -0,0 +1,35 @@ | |||
#if !MEGDNN_TEGRA_X1 | |||
// generated by gen_cuda_conv_bias_kern_impls.py | |||
// ignore warning of cutlass | |||
#pragma GCC diagnostic push | |||
#pragma GCC diagnostic ignored "-Wunused-parameter" | |||
#pragma GCC diagnostic ignored "-Wstrict-aliasing" | |||
#include "src/cuda/conv_bias/int8/conv_bias_int8_implicit_gemm_cutlass_wrapper.cuinl" | |||
using LayoutSrc = cutlass::layout::TensorNCxHWx<4>; | |||
using LayoutFilter = cutlass::layout::TensorCxRSKx<4>; | |||
using ThreadBlockShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using WarpShape = cutlass::gemm::GemmShape<16, 128, 16>; | |||
using InstructionShape = cutlass::gemm::GemmShape<1, 1, 4>; | |||
using EpilogueOp = cutlass::epilogue::thread::BiasAddLinearCombinationReluClamp< | |||
int8_t, 4, int32_t, int32_t, float>; | |||
using Convolution = cutlass::convolution::device::Convolution< | |||
int8_t, LayoutSrc, int8_t, LayoutFilter, int8_t, | |||
LayoutSrc, int32_t, LayoutSrc, int32_t, | |||
cutlass::convolution::ConvType::kConvolution, cutlass::arch::OpClassSimt, cutlass::arch::Sm61, | |||
ThreadBlockShape, WarpShape, InstructionShape, EpilogueOp, | |||
cutlass::convolution::threadblock::ConvolutionNCxHWxThreadblockSwizzle< | |||
cutlass::convolution::ConvType::kConvolution>, | |||
1, 4, 8, false>; | |||
template void megdnn::cuda::cutlass_wrapper::cutlass_convolution_wrapper<Convolution>( | |||
const int8_t* d_src, | |||
const int8_t* d_filter, | |||
const int32_t* d_bias, | |||
const int8_t* d_z, | |||
int8_t* d_dst, | |||
int* workspace, | |||
typename Convolution::ConvolutionParameter const& conv_param, | |||
typename Convolution::EpilogueOutputOp::Params const& epilogue, | |||
cudaStream_t stream); | |||
#pragma GCC diagnostic pop | |||
#endif |
@@ -97,6 +97,13 @@ std::vector<BenchArgs> get_detection_bench_args(size_t batch = 16) { | |||
return args; | |||
} | |||
std::vector<BenchArgs> get_det_first_bench_args(size_t batch = 16) { | |||
std::vector<BenchArgs> args; | |||
args.emplace_back(BenchArgs{batch, 4, 736, 1280, 16, 3, 2}); | |||
args.emplace_back(BenchArgs{batch, 16, 384, 640, 16, 3, 1}); | |||
return args; | |||
} | |||
void benchmark_target_algo( | |||
Handle* handle, const std::vector<BenchArgs>& args, DType src_dtype, | |||
DType filter_dtype, DType bias_dtype, DType dst_dtype, | |||
@@ -1236,6 +1243,28 @@ TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4) { | |||
dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, | |||
"INT8_NCHW4_DOTPROD_IMPLICIT_GEMM", param::ConvBias::Format::NCHW4); | |||
} | |||
TEST_F(CUDA, BENCHMARK_SASS_CONV_BIAS_INT8_NCHW4_DET_FIRST) { | |||
require_compute_capability(6, 1); | |||
std::string algo = ConvBias::algo_name<ConvBias::DirectParam>( | |||
"SASS_INT8_NCHW4_DOTPROD_IMPLICIT_GEMM_128X32_64", | |||
ConvBias::DirectParam{}); | |||
benchmark_target_algo(handle_cuda(), get_det_first_bench_args(16), | |||
dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f}, | |||
dtype::QuantizedS32{1.2f * 1.3f}, | |||
dtype::QuantizedS8{1.0f}, algo.c_str(), | |||
param::ConvBias::Format::NCHW4); | |||
} | |||
TEST_F(CUDA, BENCHMARK_CUTLASS_CONV_BIAS_INT8_NCHW4_DET_FIRST) { | |||
require_compute_capability(6, 1); | |||
benchmark_target_algo( | |||
handle_cuda(), get_det_first_bench_args(16), | |||
dtype::QuantizedS8{1.2f}, dtype::QuantizedS8{1.3f}, | |||
dtype::QuantizedS32{1.2f * 1.3f}, dtype::QuantizedS8{1.0f}, | |||
"INT8_NCHW4_DOTPROD_IMPLICIT_GEMM_16", param::ConvBias::Format::NCHW4); | |||
} | |||
#endif | |||
} // namespace test | |||
} // namespace megdnn | |||
@@ -1 +1 @@ | |||
Subproject commit 5a7f4bfa0e57f92140c8236322a86730132e0847 | |||
Subproject commit 41426ea4074dcfc448b1c9979ea7617407590c04 |